首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial isoform of creatine kinase (Mi-CK, EC 2.7.3.2) purified to homogeneity from chicken cardiac muscle by the mild and efficient technique described in this article was greater than or equal to 99.5% pure and consisted of greater than or equal to 95% of a distinct, octameric Mi-CK protein species, with a Mr of 364,000 +/- 30,000 and an apparent subunit Mr of 42,000. The remaining 5% were dimeric Mi-CK with an apparent Mr of 86,000 +/- 8,000. Octamerization was not due to covalent linkages or intermolecular disulfide bonding. Upon dilution into buffers of low ionic strength and alkaline pH, octameric Mi-CK slowly dissociated in a time-dependent manner (weeks-months) into dimeric Mi-CK. However, the time scale of dimerization was reduced to minutes by the addition to diluted Mi-CK octamers of a mixture of Mg2+, ADP, creatine and nitrate known to induce a transition-state analogue complex (Milner-White, E.J., and Watts, D. C. (1971) Biochem. J. 122, 727-740). The conversion was fully reversible, and octamers were reformed by simple concentrations of Mi-CK dimer solutions to greater than or equal to 1 mg/ml at near neutral pH and physiological salt concentrations in the absence of adenine nucleotide. After separation of the two Mi-CK species by gel filtration, electron microscopic analysis revealed uniform square-shaped particles with a central negative-stain-filled cavity in the octamer fractions and "banana-shaped" structures in the dimer fractions. Mi-CK was localized inside the mitochondria by immunogold labeling with polyclonal antibodies. A dynamic model of the octamer-dimer equilibrium of Mi-CK and the preferential association of the octameric Mi-CK form with the inner mitochondrial membrane is discussed in the context of regulation of Mi-CK activity, mitochondrial respiration, and the CP shuttle.  相似文献   

2.
The heterogeneity of cardiac sarcomeric mitochondrial creatine kinase (creatine N-phosphotransferase, EC 2.7.3.2, sMi-CK), namely, brain ubiquitous Mi-CK (uMi-CK) and an atypical Mi-CK detected in the serum of a patient with ovarian cancer, was studied by isoelectric focusing. These Mi-CKs were found to be slightly different from each other with respect to their pIs under the examined conditions. The atypical Mi-CK was found to be an atypically oxidized form of uMi-CK. Results suggest that these heterogeneities of Mi-CK are caused by the genotypes, structures, biological functions and metabolism/dissimilation of Mi-CKs in the mitochondria and intravascular circulation.  相似文献   

3.
The combination of high-resolution tantalum/tungsten (Ta/W) shadowing at very low specimen temperature (-250 degrees C) under ultrahigh vacuum (less than 2 x 10(-9) mbar) with circular harmonic image averaging revealed details on the surface structure of mitochondrial creatine kinase (Mi-CK) molecules with a resolution less than 2.5 nm. Mi-CK octamers exhibit a cross-like surface depression dividing the square shaped projection of 10 x 10 nm into four equally sized subdomains, which correspond to the four dimers forming the octameric Mi-CK molecule. By a combination of positive staining (with uranyl acetate) and heavy metal shadowing, internal structures as well as the surface relief of Mi-CK were visualized at the same time at high resolution. Computational image analysis revealed only a single projection class of molecules, but the ability of Mi-CK to form linear filaments, as well as geometrical considerations concerning the formation of octamers by four equal, asymmetric dimers, suggest the existence of at least two distinct faces on the molecule. By image processing of Mi-CK filaments a side view of the octamer differing from the top-bottom projections of single molecules became evident showing a funnel-like access each form the top and bottom of the octamer connected by a central channel. The general structure of the Mi-CK octamer described here is relevant to the localization of the molecule at the inner-outer mitochondrial contact sites and to the function of Mi-CK as an "energy channeling" molecule.  相似文献   

