首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Natural IgM has a wide range of actions in the immune system. Here we demonstrate that mice lacking serum IgM have an expansion in splenic marginal zone B cells with a proportionately smaller reduction in follicular B cells. The increase in the marginal zone-follicular B cell ratio (and an expansion in peritoneal B1a cells) is fully reversed by administration of polyclonal IgM, but not by two IgM monoclonals. Mice engineered to have a secreted oligoclonal IgM repertoire with an endogenous membrane IgM also exhibited a similar expansion of marginal zone B cells. We propose that natural IgM, by virtue of its polyreactivity, enhances Ag-driven signaling through the B cell receptor and promotes the formation of follicular B cells. These results demonstrate that natural IgM regulates the selection of B lymphocyte subsets.  相似文献   

2.
IL-10-producing B cells, also known as regulatory B cells (Bregs), play a key role in controlling autoimmunity. In this study, we report that chimeric mice specifically lacking IL-10-producing B cells (IL-10(-/-)B cell) developed an exacerbated arthritis compared with chimeric wild-type (WT) B cell mice. A significant decrease in the absolute numbers of Foxp3 regulatory T cells (Tregs), in their expression level of Foxp3, and a marked increase in inflammatory Th1 and Th17 cells were detected in IL-10(-/-) B cell mice compared with WT B cell mice. Reconstitution of arthritic B cell deficient (μMT) mice with different B cell subsets revealed that the ability to modulate Treg frequencies in vivo is exclusively restricted to transitional 2 marginal zone precursor Bregs. Moreover, transfer of WT transitional 2 marginal zone precursor Bregs to arthritic IL-10(-/-) mice increased Foxp3(+) Tregs and reduced Th1 and Th17 cell frequencies to levels measured in arthritic WT mice and inhibited inflammation. In vitro, IL-10(+/+) B cells established longer contact times with arthritogenic CD4(+)CD25(-) T cells compared with IL-10(-/-) B cells in response to Ag stimulation, and using the same culture conditions, we observed upregulation of Foxp3 on CD4(+) T cells. Thus, IL-10-producing B cells restrain inflammation by promoting differentiation of immunoregulatory over proinflammatory T cells.  相似文献   

3.
The characteristic microarchitecture of the marginal zone (MZ), formed by locally interacting MZ-specific B cells, macrophages, and endothelial cells, is critical for productive marginal zone B cell (MZB cell) Ab responses. Reportedly, IL-7-deficient mice, although severely lymphopenic, retain small numbers of CD21(high)CD23(low) B cells consistent with MZB cell phenotype, suggesting that IL-7 signaling is not exclusively required for MZB cell lymphopoiesis. In this study, we investigated the function of IL-7(-/-) MZB cells and the IL-7(-/-) microenvironment using a model of hamster heart xenograft rejection, which depends exclusively on MZB cell-mediated production of T cell-independent IgM xenoantibodies (IgMXAb). C57BL/6-IL-7(-/-) mice accepted xenografts indefinitely and failed to produce IgMXAb, even after transfer of additional IL-7(-/-) or wild-type C57BL/6 MZB cells. Transfer of wild-type but not IL-7(-/-) B cells enabled SCID mice to produce IgMXAb. When transferred to SCID mice, wild-type but not IL-7(-/-) B cells formed B cell follicles with clearly defined IgM(+), MOMA-1(+), and MAdCAM-1(+) MZ structures. Conversely, adoptively transferred GFP(+) C57BL/6 B cells homed to the MZ area in a SCID but not an IL-7(-/-) environment. Naive IL-7(-/-) mice showed absent or aberrant splenic B cell structures. We provide evidence that IL-7 is critical for the development of the intrinsic function of MZB cells in producing rapidly induced IgM against T cell-independent type II Ags, for their homing potential, and for the development of a functional MZ microanatomy capable of attracting and lodging MZB cells.  相似文献   

