首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An extension of a previous treatment (Cohen, J. A., and M. Cohen, 1981, Biophys. J., 36:623-651) is presented for the adsorption of monovalent and divalent cations by single-component phospholipid membranes, where monovalent cations adsorb with a cation/phospholipid stoichiometry of 1:1 and divalent cations adsorb with stoichiometries of 1:1 and 1:2. Previously the 1:1 and 1:2 binding of divalent cations were assumed to occur by independent, parallel pathways. Here a serial adsorption scheme is considered in which 1:2 binding occurs via reaction of 1:1-bound complexes with adjacent unoccupied phospholipids. This two-dimensional lattice reaction is shown to obey a law of mass action, and the mass-action equilibrium constant is used to parameterize the adsorption isotherm. This isotherm is shown to be mathematically equivalent to the previous isotherm, although the two formulations differ in the dependence of 1:2 binding on the 1:1 association constant.  相似文献   

3.
The use of nanomaterials in bioapplications demands a detailed understanding of protein–nanoparticle interactions. Proteins can undergo conformational changes while adsorbing onto nanoparticles, but studies on the impact of particle size on conformational changes are scarce. We have shown that conformational changes happening upon adsorption of myoglobin and BSA are dependent on the size of the nanoparticle they are adsorbing to. Out of eight initially investigated model proteins, two (BSA and myoglobin) showed conformational changes, and in both cases this conformational change was dependent on the size of the nanoparticle. Nanoparticle sizes ranged from 30 to 1000 nm and, in contrast to previous studies, we attempted to use a continuous progression of sizes in the range found in live viruses, which is an interesting size of nanoparticles for the potential use as drug delivery vehicles. Conformational changes were only visible for particles of 200 nm and bigger. Using an optimized circular dichroism protocol allowed us to follow this conformational change with regard to the nanoparticle size and, thanks to the excellent temporal resolution also in time. We uncovered significant differences between the unfolding kinetics of myoglobin and BSA. In this study, we also evaluated the plausibility of commonly used explanations for the phenomenon of nanoparticle size‐dependent conformational change. Currently proposed mechanisms are mostly based on studies done with relatively small particles, and fall short in explaining the behavior seen in our studies.  相似文献   

4.
We have investigated the interaction of divalent ions with chromatin towards a closer understanding of the role of metal ions in the cell nucleus. The first row transition metal ion chlorides MnCl2, CoCl2, NiCl2 and CuCl2 lead to precipitation of chicken erythrocyte chromatin at a significantly lower concentration than the alkali earth metal chlorides MgCl2, CaCl2 and BaCl2. A similar distinction can be made for the compaction of chromatin to the "30 nm" solenoid higher order structure which occurs at lower MeCl2 concentration in the first group but at the same MeCl2 concentration within each group. In other experiments in which mixed solutions of NaCl and of MgCl2 were examined, it is shown that increasing NaCl concentration leads to increasing solubility in the presence of MgCl2. Best compaction of chromatin was obtained at 40 mM NaCl and 0.8 mM MgCl2 at a value A260 approximately 0.8. Similar experiments were undertaken with mixtures of NaCl and MnCl2.  相似文献   

5.
The phospholipid headgroup and fatty acid compositions of a halotolerant Planococcus sp. (strain A4a) were examined when cells were grown in the presence of high concentrations of a variety of salts. The fatty acid composition of Planococcus sp. strain A4a was altered primarily as a function of the osmolality of the growth medium. The phospholipid headgroup composition was influenced by both the osmolality of the growth medium and the nature of the cation species present. An increase in the cardiolipin/phosphatidylglycerol molar ratio was detected when cells were grown in the presence of high concentrations of monovalent cations.  相似文献   

6.
The influence of different MgCl2 and MnCl2 concentrations on DNA conformational transitions in water-ethanol solutions was studied. It was shown that the presence of magnesium ions in solution at a concentration of 5 x 10(-4) M did not influence the decrease in the size of DNA without change in its persistent length at an alcohol concentration of about 17 % v/v. In contrast, manganese ions prevent this change in DNA parameters. At sufficiently high ethanol concentrations, the compaction of DNA followed by its precipitation takes place, which is accompanied by an increase of scattering in solution. As the concentration of Mg2+ and Mn2+ in solution increases, this process is observed at lower ethanol concentrations.  相似文献   