4.
Heart and skeletal muscle from rats of different ages were incubated in vitro in an oxygen-free medium supplied with substrates in order to investigate the effect of anoxia on muscle fine structure, particulary on the mitochondria. In skeletal muscle fibers anoxia has been found to induce changes similar to those previously described in ischemic muscles in vivo namely giant mitochondria, apparently derived by mitochondrial fusion, and intermembrane inclusions with a paracrystalline structure. The plate-like inclusions are mostly located in the intracristal spaces and are closely associated to cristal membranes even in markedly swollen mitochondria. Identical inclusions have been observed in cardiac muscle cells following anoxic injury, whereas they are never found in non-muscle cells such as endothelia, fibroblasts and nerve fibers. Cardiac and skeletal muscle fibers from newborn rats maintained in an oxygen-free medium show mitochondrial swelling but no intermembrane inclusions. The different response of mitochondria from developing vs adult striated muscle to anoxia may be due to changes during postnatal development in the quality or quantity of the protein component(s) involved in paracrystal formation.  相似文献   

5.
Phosphate extraction of mitochondrial creatine kinase (Mi-CK, EC 2.7.3.2) from freshly isolated intact mitochondria of chicken cardiac muscle, after short swelling in hypotonic medium, yielded more than 90% of octameric and only small amounts of dimeric Mi-CK as judged by fast protein liquid chromatography-gel permeation analysis of the supernatants immediately after extraction of the enzyme. In extraction buffer, octameric Mi-CK displayed a tendency to dissociate, albeit at a slow rate with a half-life of approximately 3-5 days, into stable dimers. Experiments with purified Mi-CK octamers or dimers, or defined mixtures thereof, incubated under identical conditions with Mi-CK-depleted mitoplasts revealed that both oligomeric forms of Mi-CK can rebind to mitoplasts. However, the association of Mi-CK was strongly pH-dependent and, in addition, octameric and dimeric Mi-CK showed different pH dependences of rebinding. Therefore, it was possible under certain pH conditions to rebind either both oligomeric forms or selectively the octamers only. Furthermore, evidence is presented that Mi-CK dimers partially form octamers upon rebinding to the inner membrane. The differential association of the two oligomeric Mi-CK forms with the inner mitochondrial membrane together with the dynamic equilibrium between octameric and dimeric Mi-CK (Schlegel, J., Zurbriggen, B., Wegmann, G., Wyss, M., Eppenberger, H.M., and Wallimann, T. (1988) J. Biol. Chem., 263, 16942-16953) suggest that both oligomeric forms are physiologically relevant. A change in the octamer to dimer ratio may influence the association behavior of Mi-CK in general and thus modulate mitochondrial energy flux as discussed in the phosphoryl creatine circuit model (Wallimann, T., Schnyder, T., Schlegel, J., Wyss, M., Wegmann, G., Rossi, A.-M., Hemmer, W., Eppenberger, H.M., and Quest, A.F.G. (1989) Prog. Clin. Biol. Res. 315, 159-176.  相似文献   

6.
Mitochondrial creatine kinase (Mi-CK) function in viable mitochondria from developing rat skeletal muscle was assessed both by polarographic measurements of creatine-induced respiration and 31P NMR spectroscopy measurements of phosphocreatine (PCr) synthesis. Creatine-induced respiration was observed in very young rats and increased by 50% to 35 days of age. PCr synthesis was present in 7 day old animals and increased by 300% reaching levels measured in 35 day and adult muscle. Unlike reports showing Mi-CK enzymatic activities but no mitochondrial function in several situations, a concomitant progression of enzymatic activity and mitochondrial function was evidenced during the developmental stages of skeletal muscle Mi-CK in altricious animals. These results correlated with the progressive pattern of muscle differentiation during development of motricity in such animals. The observation that Mi-CK is functional in skeletal muscle mitochondria very early after birth, strongly favors the notion that adaptations in skeletal muscle of Mi-CK knock-out mice occur early.  相似文献   

7.
The membrane binding properties of cytosolic and mitochondrial creatine kinase isoenzymes are reviewed in this article. Differences between both dimeric and octameric mitochondrial creatine kinase (Mi-CK) attached to membranes and the unbound form are elaborated with respect to possible biological function. The formation of crystalline mitochondrial inclusions under pathological conditions and its possible origin in the membrane attachment capabilities of Mi-CK are discussed. Finally, the implications of these results on mitochondrial energy transduction and structure are presented.  相似文献   