4.
Chronic helminth infections, such as schistosomes, are negatively associated with allergic disorders. Here, using B cell IL-10-deficient mice, Schistosoma mansoni-mediated protection against experimental ovalbumin-induced allergic airway inflammation (AAI) was shown to be specifically dependent on IL-10-producing B cells. To study the organs involved, we transferred B cells from lungs, mesenteric lymph nodes or spleen of OVA-infected mice to recipient OVA-sensitized mice, and showed that both lung and splenic B cells reduced AAI, but only splenic B cells in an IL-10-dependent manner. Although splenic B cell protection was accompanied by elevated levels of pulmonary FoxP3(+) regulatory T cells, in vivo ablation of FoxP3(+) T cells only moderately restored AAI, indicating an important role for the direct suppressory effect of regulatory B cells. Splenic marginal zone CD1d(+) B cells proved to be the responsible splenic B cell subset as they produced high levels of IL-10 and induced FoxP3(+) T cells in vitro. Indeed, transfer of CD1d(+) MZ-depleted splenic B cells from infected mice restored AAI. Markedly, we found a similarly elevated population of CD1d(hi) B cells in peripheral blood of Schistosoma haematobium-infected Gabonese children compared to uninfected children and these cells produced elevated levels of IL-10. Importantly, the number of IL-10-producing CD1d(hi) B cells was reduced after anti-schistosome treatment. This study points out that in both mice and men schistosomes have the capacity to drive the development of IL-10-producing regulatory CD1d(hi) B cells and furthermore, these are instrumental in reducing experimental allergic inflammation in mice.  相似文献   

5.
Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.  相似文献   

6.
Rapid removal of pathogens from the circulation by secondary lymphoid organs is prerequisite for successful control of infection. Blood-borne Ags are trapped mainly in the splenic marginal zone. To identify the cell populations responsible for Ag trapping in the marginal zone, mice were selectively depleted of marginal zone macrophages and marginal metallophilic macrophages. In the absence of these cells, trapping of microspheres and Listeria monocytogenes organisms was lost, and early control of infection was impaired. Depletion of marginal zone macrophages and marginal metallophilic macrophages, however, did not limit Ag presentation because Listeria-specific protective T cell immunity was induced. Therefore, marginal zone macrophages and marginal metallophilic macrophages are crucial for trapping of particulate Ag but dispensable for Ag presentation.  相似文献   

7.
The differentiation of CD4 T cells into Th1 and Th2 cells in vivo is difficult to analyze since it is influenced by many factors such as genetic background of the mice, nature of antigen, and adjuvant. In this study, we used a well-established model, which allows inducing Th1 or Th2 cells simply by low (LD, 105) or high dose (HD, 109) injection of sheep red blood cells (SRBC) into C57BL/6 mice. Signature cytokine mRNA expression was determined in specific splenic compartments after isolation by laser-microdissection. LD immunization with SRBC induced T cell proliferation in the splenic T cell zone but no Th1 differentiation. A second administration of SRBC into the skin rapidly generated Th1 cells. In contrast, HD immunization with SRBC induced both T cell proliferation and immediate Th2 differentiation. In addition, splenic marginal zone and B cell zone were activated indicating B cells as antigen presenting cells. Interestingly, disruption of the splenic architecture, in particular of the marginal zone, abolished Th2 differentiation and led to the generation of Th1 cells, confirming that antigen presentation by B cells directs Th2 polarization. Only in its absence Th1 cells develop. Therefore, B cells might be promising targets in order to therapeutically modulate the T cell response.  相似文献   

8.
Little is known about the function of natural IgM autoantibodies, especially that of IgM anti-leukocyte autoantibodies (IgM-ALA). Natural IgM-ALA are present at birth and characteristically increase during inflammatory and infective conditions. Our prior clinical observations and those of other investigators showing fewer rejections in renal and cardiac allografts transplanted into recipients with high levels of IgM-ALA led us to investigate whether IgM-ALA regulate the inflammatory response. In this article, we show that IgM, in physiologic doses, inhibit proinflammatory cells from proliferating and producing IFN-γ and IL-17 in response to alloantigens (MLR), anti-CD3, and the glycolipid α-galactosyl ceramide. We showed in an IgM knockout murine model, with intact B cells and regulatory T cells, that there was more severe inflammation and loss of function in the absence of IgM after renal ischemia reperfusion injury and cardiac allograft rejection. Replenishing IgM in IgM knockout mice or increasing the levels of IgM-ALA in wild-type B6 mice significantly attenuated the inflammation in both of these inflammatory models that involve IFN-γ and IL-17. The protective effect on renal ischemia reperfusion injury was not observed using IgM preadsorbed with leukocytes to remove IgM-ALA. We provide data to show that the anti-inflammatory effect of IgM is mediated, in part, by inhibiting TLR-4-induced NF-κB translocation into the nucleus and inhibiting differentiation of activated T cells into Th-1 and Th-17 cells. These observations highlight the importance of IgM-ALA in regulating excess inflammation mediated by both innate and adaptive immune mechanisms and where the inflammatory response involves Th-17 cells that are not effectively regulated by regulatory T cells.  相似文献   

