首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In fire-prone ecosystems, plants for the most part persist via either soil-stored seed banks (seeders) or below-ground storage structures (resprouters). Given their greater allocation of resources above ground to growth and reproduction, seeders are likely to have a higher nutrient requirement than resprouters. This may result in discernable differences in habitat nutrition and leaf morphology. These differences are probably accentuated in Cape legumes given their poor adaptation to low-P soils. It was hypothesized that legume seeders occupy habitats with greater fertility and possess larger, less sclerophyllous leaves than resprouters. Site nutrition and leaf morphologies were compared between seeders and resprouters in the genera Otholobium and Psoralea. There were no differences in leaf morphology between seeders and resprouters. Seeders sites had a higher total [N], exchangeable [Ca] and [Mg], and CEC, but lower [Fe] than resprouters. Only within Otholobium, did seeder sites have a higher Bray II [P]. This genus-specific variation in available P is probably a consequence of greater variation in soil type and precipitation between seeders and resprouters. Conversely, niche construction may contribute to the differences in soil fertility between seeders and resprouters in Psoralea. Thus, our data showed a general tendency for seeders to inhabit more fertile sites than resprouters. Caution is required, however, in generalizing these results, as our data indicate a difference in factors affecting soil nutrient availability between legume genera. Changes in soil fertility post-fire may limit legume persistence beyond the early stages of succession.  相似文献   

2.
Seasonal patterns of growth, water relations, photosynthesis and leaf characteristics were compared between obligate seeders (Cistus monspeliensis and Cistus ladanifer) and resprouters (Arbutus unedo and Pistacia lentiscus) from the first to the second year after fire. We hypothesized that seedlings would be more water-limited than resprouts due to their shallower root systems. Regarding water use strategies, Cistus species are drought semi-deciduous and A. unedo and P. lentiscus are evergreen sclerophylls, therefore, comparisons were based on the relative deviation from mature conspecific plants. Seedlings and resprouts had higher shoot elongation and leaf production than mature plants, and over an extended period. Differences from mature plants were larger in resprouts, with two-fold transpiration, leaf conductance and photosynthesis in late spring/early summer. Seedlings of C. monspeliensis exhibited higher transpiration and leaf conductance than mature plants, while those of C. ladanifer only exhibited higher water potential. Growth increments and ameliorated water relations and photosynthesis after fire were attributed to an increase in water and nutrient availability. The small differences in water relations and photosynthesis between seedlings and mature conspecifics are in accordance with the prediction of seedlings experiencing higher water limitation than resprouts. We attribute these results to differences in root systems: resprouters benefited from an increase in root/shoot ratios and the presence of deep roots whereas Cistus seedlings relied on very shallow roots, which cannot provide assess to deep water during summer. Nevertheless, seedlings did not show evidence of experiencing a more severe water limitation than mature conspecifics, which we attributed to the presence of efficient mechanisms of avoiding and tolerating water stress. The results are discussed in relation to post-fire demography of seeders and resprouters in Mediterranean communities.  相似文献   

3.
Summary In a mature, even aged stand of mixed chaparral, Rhus laurina (facultative resprouter) had consistently higher water potentials and deeper roots than Ceanothus spinosus (facultative resprouter) and Ceanothus megacarpus (obligate seeder). For two years following a wildfire, the same stand of chaparral had resprouts with higher survivorships, predawn water potentials, stomatal conductances, photosynthetic rates and shoot elongation rates than seedlings. Supplemental irrigation of seedlings during summer months removed differences between resprouts and seedlings suggesting that the cause of such differences was limited water availability to the shoot tissues of seedlings. After two years of postfire regrowth, mean seedling survivorship for the obligate seeder (C. megacarpus) was 42%, whereas seedling survivorship for facultative resprouters was only 18% (C. spinosus) and 0.01% (R. laurina). Our results are consistent with the hypothesis that lack of resprouting ability among obligate seeders is offset by an enhanced ability to establish seedlings after wildfire, allowing obligate seeders to maintain themselves in mixed populations through many fire cycles.  相似文献   