8.
Atypical mitochondrial creatine kinase (creatine N-phosphotransferase, CK, EC 2.7.3.2) was detected in the serum of a patient with carcinoma of germ cell origin, probably hepatoid yolk sac tumor. The pI of the oligomeric atypical mitochondrial CK (Mi-CK) was found at the acidic side compared to that of the typical ubiquitous Mi-CK (uMi-CK), while the molecular size of the atypical Mi-CK was similar to that of the typical uMi-CK. The pIs of the oligomeric and the dimeric atypical Mi-CKs became the same as those of the typical uMi-CK upon treatment with 2-mercaptoethanol. Therefore, the atypical Mi-CK was suggested to be an oxidized form of uMi-CK, and the oxidation might have occurred in the mitochondria because the oligomeric atypical Mi-CK had atypical pIs. The physicochemical characteristics of the oxidized uMi-CK were similar to those of the typical uMi-CK.  相似文献   

9.
Electron micrographs of negatively stained and metal-shadowed mitochondrial creatine kinase (Mi-CK) molecules purified as described by Schlegel et al. (Schlegel, J., Zurbriggen, B., Wegmann, E., Wyss, M., Eppenberger, H. M., and Wallimann, T. (1988) J. Biol Chem. 263, 16942-16953) revealed a homogeneous population (greater than or equal to 95%) of distinctly sized square-shaped, octameric particles with a side length of 10 nm that frequently exhibited a pronounced 4-fold axis of symmetry. The cube-like molecules consist of four dimers that are arranged around a stain-accumulating central cavity of 2.5-3 nm in diameter. This interpretation is supported by single particle averaging including correlation analysis by computer. Upon prolonged storage or high dilution, the cube-like octamers tended to dissociate into "banana-shaped" dimers. Sedimentation velocity and sedimentation equilibrium experiments yielded an s value of 12.8-13.5 S and an Mr of 328,000 +/- 25,000 for the octameric cubes. An s value of 5.0 S and a Mr of 83,000 +/- 8,000 was found under conditions which revealed banana-shaped dimers. These dimers proved to be very stable, as their dissociation into monomers of 45 kDa (s value = 2.0 S) required 6 M guanidine HCl. Thus, the oligomeric structures observed in the electron microscope are identified as Mi-CK dimers (banana-shaped structures) and cubical Mi-CK octamers assembled from four Mi-CK dimers. The octameric nature of native Mi-CK and the formation of Mi-CK dimers were confirmed by direct mass measurements of individual molecules by scanning transmission electron microscopy yielding a molecular mass of 340 +/- 55 kDa for the octamer and 89 +/- 27 kDa for the dimer. A structural model of Mi-CK octamers and the possible interaction with ATP/ADP-translocator molecules as well as with the outer mitochondrial membrane is proposed. The implications with respect to the physiological function of Mi-CK as an energy-channeling molecule at the producing side of the phosphoryl creatine shuttle are discussed.  相似文献   

10.
应用超薄切片和免疫金标记电镜技术,结合体视学分析研究了受蚕豆萎焉病毒2(BBWV 2) 中国分离物B935侵染的豌豆(Pisum sativum)叶细胞中线粒体的异常变化。结果表明,感病细胞线粒体增生并聚集于细胞质的膜增生区周围,体积增大,形状畸变,一些线粒体内含有类结晶包涵体。病叶细胞与健康对照之间线粒体的体积密度(VV)、表面积密度(SV)、数密度(NV)等参数存在显著差异(P<0.01),而形状因子(PE)、周长指数(CI)、比表面积(RSV)等参数随不同病变阶段而有变化。在线粒体周围及线粒体之间的网格结构可被BBWV 2金标记抗体特异性标记.推断为正在组装的病毒粒子。子代病毒形成结晶体和管状体,有高密度的免疫金颗粒标记。上述研究结果提示BBWV 2 引起的细胞线粒体异常变化与病毒复制组装有关,聚集线粒体的外膜粘连面可能是病毒粒子组装部位,一些线粒体内的类结晶包涵体可能代表了某种蛋白质异常积累。  相似文献   