9.
The rate of pathogen clearance is a critical determinant of morbidity and mortality. We sought to characterize the immune response responsible for the remarkably rapid clearance of individual episodes of bacteremia caused by the relapsing fever bacterium, Borrelia hermsii. SCID or Rag(-/-) mice were incapable of resolving B. hermsii infection, indicating a critical role for T and/or B cells. TCR(-/-) mice, which lack T cells, and IL-7(-/-) mice, which are deficient in both T cells and follicular B cells, but not in B1 cells and splenic marginal zone (MZ) B cells, efficiently cleared B. hermsii. These findings suggested that B1 cells and/or MZ B cells, two B cell subsets that are known to participate in rapid, T-independent responses, might be involved. The efficient resolution of the episodes of moderate level bacteremia by splenectomized mice suggested that MZ B cells do not play the primary role in clearance of this bacterium. In contrast, xid mice, which are deficient in B1 cells, suffered more severe episodes of bacteremia than wild-type mice. The hypothesis that B1 cells are critical for clearance of B. hermsii was further supported by a selective expansion of the B1b (i.e., IgM(high), IgD(-/low), Mac1(+) CD23(-), and CD5(-)) cell subset in infected xid mice, which coincided with the eventual resolution of infection. Finally, mice selectively incapable of secreting IgM, the dominant isotype produced by B1 cells, were completely unable to clear B. hermsii. Together these results support the model that B1b cells generate the T-independent IgM required for the control and resolution of relapsing fever borreliosis.  相似文献   

10.
T helper cell-driven activation of murine B cells has been shown to depend upon CD40-CD40 ligand (CD40L) interactions and a defined set of cytokines. These observations are primarily based on the use of conventional B cells obtained from the spleen. Therefore, it is presently unclear whether all mature B cell subsets found in the mouse have an equal dependence upon CD40-CD40L interactions and use the same T cell-derived cytokines. The present study tested the response of splenic follicular and marginal zone as well as peritoneal B2 and B1 B cells to Th cell stimulation. Splenic and peritoneal B cell subsets were sort purified based on CD23 expression, and cultured with rCD40L and cytokines or Th2 cells. The results demonstrate that follicular, marginal zone, and peritoneal B2 B cells require CD40-CD40L interactions and preferentially use IL-4 for optimal proliferation, differentiation, and isotype switching. In contrast, peritoneal B1 B cells use IL-5 in conjunction with CD40-CD40L interactions for maximal Th cell-dependent responses. Furthermore, B1 B cells are capable of proliferating, differentiating, and isotype switching in the absence of CD40-CD40L interactions. B1 B cells are able to respond to Th2 clones in the presence of anti-CD40L mAb as well as to Th2 clones derived from CD40L(-/-) mice. The CD40-CD40L-independent response of B1 B cells is attributable to the presence of both IL-4 and IL-5, and may explain the residual Ab response to T cell-dependent Ags in CD40L- or CD40-deficient mice, and in X-linked hyper-IgM (X-HIM) patients.  相似文献   