7.
Solid-phase hybridization, i.e. the process of recognition between DNA probes immobilized on a solid surface and complementary targets in a solution is a central process in DNA microarray and biosensor technologies. In this work, we investigate the simultaneous effect of monovalent and divalent cations on the hybridization of fully complementary or partly mismatched DNA targets to DNA probes immobilized on the surface of a surface plasmon resonance sensor. Our results demonstrate that the hybridization process is substantially influenced by the cation shielding effect and that this effect differs substantially for solid-phase hybridization, due to the high surface density of negatively charged probes, and hybridization in a solution. In our study divalent magnesium is found to be much more efficient in duplex stabilization than monovalent sodium (15 mM Mg2+ in buffer led to significantly higher hybridization than even 1 M Na+). This trend is opposite to that established for oligonucleotides in a solution. It is also shown that solid-phase duplex destabilization substantially increases with the length of the involved oligonucleotides. Moreover, it is demonstrated that the use of a buffer with the appropriate cation composition can improve the discrimination of complementary and point mismatched DNA targets.  相似文献   

8.
The phospholipid headgroup and fatty acid compositions of a halotolerant Planococcus sp. (strain A4a) were examined when cells were grown in the presence of high concentrations of a variety of salts. The fatty acid composition of Planococcus sp. strain A4a was altered primarily as a function of the osmolality of the growth medium. The phospholipid headgroup composition was influenced by both the osmolality of the growth medium and the nature of the cation species present. An increase in the cardiolipin/phosphatidylglycerol molar ratio was detected when cells were grown in the presence of high concentrations of monovalent cations.  相似文献   

9.
10.
11.
12.
13.
Ke F  Luu YK  Hadjiargyrou M  Liang D 《PloS one》2010,5(10):e13308
Organic solvents offer a new approach to formulate DNA into novel structures suitable for gene delivery. In this study, we examined the in situ behavior of DNA in N, N-dimethylformamide (DMF) at low concentration via laser light scattering (LLS), TEM, UV absorbance and Zeta potential analysis. Results revealed that, in DMF, a 21bp oligonucleotide remained intact, while calf thymus DNA and supercoiled plasmid DNA were condensed and denatured. During condensation and denaturation, the size was decreased by a factor of 8-10, with calf thymus DNA forming spherical globules while plasmid DNA exhibited a toroid-like conformation. In the condensed state, DNA molecules were still able to release the counterions to be negatively charged, indicating that the condensation was mainly driven by the excluded volume interactions. The condensation induced by DMF was reversible for plasmid DNA but not for calf thymus DNA. When plasmid DNA was removed from DMF and resuspended in an aqueous solution, the DNA was quickly regained a double stranded configuration. These findings provide further insight into the behavior and condensation mechanism of DNA in an organic solvent and may aid in developing more efficient non-viral gene delivery systems.  相似文献   

14.
Temperature dependence of the fluorescence intensity and anisotropy decay of N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to Cys374 of actin monomer was investigated to characterize conformational differences between Ca- and Mg-G-actin. The fluorescence lifetime is longer in Mg-G-actin than that in Ca-G-actin in the temperature range of 5-34 degrees C. The width of the lifetime distribution is smaller by 30% in Mg-saturated actin monomer at 5 degrees C, and the difference becomes negligible above 30 degrees C. The semiangle of the cone within which the fluorophore can rotate is larger in Ca-G-actin at all temperatures. Electron paramagnetic resonance measurements on maleimide spin-labeled (on Cys374) monomer actin gave evidence that exchange of Ca2+ for Mg2+ induced a rapid decrease in the mobility of the label immediately after the addition of Mg2+. These results suggest that the C-terminal region of the monomer becomes more rigid as a result of the replacement of Ca2+ by Mg2+. The change can be related to the difference between the polymerization abilities of the two forms of G-actin.  相似文献   