11.
Despite the pivotal role of creatine (Cr) and phosphocreatine (PCr) in muscle metabolism, relatively little is known about sarcolemmal creatine transport, creatine transporter (CRT) isoforms, and subcellular localization of the CRT proteins. To be able to quantify creatine transport across the sarcolemma, we have developed a new in vitro assay using rat sarcolemmal giant vesicles. The rat giant sarcolemmal vesicle assay reveals the presence of a specific high-affinity and saturable transport system for Cr in the sarcolemma (Michaelis-Menten constant 52.4 +/- 9.4 microM and maximal velocity value 17.3 +/- 3.1 pmol x min(-1) x mg vesicle protein(-1)), which cotransports Cr into skeletal muscle together with Na(+) and Cl(-) ions. The regulation of Cr transport in giant vesicles by substrates, analogs, and inhibitors, as well as by phorbol 12-myristate 13-acetate and insulin, was studied. Two antibodies raised against COOH- and NH(2)-terminal synthetic peptides of CRT sequences both recognize two major polypeptides on Western blots with apparent molecular masses of 70 and 55 kDa, respectively. The highest CRT expression occurs in heart, brain, and kidney, and although creatine kinase is absent in liver cells, CRT is also found in this tissue. Surprisingly, immunofluorescence staining of cultured adult rat heart cardiomyocytes with specific anti-CRT antibodies, as well as cell fractionation and cell surface biotinylation studies, revealed that only a minor CRT species with an intermediate molecular mass of approximately 58 kDa is present in the sarcolemma, whereas the previously identified major CRT-related protein species of 70 and 55 kDa are specifically located in mitochondria. Our studies indicate that mitochondria may represent a major compartment of CRT localization, thus providing a new aspect to the current debate about the existence and whereabouts of intracellular Cr and PCr compartments that have been inferred from [(14)C]PCr/Cr measurements in vivo as well as from recent in vivo NMR studies.  相似文献   

12.
SYNOPSIS Intramitochondrial inclusions of a paracrystalline nature were observed in the peritrichous ciliate Carchesium polypinum This ciliate was found growing in the effluent of a sewage treatment plant. When paracrystalline inclusions were present, there was one per mitochondrion. A variety of profiles was encountered, all presumably of the same structure. Cross-sections revealed packed, spherical masses of 100-150 A diameter with dense walls 30-40 A thick and a variety of core densities. In more longitudinal sections the paracrystalline array appeared as long. electron-dense, finely filamentous elements oriented in parallel arrays and regularly spaced with a diameter of 60-100 A. Mitochondria tended to cluster, and between closely apposed mitochondria a dense, amorphous material was present. Numerous bud-like processes projected from mitochondria. Structural evidence, particularly the arrangement and core densities of these arrays, suggests a filamentous type of viral infection.  相似文献   

13.
应用超薄切片和免疫金标记电镜技术,结合体视学分析研究了受蚕豆萎焉病毒2(BBWV2)中国分离物B935侵染的豌豆(Pisumsativum)叶细胞中线粒体的异常变化。结果表明,感病细胞线粒体增生并聚集于细胞质的膜增生区周围。体积增大,形状畸变,一些线粒体内含有类结晶包涵体。病叶细胞与健康对照之间线粒体的体积密度(Vv)、表面积密度(Sv)、数密度(Nv)等参数存在显著差异(P〈0.01),而形状因子(PE)、周长指数(CI)、比表面积(Rsv)等参数随不同病变阶段而有变化。在线粒体周围及线粒体之间的网格结构可被BBWV2金标记抗体特异性标记。推断为正在组装的病毒粒子。子代病毒形成结晶体和管状体,有高密度的免疫金颗粒标记。上述研究结果提示BBWV2引起的细胞线粒体异常变化与病毒复制组装有关。聚集线粒体的外膜粘连面可能是病毒粒子组装部位。一些线粒体内的类结晶包涵体可能代表了某种蛋白质异常积累。  相似文献   