11.
Since apoptotic cell Ags are thought to be a source of self-Ag in systemic lupus erythematosus, we have examined the role of apoptotic cells in the regulation and activation of B cells specific for Sm, a ribonucleoprotein targeted in human and murine lupus. Using Ig-transgenic mice that have a high frequency of anti-Sm B cells, we find that apoptotic cell injection induces a transient splenic B cell response, while simultaneously causing extensive splenic and peritoneal anti-Sm B cell death. In contrast, mice deficient in the clearance of apoptotic cells develop a chronic anti-Sm response beginning at 1-2 mo of age. These mice have expanded marginal zone and B-1 B cell populations and anti-Sm B cells of both types are activated to form Ab-secreting cells. This activation appears to be Ag-specific, suggesting that activation is due to increased availability of apoptotic cell Ags. Since marginal zone and B-1 cells are positively selected, these data suggest a loss of ignorance rather than a loss of tolerance.  相似文献   

12.
The cytokines IL-10 and TGF-beta regulate immunity and inflammation. IL-10 is known to suppress the extent of hepatic damage caused by parasite ova during natural infection with Schistosoma mansoni, but the role of TGF-beta is less clear. Cytokine blockade studies in mice revealed that anti-IL-10R mAb treatment during acute infection modestly increased cytokine production and liver damage, whereas selective anti-TGF-beta mAb treatment had marginal effects. In contrast, mice administered both mAbs developed severe hepatic inflammation, with enlarged, necrotic liver granulomas, cachexia, and >80% mortality by 8 wk postinfection, despite increased numbers of CD4(+)CD25(+)Foxp3(+) T regulatory cells. Blocking both IL-10 and TGF-beta at the onset of egg production also significantly increased IL-4, IL-6, TNF, IFN-gamma, and IL-17 production and markedly increased hepatic, peritoneal, and splenic neutrophilia. In contrast, coadministration of anti-IL-10R and TGF-beta mAbs had little effect upon parasite ova-induced intestinal pathology or development of alternatively activated macrophages, which are required to suppress intestinal pathology. This suggests that inflammation is controlled during acute S. mansoni infection by two distinct, organ-specific mechanisms: TGF-beta and IL-10 redundantly suppress hepatic inflammation while intestinal inflammation is regulated by alternatively activated macrophages.  相似文献   

13.
The activation requirements of murine peritoneal B cells differ from those of conventional (splenic) B cells; in particular, peritoneal B cells are stimulated to enter S phase by phorbol ester, acting alone. This pathway was studied to assess the susceptibility of peritoneal B cells to regulation by T cell products. Three T cell supernatants enhanced phorbol myristate acetate (PMA)-induced peritoneal B cell stimulation. This enhancement was reproduced by recombinant interleukin 4 (IL-4), and IL-4-mediated enhancement was reversed by 11B11 anti-IL-4 antibody. Enhancement of S phase entry was dose dependent for IL-4 and required stimulatory concentrations of PMA. In addition, IL-4 in combination with PMA produced a marked increase in IgM secretion by peritoneal B cells cultured in vitro. Neither an enhancement of S phase entry nor an increase in IgM secretion was observed with splenic B cells similarly treated with IL-4 and PMA. These results suggest that IL-4 modulates the proliferative and differentiative responses of the unusual B cells that reside in the peritoneal cavities of normal mice.  相似文献   

14.
Rap1 is a small GTPase that belongs to Ras superfamily. This ubiquitously expressed GTPase is a key regulator of integrin functions. Rap1 exists in two isoforms: Rap1a and Rap1b. Although Rap1 has been extensively studied, its isoform-specific functions in B cells have not been elucidated. In this study, using gene knockout mice, we show that Rap1b is the dominant isoform in B cells. Lack of Rap1b significantly reduced the absolute number of B220(+)IgM(-) pro/pre-B cells and B220(+)IgM(+) immature B cells in bone marrow. In vitro culture of bone marrow-derived Rap1b(-/-) pro/pre-B cells with IL-7 showed similar proliferation levels but reduced adhesion to stromal cell line compared with wild type. Rap1b(-/-) mice displayed reduced splenic marginal zone (MZ) B cells, and increased newly forming B cells, whereas the number of follicular B cells was normal. Functionally, Rap1b(-/-) mice showed reduced T-dependent but normal T-independent humoral responses. B cells from Rap1b(-/-) mice showed reduced migration to SDF-1, CXCL13 and in vivo homing to lymph nodes. MZ B cells showed reduced sphingosine-1-phosphate-induced migration and adhesion to ICAM-1. However, absence of Rap1b did not affect splenic B cell proliferation, BCR-mediated activation of Erk1/2, p38 MAPKs, and AKT. Thus, Rap1b is crucial for early B cell development, MZ B cell homeostasis and T-dependent humoral immunity.  相似文献   