4.
M. Vil  F. Lloret 《植被学杂志》2000,11(4):597-606
Abstract. In Mediterranean shrublands, post‐fire accumulation of above‐ground biomass of resprouters is faster than that of seeders. This suggests that resprouters may have a competitive advantage. To test this hypothesis, we used a removal experiment to study the effect of the presence of the dominant tussock‐grass Ampelodesmos mauritanica on the resprouting shrubs Erica multiflora and Globularia alypum and on the seeders Rosmarinus officinalis and Pinus halepensis three and four years after a wildfire. Water potential of target plants was also measured to see if Ampelodesmos removal increased water availability. Ampelodesmos marginally reduced growth of all target species but did not influence survival or water potential of any target species. Our results suggest that the effect of climatically influenced water stress was stronger than the effect of Ampelodesmos neighbours. Plant‐plant interactions in this Mediterranean community are weak after fire and the magnitude of the Ampelodesmos effect does not differ between seeders and resprouters.  相似文献   

5.
6.
Vivian LM  Cary GJ 《Annals of botany》2012,109(1):197-208

Background and Aims

Resprouting and seed recruitment are important ways in which plants respond to fire. However, the investments a plant makes into ensuring the success of post-fire resprouting or seedling recruitment can result in trade-offs that are manifested in a range of co-occurring morphological, life history and physiological traits. Relationships between fire-response strategies and other traits have been widely examined in fire-prone Mediterranean-type climates. In this paper, we aim to determine whether shrubs growing in a non-Mediterranean climate region exhibit relationships between their fire-response strategy and leaf traits.

Methods

Field surveys were used to classify species into fire-response types. We then compared specific leaf area, leaf dry-matter content, leaf width, leaf nitrogen and carbon to nitrogen ratios between (a) obligate seeders and all other resprouters, and (b) obligate seeders, facultative resprouters and obligate resprouters.

Key Results

Leaf traits only varied between fire-response types when we considered facultative resprouters as a separate group to obligate resprouters, as observed after a large landscape-scale fire. We found no differences between obligate seeders and obligate resprouters, nor between obligate seeders and resprouters considered as one group.

Conclusions

The results suggest that facultative resprouters may require a strategy of rapid resource acquisition and fast growth in order to compete with species that either resprout, or recruit from seed. However, the overall lack of difference between obligate seeders and obligate resprouters suggests that environmental factors are exerting similar effects on species'' ecological strategies, irrespective of the constraints and trade-offs that may be associated with obligate seeding and obligate resprouting. These results highlight the limits to trait co-occurrences across different ecosystems and the difficulty in identifying global-scale relationships amongst traits.  相似文献   

7.
The ancient Gondwanan family Proteaceae has its greatest speciation in fire‐prone environments of Australia. Fire response is either by seedling recruitment from parent plants that succumb to fire (obligate seeders), or survival and resprouting from protected buds (resprouters). Starch is the main source of energy for resprouting and in roots is restricted to parenchyma tissue. This study compared the size and distribution of storage parenchyma and the magnitude of starch reserves in roots of several proteaceous species from different genera in relation to their fire response and taxonomy. Cross‐sections (2 μm) of roots of 51 resprouter and 42 seeder species from 12 genera were stained for starch. Areas of cortex and ray parenchyma along with starch grain density were measured using image analysis software (Assess 2.0) and comparable samples of root tissue were assayed chemically for starch. Starch, where present, predominated in ray and cortex tissue with a greater percentage in resprouters (13.4 ± 1.03) than seeders (1.8 ± 0.26); these results correlated significantly with the chemical assay for starch (r = 0.93, P < 0.0001). Resprouters also had more storage parenchyma (56.9 ± 1.72%) than seeders (41.9 ± 1.91%) mostly due to broader rays (17.5 ± 1.22%) compared with seeders (8.2 ± 0.16%). Percentage of cortex tissue was similar for seeders and resprouters (39.4 ± 2.24 and 33.7 ± 2.04 respectively). Anatomical preferences for storage site were consistent within genera and broad suprageneric groupings. This study shows that histological analysis of root starch is a reliable predictor of resprouting capacity in Proteaceae and that patterns of storage tissue within genera, together with the persistence of parenchyma devoid of starch in seeders, are consistent with response to fire and suggests homoplastic evolution of this response within the family.  相似文献   