14.
Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an inherited metabolic disorder biochemically characterized by tissue accumulation of predominantly ethylmalonic acid (EMA) and clinically by neurological dysfunction. In the present study we investigated the in vitro effects of EMA on the activity of the mitochondrial (Mi-CK) and cytosolic (Cy-CK) creatine kinase isoforms from cerebral cortex, skeletal muscle, and cardiac muscle of young rats. CK activities were measured in the mitochondrial and cytosolic fractions prepared from whole-tissue homogenates of 30-day-old Wistar rats. The acid was added to the incubation medium at concentrations ranging from 0.5 to 2.5 mM. EMA had no effect on Cy-CK activity, but significantly inhibited the activity of Mi-CK at 1.0 mM and higher concentrations in the brain. In contrast, both Mi-CK and Cy-CK from skeletal muscle and cardiac muscle were not affected by the metabolite. We also evaluated the effect of the antioxidants glutathione (GSH), ascorbic acid, and a-tocopherol and the nitric oxide synthase inhibitor L-NAME on the inhibitory action of EMA on cerebral cortex Mi-CK activity. We observed that the drugs did not modify Mi-CK activity per se, but GSH and ascorbic acid prevented the inhibitory effect of EMA when co-incubated with the acid. In contrast, L-NAME and -tocopherol could not revert the inhibition provoked by EMA on Mi-CK activity. Considering the importance of CK for brain energy homeostasis, it is proposed that the inhibition of Mi-CK activity may be associated to the neurological symptoms characteristic of SCAD deficiency.  相似文献   

15.
Two isozymes of creatine kinase have been purified differentially from mitochondrial and cytoplasmic subfractions of intestinal epithelial cells. These intestinal epithelial cell creatine kinases were indistinguishable from the cytoplasmic (B-CK) and mitochondrial (Mi-CK) creatine kinase isozymes of brain when compared by SDS-PAGE, cellulose polyacetate electrophoresis, and peptide mapping. In intestinal epithelial cells, immunolocalization of the Mi-CK isozyme indicates that it is associated with long, thin mitochondria, which are excluded from the brush border at the apical end of each cell. In contrast, immunolocalization of the B-CK isozyme indicates that it is concentrated distinctly in the brush border terminal web domain. Although absent from the microvilli, B-CK also is distributed diffusely throughout the cytoplasm. Terminal web localization of B-CK was maintained in glycerol-permeabilized cells and in isolated brush borders, indicating that B-CK binds to the brush border structure. The abundance and localization of the mitochondrial and cytoplasmic creatine kinase isozymes suggest that they are part of a system that temporally and/or spatially buffers dynamic energy requirements of intestinal epithelial cells.  相似文献   

16.
Experiments designed to test the hypothesis that intracellular creatine level regulates the synthesis of muscle specific proteins have failed to demonstrate any creatine regulatory effect. Manipulation of the extracellular creatine in culture medium over a 5,700-fold range (1.3- 7.4 mM) was successful in altering intracellular total creatine by only a factor of 20 (1.4-42 mg creatine/mg protein), an indication that muscle cells are able to regulate intracellular creatine levels over a wide range of external creatine concentrations. Alterations of cell creatine had no effect on either total protein synthesis or synthesis of myosin heavy chain. Methods were perfected to measure total creatine, and incorporation of [3H]leucine into total protein and purified myosin heavy chain from the same culture dish to avoid the possibility of variation between dishes. The creatine analog 1- carboxymethyl-2-iminohexahydropyrimidine (CMIP) previously reported to stimulate myosin synthesis in culture was found to depress creatine accumulation by cells and depressed total protein synthesis and synthesis of myosin heavy chain. This inhibitory action of CMIP is consistent with the reported competitive inhibition of creatine kinase and presumed interference with energy metabolism.  相似文献   