15.
MIP-2 recruits NKT cells to the spleen during tolerance induction   总被引:14,自引:0,他引:14  
Peripheral tolerance occurs after intraocular administration of Ag and is dependent on an increase in splenic NKT cells. New data here show that macrophage inflammatory protein-2 (MIP-2) is selectively up-regulated in tolerance-conferring APCs and serves to recruit NKT cells to the splenic marginal zone, where they form clusters with APCs and T cells. In the absence of the high-affinity receptor for MIP-2 (as in CXCR2-deficient mice) or in the presence of a blocking Ab to MIP-2, peripheral tolerance is prevented, and Ag-specific T regulatory cells are not generated. Understanding the regulation of lymphocyte traffic during tolerance induction may lead to novel therapies for autoimmunity, graft acceptance, and tumor rejection.  相似文献   

16.
Natural IgM Abs are the constitutively secreted products of B1 cells (CD5(+) in mice and CD20(+)CD27(+)CD43(+)CD70(-) in humans) that have important and diverse roles in health and disease. Whereas the role of natural IgM as the first line of defense for protection against invading microbes has been extensively investigated, more recent reports have highlighted their potential roles in the maintenance of tissue homeostasis via clearance of apoptotic and altered cells through complement-dependent mechanisms, inhibition of inflammation, removal of misfolded proteins, and regulation of pathogenic autoreactive IgG Abs and autoantibody-producing B cells. These observations have provided the theoretical underpinnings for efforts that currently seek to harness the untapped therapeutic potential of natural IgM either by boosting in vivo natural IgM production or via therapeutic infusions of monoclonal and polyclonal IgM preparations.  相似文献   

17.
The breakdown in tolerance of autoreactive B cells in the lupus-prone NZM2410-derived B6.Sle1.Sle2.Sle3 (TC) mice results in the secretion of autoantibodies. TC dendritic cells (DCs) enhance B cell proliferation and antibody secretion in a cytokine-dependent manner. However, the specific cytokine milieu by which TC DCs activate B cells was not known. In this study, we compared TC and C57BL/6 (B6) control for the distribution of DC subsets and for their production of cytokines affecting B cell responses. We show that TC DCs enhanced B cell proliferation through the production of IL-6 and IFN-γ, while antibody secretion was only dependent on IL-6. Pre-disease TC mice showed an expanded PDCA1+ cells prior to disease onset that was localized to the marginal zone and further expanded with age. The presence of PDCA1+ cells in the marginal zone correlated with a Type I Interferon (IFN) signature in marginal zone B cells, and this response was higher in TC than B6 mice. In vivo administration of anti-chromatin immune complexes upregulated IL-6 and IFN-γ production by splenic DCs from TC but not B6 mice. The production of BAFF and APRIL was decreased upon TC DC stimulation both in vitro and in vivo, indicating that these B cell survival factors do not play a role in B cell modulation by TC DCs. Finally, TC B cells were defective at downregulating IL-6 expression in response to anti-inflammatory apoptotic cell exposure. Overall, these results show that the TC autoimmune genetic background induces the production of B cell-modulating inflammatory cytokines by DCs, which are regulated by the microenvironment as well as the interplay between DC.  相似文献   