8.
We assessed the role of nutrients and disturbance experienced by mothers (maternal effects) in the growth of progeny in a pot experiment using two Plantago species. Photosynthetic capacity, biomass allocation and fecundity were measured. Offspring of plants grown in nutrient poor conditions produced more leaves, spikes and longer leaves and in case of P. lanceolata , they had also higher photosynthetic capacity. The progeny of P. media mothers that had resprouted after disturbance was favored in nutrient poor conditions whereas the progeny of undisturbed plants was favored in nutrient rich conditions.
This study demonstrates that maternal effects may play a role in the success of either a seeding or a resprouting strategy in environments with different nutrient availability. Moreover, we showed that alteration of photosynthetic capacity, even during adult stages, is a mechanism through which maternal plants may impact their progeny.  相似文献   

9.
The impact of plant age, severity of injury and nutrient levels on the ability to resprout from roots was experimentally assessed in juveniles of the short-lived herb Rorippa palustris (L.) Besser. In a chamber experiment, six cohorts of young plants (1–6 week old) were injured to obtain data on the threshold age for the ability to resprout from roots. We found that plant age was an important factor influencing resprouting ability: injured individuals older than 5 weeks were able to resprout, but not plants younger than 3 weeks. The impact of injury severity (defoliation and removal of axillary buds) and nutrient levels on resprouting ability was assessed on juveniles in a greenhouse experiment. Injury induced growth of new shoots from root buds, while the number of adventitious buds on roots was not influenced by injury. Both injury treatments had a similar effect in this respect, and the amount of regenerated biomass and the extent of regeneration were not different among injury treatments. The number of new shoots produced after injury was higher at the high nutrient level, but the number of formed adventitious buds on roots was not influenced by nutrient level. Nutrient level also influenced the amount of regenerated biomass, but the extent of regeneration (regenerated/removed biomass) was not influenced. The short-lived monocarpic species R. palustris is able to resprout from roots relatively easily. This ability seems to be advantageous in disturbed habitats and this idea is discussed throughout the paper.  相似文献   

10.
Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters do not differ from each other in their molecular evolutionary rate, which is the fuel for speciation. Although other factors such as the formation of isolated populations may trigger diversification, we can conclude that fire acting as a throttle for diversification is by no means the rule in fire-prone ecosystems.  相似文献   

11.
Many plants persist by resprouting after disturbance. However, the benefits of resprouting (survival) may be traded off against height growth and reproduction. Resources (total non-structural carbohydrates—TNC) that could be allocated to growth or reproduction are stored or mobilised to support resprouting. TNC may either be stored by accumulation where availability exceeds the requirements for growth, or by reserve formation when storage is at the expense of growth. Thus, the mechanism of storage and resource allocation may differ between good (R+) and poor (R?) resprouters in response to nutrient availability and disturbance regime. R+ species typically reserve resources to ensure a rapid resprouting response to disturbance. We test whether R+ and R? species in coastal forest, under chronic wind disturbance, differ in growth rates, biomass allocation, leaf traits, water relations and storage of TNC. Seedlings from three confamilial pairs of R+ and R? tree species were subjected to nitrogen addition, water stress and clipping (simulating herbivory) treatments under greenhouse conditions. R? species had greater height growth rates, larger specific leaf area, lower root mass ratio and lower root TNC than R+ species. These differences between R+ and R? species were maintained irrespective of the levels of nitrogen, water and clipping treatments. R+ species did not increase their TNC concentration under nutrient and water stress, indicating that TNC is stored by reserve formation. R+ species appeared to trade-off growth against storage, while R? species did not. In R+ species, reserve formation is likely a bet-hedging strategy against occasional strong selection events in addition to chronic wind stress. By trading off height growth for better resprouting ability, good resprouters may be able to persist at more frequently disturbed sites (e.g., dune crests and windward slopes), while poor resprouters that have faster height growth can dominate less disturbed sites.  相似文献   