17.
Mitochondrial creatine kinase (Mi-CK) from chicken cardiac muscle and brain, recently shown to differ in their N-terminal amino acid sequences and to be encoded by multiple mRNAs (Hossle, H.P., Schlegel, J., Wegmann, G., Wyss, M., B?hlen, P., Eppenberger, H. M., Wallimann, T., and Perriard, J.C. (1988) Biochim. Biophys. Res. Commun. 151, 408-416) were separated on two-dimensional nonequilibrium pH-gradient electrophoresis gels and visualized as two distinct protein spots by immunoblotting. Analysis of the two proteins purified by specific elution from Blue-Sepharose with ADP (Wallimann, T., Zurbriggen, B., and Eppenberger, H. M. (1985) Enzyme 33, 226-231) followed by fast protein liquid chromatography cation exchange chromatography showed obvious differences in peptide maps, in immunological cross-reactivity with monoclonal antibodies, and in kinetic parameters. However, even though the two proteins were different, tissue-specific mitochondrial isoforms, both formed regularly-sized, perforated cube-like octameric structures with Mr of 364,000 +/- 25,000 and 352,000 +/- 20,000 for the cardiac and brain isoform, respectively. Electron microscopy of cardiac and brain Mi-CK octamers revealed cube-like molecules with a central cavity or transverse channel filled by negative stain. The octameric molecular structure of Mi-CK isoforms differs from the generally accepted dimeric arrangement of "cytosolic" muscle MM- and brain BB-CK.  相似文献   

18.
The biochemical and biophysical characterization of the mitochondrial creatine kinase (Mi-CK) from chicken cardiac muscle is reviewed with emphasis on the structure of the octameric oligomer by electron microscopy and on its membrane binding properties. Information about shape, molecular symmetry and dimensions of the Mi-CK octamer, as obtained by different sample preparation techniques in combination with image processing methods, are compared. The organization of the four dimeric subunits into the Mi-CK complex as apparent in the end-on projections is discussed and the consistently observed high binding affinity of the four-fold symmetric end-on faces towards many support films and towards each other is outlined. A study on the oligomeric state of the enzyme in solution and in intact mitochondria, using chemical crosslinking reagents, is presented together with the results of a search for a possible linkage of Mi-CK with the adenine nucleotide translocator (ANT). The nature of Mi-CK binding to model membranes, demonstrating that rather the octameric than the dimeric subspecies is involved in lipid interaction and membrane contact formation, is resumed and put into relation to our structural observations. The findings are discussed in light of a possiblein vivo function of the Mi-CK octamer bridging the gap between outer and inner mitochondrial membranes at the contact sites.  相似文献   

19.
Purified mitochondrial creatine kinase (Mi-CK) (EC 2.7.3.2) from chicken heart was shown to interact simultaneously with purified inner and outer mitochondrial membranes, thereby creating an intermembrane chondrial membranes, thereby creating an intermembrane were purified from rat liver and thus were fully devoid of Mi-CK. Intermembrane contact formation was demonstrated by measuring the binding of inner membrane vesicles to outer membranes spread at the air-water interface. Mi-CK also mediated intermembrane adhesion when membranes formed with total lipid extracts of both membranes were used, pointing to the role of lipids as potential membrane anchors of Mi-CK in the mitochondrial intermembrane space. Other enzymes of the intermembrane space that (like Mi-CK) are also cationic, as well as cytosolic isoenzymes of creatine kinase, failed to induce contact formation. Thus, of the proteins tested, membrane contact formation was specific for Mi-CK. The two oligomeric forms of Mi-CK (octamer and dimer) differed in their ability to mediate intermembrane adhesion, the octamer being more potent. Highly basic peptides, i.e. poly-L-lysines, were shown to strongly interact with membranes formed with lipid extracts of mitochondrial membranes: they both induced intermembrane binding and fusion. Interestingly, the extent of contact formation mediated by poly-L-lysines was lower than that of octameric Mi-CK. The implications of these findings on the function and localization of Mi-CK and on the structure of the mitochondrial intermembrane compartment are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号