18.
Different functions have been attributed to natural regulatory CD4+CD25+FOXP+ (Treg) cells during malaria infection. Herein, we assessed the role for Treg cells during infections with lethal (DS) and non-lethal (DK) Plasmodium chabaudi adami parasites, comparing the levels of parasitemia, inflammation and anaemia. Independent of parasite virulence, the population of splenic Treg cells expanded during infection, and the absolute numbers of activated CD69+ Treg cells were higher in DS-infected mice. In vivo depletion of CD25+ T cells, which eliminated 80% of CD4+FOXP3+CD25+ T cells and 60-70% of CD4+FOXP3+ T cells, significantly decreased the number of CD69+ Treg cells in mice with lethal malaria. As a result, higher parasite burden and morbidity were measured in the latter, whereas the kinetics of infection with non-lethal parasites remained unaffected. In the absence of Treg cells, parasite-specific IFN-gamma responses by CD4+ T cells increased significantly, both in mice with lethal and non-lethal infections, whereas IL-2 production was only stimulated in mice with non-lethal malaria. Following the depletion of CD25+ T cells, the production of IL-10 by CD90(-) cells was also enhanced in infected mice. Interestingly, a potent induction of TNF-alpha and IFN-gamma production by CD4+ and CD90(-) lymphocytes was measured in DS-infected mice, which also suffered severe anaemia earlier than non-depleted infected controls. Taken together, our data suggest that the expansion and activation of natural Treg cells represent a counter-regulatory response to the overwhelming inflammation associated with lethal P.c. adami. This response to infection involves TH1 lymphocytes as well as cells from the innate immune system.  相似文献   

19.
IL-33 activates B1 cells and exacerbates contact sensitivity   总被引:1,自引:0,他引:1  
B1 B cells produce natural IgM and play a critical role in the early defense against bacterial and viral infection. The polyreactive IgM also contributes to the clearance of apoptotic products and plays an important role in autoimmune pathogenesis. However, the mechanism of activation and proliferation of B1 cells remains obscure. In this study, we report that IL-33, a new member of IL-1 family, activates B1 cells, which express the IL-33 receptor α, ST2. IL-33 markedly activated B1 cell proliferation and enhanced IgM, IL-5, and IL-13 production in vitro and in vivo in a ST2-dependent manner. The IL-33-activated B1 cell functions could be largely abolished by IL-5 neutralization and partially reduced by T cell or mast cell deficiency in vivo. ST2-deficient mice developed less severe oxazolone-induced contact sensitivity (CS) than did wild-type (WT) mice. Furthermore, IL-33 treatment significantly exacerbated CS in WT mice with enhanced B1 cell proliferation and IgM and IL-5 production. Moreover, IL-33-activated B1 cells from WT mice could adoptively transfer enhanced CS in ST2(-/-) mice challenged with IL-33. Thus, we demonstrate, to the best of our knowledge, a hitherto unrecognized mechanism of B1 cell activation and IL-33 function, and suggest that IL-33 may play an important role in delayed-type hypersensitivity.  相似文献   

20.
Grb2-associated binder 1 (Gab1) is a member of the Gab/daughter of sevenless family of adapter molecules involved in the signal transduction pathways of a variety of growth factors, cytokines, and Ag receptors. To know the role for Gab1 in hematopoiesis and immune responses in vivo, we analyzed radiation chimeras reconstituted with fetal liver (FL) cells of Gab1(-/-) mice, because Gab1(-/-) mice are lethal to embryos. Transfer of Gab1(-/-) FL cells of 14.5 days post-coitum rescued lethally irradiated mice, indicating that Gab1 is not essential for hematopoiesis. Although mature T and B cell subsets developed normally in the peripheral lymphoid organs, reduction of pre-B cells and increase of myeloid cells in the Gab1(-/-) FL chimeras suggested the regulatory roles for Gab1 in hematopoiesis. The chimera showed augmented IgM and IgG1 production to thymus-independent (TI)-2 Ag, although they showed normal responses for thymus-dependent and TI-1 Ags, indicating its negative role specific to TI-2 response. Gab1(-/-) splenic B cells stimulated with anti-delta-dextran plus IL-4 plus IL-5 showed augmented IgM and IgG1 production in vitro that was corrected by the retrovirus-mediated transfection of the wild-type Gab1 gene, clearly demonstrating the cell-autonomous, negative role of Gab1. Furthermore, we showed that the negative role of Gab1 required its Src homology 2-containing tyrosine phosphatase-2 binding sites. Cell fractionation analysis revealed that nonfollicular B cells were responsible for the augmented Ab production in vitro. Consistent with these results, the Gab1 gene was expressed in marginal zone B cells but not follicular B cells. These results indicated that Gab1 is a unique negative regulator specific for TI-2 responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号