12.
We experimentally demonstrated the ability of three short-lived monocarpic species to vegetatively regenerate (resprout) from roots after severe disturbance. We assessed the relationship between resprouting ability and (1) timing of injury with respect to life-cycle stage (reproductive vs. vegetative plant), life-history mode (annual vs. winter annual) and phenological stage (flowering vs. fruiting plant), (2) nutrient availability, and (3) disturbance severity (removal of all axillary buds Yes/No). In a chamber experiment with the annual or potentially winter annualRorippa palustris, all injured plants resprouted in all nutrient levels and day-length regimes (day-length regimes simulated conditions of an annual and a winter annual cohort). The number of adventitious buds on roots was positively affected only by injury. The extent of regeneration and amount of regenerated biomass were higher at high nutrient level and long-day regime.  相似文献   

13.
Coca M  Pausas JG 《Oecologia》2012,168(2):503-510
Recent studies showed that disturbances and water availability determine the richness among plants with different post-fire strategies of Mediterranean-type ecosystems. The aim of this study was to determine whether or not the scale of analysis has an influence on the effects of these factors and, therefore, on the segregation of the dominant post-fire strategies, obligate seeders and obligate resprouters, and facultative species. We recorded all woody species and geographical features on 94 (75 m2) plots of cork oak woodlands in the southern Iberian Peninsula. For each regenerative type (resprouters, seeders and species with both traits—facultative species), we tested the relationship between the number of species and the predictors using a generalised linear mixed model. The fixed predictor considered at the large scale was altitude, and fixed predictors considered at the local scale were aspect (north/south) and disturbance (fire and clearing by heavy machinery; yes/no). The random predictor was the factor of site. When this factor did not have significant effect for some regenerative types, these relationships was tested using a generalised linear model. Resprouting species were most represented at lower altitudes and in undisturbed sites, while seeders were also at lower altitudes but mostly on south-facing slopes, especially south-facing disturbed sites. For facultative species, site is the most important variable. The proportion of seeders from the total species is not related to altitude, but it is related to disturbance and aspect. These results suggest that there is no segregation of the richness of seeders and resprouters at the large scale (altitudinal gradient). Differences appeared at the local scale (aspect and disturbance).  相似文献   

14.
Summary Numbers of autotrophic nitrifiers in the rhizosphere, and thein vivo nitrate reductase activity (NRA) in the leaves of individual plants ofPlantago lanceolata were determined in plants at two contrasting sites. In a dune grassland, high numbers of nitrifiers were present in the rhizosphere, and significant NRA was detected in the leaves. During dry periods nitrate utilization sometimes was depressed. In a wet hayfield, on peat soil, very low numbers of nitrifiers were found in the rhizosphere. Also the NRA was low. In the wet habitat, the NRA in the leaves of some fen species, containing aerenchyma in the roots, was higher than that ofP. lanceolata, not containing aerenchyma.Grassland Species Research Group. Publication No. 105.  相似文献   