15.
The sarcoplasmic calcium-binding protein (SCP) of the sandworm Nereis possesses three Ca2(+)-Mg2+ sites but no Ca2(+)-specific site. Binding of Mg2+, but not of Ca2+, displays a marked positive cooperativity. The apparent cooperativity of Ca2+ binding in the presence of Mg2+ results from the allostery in Mg2+ dissociation. Binding of the first Ca2+ or Mg2+ induces all the conformational change, monitored by Trp fluorescence. In displacement reactions the conformational changes occur in the step SCP.Mg3----SCP.Ca1Mg2. Stopped-flow experiments indicate that Trp fluorescence changes upon Ca2(+)-binding are instantaneous whereas Mg2(+)-binding involves a fast pre-equilibrium (Keq = 28 M-1), followed by two slow consecutive conformational changes with k1 = 13.5 s-1 and k2 = 0.21 s-1. The fluorescence change after dissociation of Ca2+ from SCP is monophasic with k = 0.02 s-1; that after Mg2+ dissociation is biphasic with k1 = 0.8 s-1 and k2 = 0.1 s-1. Trp life time measurements also indicate that Ca2(+)- and Mg2(+)-induced conformational changes are completely different. Displacement of bound Ca2+ by Mg2+ can be described by two consecutive reactions in which the first (without fluorescence change) corresponds to the dissociation of the last Ca2+ (k1 = 2.4 s-1) and the second (k2 = 0.45 s-1) to the final conformational change observed upon direct Mg2+ binding. Displacement of bound Mg2+ by Ca2+ follows the kinetic scheme of simple competition; the conformational rate constant approaches asymptotically (up to the limit of 129 s-1) the dissociation rate of Mg2+ as the concentration of Ca2+ increases. In summary, after fast dissociation of Ca2+ or Mg2+, Nereis SCP slowly converts to the metal-free configuration, but in Ca2(+)-Mg2+ exchange reactions, the conformational changes are nearly as fast as the cation dissociation reactions.  相似文献   

16.
17.
18.
The Raman spectra of aqueous solutions of myosin and mixtures of myosin in solutions of the salts CaCl2, MgCl2, and LiBr have been taken. The spectrum of the solvent background has been subtracted by means of a computer, leaving only the Raman peaks of the protein. From an analysis of the Raman bands in the regions at 900, 940, 1,240-1,300, and 1,650-1,670 cm-1, it seems likely that CaCl2 effects an α-to β-transition in myosin, probably owing to the interaction of the Ca2+ ion, LiBr appears to denature the protein leading to increased random coil structure, and MgCl2 appears to have an effect intermediate between the two other salts. These results are reported for concentrations as low as 10-5 M of CaCl2 and MgCl2.

This investigation indicates the usefulness of the Raman light-scattering technique for the study of protein conformational changes.

  相似文献   

19.
The conformational changes in well-characterized model proteins [bovine ribonuclease A (RNase A), horseradish peroxidase, sperm-whole myoglobin, human hemoglobin, and bovine serum albumin (BSA)] upon adsorption on ultrafine polystyrene (PS) particles have been studied using circular dichroism (CD) spectroscopy. These proteins were chosen with special attention to molecular flexibility. The ultrafine PS particles were negatively charged and have average diameters of 20 or 30 nm. Utilization of these ultrafine PS particles makes it possible to apply the CD technique to determine the secondary structure of proteins adsorbed on the PS surface. Effects of protein properties and adsorption conditions on the extent of the changes in the secondary structure of protein molecules upon adsorption on ultrafine PS particles were studied. The CD spectrum changes upon adsorption were significant in the "soft" protein molecules (myoglobin, hemoglobin, and BSA), while they were insingnificant in the "rigid" proteins (RNase A and peroxidase). The soft proteins sustained a marked decrease in alpha-helix content upon adsorption. Moreover, the native alpha-helix content, which is given as the percentage of the alpha-helix content in the free proteins, of adsorbed BSA was found to decrease with decreasing pH and increase with increasing adsorbed amount. These observations confirm some well-known hypotheses for the confirmational chages in protein molecules upon adsorption. (c) 1992 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号