15.
Plants often survive disturbances such as fire by resprouting which involves having both protection traits and carbohydrate storage capacity. Protection traits not only act directly to insulate meristems but also prevent combustion of carbohydrate stores. Rapid stem growth also allows replenishment of carbohydrate stores ensuring persistence through another event. Resource availability may, however, constrain the ability to develop resilience to high-severity fires through either nutrient limitation or light limitation. We tested whether fire severity influenced resprouting ability of woody plants in two contrasting environments, low nutrient dry sclerophyll forest and more fertile wet sclerophyll forest. We tested which fire protection and growth traits were associated with resprouting ability (27 species) and resprouting vigour (16 species). Fire severity did not limit the ability of most species to resprout in either forest type. There was no generalized protection syndrome for surviving top kill, but combinations of bud protection and growth together with storage capacity appear to drive resprouting ability. In nutrient-limited forests, low specific leaf area (SLA) may reduce stem growth in resprouters, causing more reliance on bud protection through bark thickness. Conversely, in the more fertile forests, where light becomes limiting with time-since-fire, high SLA appears to increase the capacity for rapid stem growth with less emphasis on developing thicker bark. These different syndromes appear to be adaptive as fire severity did not influence survival in either forest type.  相似文献   

16.
Summary We compared the tissue water relations among resprouts and seedlings of three chaparral species during the first summer drought after wildfire. Two of the species, Rhus laurina and Ceanothus spinosus recover after fire by a combination of resprouting and seedling establishment (facultative resprouters), whereas a third species, Ceanothus megacarpus recovers by seedling establishment alone (obligate seeder). Our objectives were to document any differences in tissue water characteristics that might arise between resprouts and seedlings and to test the hypothesis that seedlings of obligate seeders develop more drought tolerant characteristics of their tissues than seedlings of facultative resprouters. We found that resprouts had much higher predawn values of water potential, osmotic potential, and turgor potentials than seedlings. Predawn turgor potentials of resprouts were 1.5 MPa through July and August when turgor potentials for seedlings remained near 0 MPa. During summer months, midday water potentials were 2 to 3 MPa higher for resprouts than seedlings and midday conductances of resprouts were two to five fold greater than those of seedlings. Even though resprouts did not experience severe water stress like seedlings, their tissue water characteristics, as determined by pressure-volume curve analyses, were similar by the peak of the drought in August. Further-more, the tissue water characteristics of seedlings from the obligate seeder, C. megacarpus, were similar to those of facultative resprouters — R. laurina, and C. spinosus. We attribute the observed differences in plant water status between resprouts and seedlings to differences in rooting depths and access to soil moisture reserves during summer drought. We conclude that the higher growth rates, photosynthetic performance, and survivorship of postfire resprouts are primarily a result of higher water availability to resprouting tissues during summer months. It appears that the greater seedling survivorship during summer drought observed for the obligate seeder, C. megacarpus, is not associated with more favorable tissue water characteristics.  相似文献   

17.
Very little has been published on the life-history significance of clonal plants inhabiting southern African savanna environments. This study investigated the fitness implications of clonal integration, resprouting behaviour and growth phenology in a stoloniferous herb, Nelsonia canescens (blue pussyleaf) at a savanna site in Zambia, central Africa. Census data on growth and survival were obtained regularly on permanently marked ramets over a 4-year period, from 2001 to 2005, and analyzed to assess how physiological integration and module demography contribute to fitness in Nelsonia. Above ground and below ground growth occurred during the dry and rainy seasons, respectively. Dry season growth was characterized by resprouting and production of stolons that bore small pubescent leaves with high mortality (30–80% month−1). Deep roots and high leaf turnover appear to contribute to sustained growth during the dry season when topsoil moisture and nutrient availability are low. The interaction between maximum temperature and precipitation explained a significant proportion (59%, p<0.01) of the monthly variation in leaf size and increasing evapo-transpiration levels appeared to trigger the shift in leaf size from a large wet season type to a small dry season one. During the dry season Nelsonia resprouted from dormant buds buried at the time of root development in daughter ramets in the rainy season. Temporal integration significantly (p<0.05) enhanced survival of daughter ramets. However, daughter ramets with severed mother–daughter ramet inter-connectors experienced high initial mortality that was caused by both early stolon severing and drought stress during the root development phase. The majority of ramets lived for 5–10 months and 25% were still alive at the age of 3.5 years. The study showed that although the growth phenology of Nelsonia has serious ecological implications for accessing scarce resources during the dry season, the species utilizes a number of strategies to overcome resource limitations in a seasonally heterogenous environment. Co-ordinating editor: G. P. Cheplick  相似文献   

18.
Resprouting can be an important means of regeneration for forest tree species resulting in multi-stemmed architecture, especially at less productive or frequently disturbed sites. However, the cost of resprouting may be traded off against growth or reproduction. In subtropical coastal forest in South Africa, trees grow on steep, sandy dunes with unstable soils and low to moderate nutrient availability. These coastal forests experience seasonally strong anticyclonic winds from August through October. We examined the hypothesis that basal resprouting resulting in multiple stems causes lower rates of sexual reproduction and recruitment by individuals. We examined whether trees traded off resprouting against seed output, seed size, seedling abundance and recruitment by seedlings. Species were designated as good and poor resprouters based on their frequency of multi-stemmed individuals at Cape Vidal. Good resprouters had more stems, produced less seed and had lower seed mass than poor resprouters, and had lower seedling abundance and fewer individuals in small diameter classes than large diameter classes. Seedling abundance in good resprouters was not influenced by the availability of understorey gaps. Good resprouters were most abundant on dune crests and seaward slopes that were exposed to sea winds. Persistence of established individuals by producing multiple stems from basal resprouts is important where a chronic disturbance regime potentially reduces the survivorship of single-stemmed individuals and thereby their opportunities for reproduction. Good resprouters appear to trade-off recruitment of new individuals for multiple stems that increase the persistence of established ones against disturbance. We conclude that multi-stemming arising from basal resprouts has evolved to promote individual persistence under low to moderate intensity but pervasive wind stress.  相似文献   

19.
Eshel  Amram  Henig-Sever  Nava  Ne'eman  Gidi 《Plant Ecology》2000,148(2):175-182
Most of the area in pine woodlands is occupied by perennial seeders that regenerate from seeds in the first winter after the fire and by annuals. Control of the germination in the regenerating vegetation after wildfire is therefore a primary ecological component of the post-fire succession in this ecosystem. The aim of the study presented here was to determine the distribution of Pinus, Cistus and other plants seeds around burned Pinus halepensis trees, and to measure the conditions related to seed germination in the upper soil layers in the same locations. The study was carried out in a 50-year old planted Pinus halepensis woodland that was burned down by a wildfire in July 1995. The variation of seedbank density was determined by collecting samples under the canopies of burned trees and in a nearby open area. Pine seedbank density decreased and that of Cistus and annuals increased with increasing distance from the burned trunks. Most pine seeds were present in the ash layer while those of the other plants were in the soil. In situ germination experiments showed that seedling density decreased with distance from the burned trunks while the proportion of pines in the seedling population increased. This was a result of seedbank variation and germination inhibition by the high pH conditions caused by the ash. The establishment of sparse pine seedling under the dead tree canopies insured their rapid development without interference by other plants and played a key role in the regeneration and stability of the pine woodland community. The concomitant mass germination of the perennial seeders in the rest of the area prevented invasion by annuals.  相似文献   

20.
Summary Twelve Plantago major plants, good representatives of their populations, appeared to be genetically different for several characters which are important for adaptation to the respective habitat conditions. These characters are: juvenile growth, leaf morphology, production of secondary rosettes, flowering time, seed production, seed size and adult leaf production. The adaptive value of some of these characters was investigated by transplantation experiments in the field and by intraspecific competition experiments. The roadside type of ssp. major was adapted to trampling by being erect and elastic. The lawn type of ssp. major was adapted to a short, frequently cut, vegetation by being prostrate and by producing leaves with short petioles throughout the growth season. In the natural situations in which ssp. pleiosperma occurs, growth rate and first-year seed production of this subspecies were considerably higher than that of ssp. major. In a number of experiments, F1s and F2s were included, derived from crosses between the original plants. The F1s were generally rather well adapted to both parental habitats, whereas the F2s appeared to be less fit. The various alternatives in spending resources relevant for fitness optimization in different habitats are discussed.Grassland Species Research Group Publication No. 93  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号