首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptidoglycan synthesis rate in nonconstricting filaments of Escherichia coli dnaX(Ts) has been studied by autoradiography of incorporated [3H]diaminopimelic acid. Analysis of autoradiograms of whole cells and sacculi showed that peptidoglycan is synthesized at a reduced rate in the nucleoid-containing parts of these filaments. The lower rate of peptidoglycan synthesis in the cell center coincides with a higher local rate of protein synthesis. DNA-less cell formation in dnaX(Ts), dnaX(Ts) sfiA, and the minB minicell-forming mutant is accompanied by a local increase in peptidoglycan synthesis at the constriction site.  相似文献   

2.
Chloramphenicol is frequently used for better visualization of the Escherichia coli nucleoid. Here, we show that chloramphenicol causes not only rounding off of the nucleoid but also fusion of as many as four separated nucleoids. Nucleoid fusion occurred in fast-growing cells and in filaments obtained by dicF antisense RNA induction or in ftsZ84(Ts) and pbpB(Ts) mutants. Thus, treatment with chloramphenicol erroneously suggests that DNA segregation is inhibited.  相似文献   

3.
Temperature sensitivity of DNA polymerization and growth of a dnaX(Ts) mutant is suppressible at 39 to 40 degrees C by mutations in the initiator gene, dnaA. These suppressor mutations concomitantly cause initiation inhibition at 20 degrees C and have been designated Cs,Sx to indicate both phenotypic characteristics of cold-sensitive initiation and suppression of dnaX(Ts). One dnaA(Cs,Sx) mutant, A213D, has reduced affinity for ATP, and two mutants, R432L and T435K, have eliminated detectable DnaA box binding in vitro. Two models have explained dnaA(Cs,Sx) suppression of dnaX, which codes for both the tau and gamma subunits of DNA polymerase III. The initiation deficiency model assumes that reducing initiation efficiency allows survival of the dnaX(Ts) mutant at the somewhat intermediate temperature of 39 to 40 degrees C by reducing chromosome content per cell, thus allowing partially active DNA polymerase III to complete replication of enough chromosomes for the organism to survive. The stabilization model is based on the idea that DnaA interacts, directly or indirectly, with polymerization factors during replication. We present five lines of evidence consistent with the initiation deficiency model. First, a dnaA(Cs,Sx) mutation reduced initiation frequency and chromosome content (measured by flow cytometry) and origin/terminus ratios (measured by real-time PCR) in both wild-type and dnaX(Ts) strains growing at 39 and 34 degrees C. These effects were shown to result specifically from the Cs,Sx mutations, because the dnaX(Ts) mutant is not defective in initiation. Second, reduction of the number of origins and chromosome content per cell was common to all three known suppressor mutations. Third, growing the dnaA(Cs,Sx) dnaX(Ts) strain on glycerol-containing medium reduced its chromosome content to one per cell and eliminated suppression at 39 degrees C, as would be expected if the combination of poor carbon source, the Cs,Sx mutation, the Ts mutation, and the 39 degrees C incubation reduced replication to the point that growth (and, therefore, suppression) was not possible. However, suppression was possible on glycerol medium at 38 degrees C. Fourth, the dnaX(Ts) mutation can be suppressed also by introduction of oriC mutations, which reduced initiation efficiency and chromosome number per cell, and the degree of suppression was proportional to the level of initiation defect. Fifth, introducing a dnaA(Cos) allele, which causes overinitiation, into the dnaX(Ts) mutant exacerbated its temperature sensitivity.  相似文献   

4.
To study the role of cell division in the process of nucleoid segregation, we measured the DNA content of individual nucleoids in isogenic Escherichia coli cell division mutants by image cytometry. In pbpB(Ts) and ftsZ strains growing as filaments at 42 degrees C, nucleoids contained, on average, more than two chromosome equivalents compared with 1.6 in wild-type cells. Because similar results were obtained with a pbpB recA strain, the increased DNA content cannot be ascribed to the occurrence of chromosome dimers. From the determination of the amount of DNA per cell and per individual nucleoid after rifampicin inhibition, we estimated the C and D periods (duration of a round of replication and time between termination and cell division respectively), as well as the D' period (time between termination and nucleoid separation). Compared with the parent strain and in contrast to ftsQ, ftsA and ftsZ mutants, pbpB(Ts) cells growing at the permissive temperature (28 degrees C) showed a long D' period (42 min versus 18 min in the parent) indicative of an extended segregation time. The results indicate that a defective cell division protein such as PbpB not only affects the division process but also plays a role in the last stage of DNA segregation. We propose that PbpB is involved in the assembly of the divisome and that this structure enhances nucleoid segregation.  相似文献   

5.
Recently, it has been reported that prokaryotes also have a mitotic-like apparatus in which polymerized fibres govern the bipolar movement of chromosomes and plasmids. Here, we show evidence that a non-mitotic-like apparatus that does not form polymerized filaments carries out plasmid partitioning. P1 ParA, which is a DNA-binding ATPase protein, was found to be distributed through the whole nucleoid and formed a dense spot at the centre of the nucleoid. The fluorescent intensity of the ParA spot blinked, and then the spot gradually migrated from the midcell to a cell quarter position. Such distribution was not observed in anucleate cells, suggesting that the nucleoid could be a matrix for gradual distribution of ParA. Plasmid DNA constantly colocalized at the spot of ParA and migrated according to spot migration and separation. Thus, the gradient distribution of ParA determines the destination of partitioning plasmids and may direct plasmids to the cell quarters.  相似文献   

6.
The FtsZ ring assembles between segregated daughter chromosomes in prokaryotic cells and is essential for cell division. To understand better how the FtsZ ring is influenced by chromosome positioning and structure in Escherichia coli , we investigated its localization in parC and mukB mutants that are defective for chromosome segregation. Cells of both mutants at non-permissive temperatures were either filamentous with unsegregated nucleoids or short and anucleate. In parC filaments, FtsZ rings tended to localize only to either side of the central unsegregated nucleoid and rarely to the cell midpoint; however, medial rings reappeared soon after switching back to the permissive temperature. Filamentous mukB cells were usually longer and lacked many potential rings. At temperatures permissive for mukB viability, medial FtsZ rings assembled despite the presence of apparently unsegregated nucleoids. However, a significant proportion of these FtsZ rings were mislocalized or structurally abnormal. The most surprising result of this study was revealed upon further examination of FtsZ ring positioning in anucleate cells generated by the parC and mukB mutants: many of these cells, despite having no chromosome, possessed FtsZ rings at their midpoints. This discovery strongly suggests that the chromosome itself is not required for the proper positioning and development of the medial division site.  相似文献   

7.
The temperature-sensitive nucleoid segregation mutant of Escherichia coli, PAT32, formerly described as a parA mutant, has been shown to carry a mutation near 66 min on the genetic map. Fine mapping with phages from the collection of Kohara et al. is consistent with its being a parC allele. Observation by fluorescence microscopy revealed the formation, at a nonpermissive temperature, of filaments containing one or two large nucleoids and of normal-size anucleate cells. There was also a significant loss of viability.  相似文献   

8.
The replicative polymerase of Escherichia coli, DNA polymerase III, consists of a three-subunit core polymerase plus seven accessory subunits. Of these seven, tau and gamma are products of one replication gene, dnaX. The shorter gamma is created from within the tau reading frame by a programmed ribosomal -1 frameshift over codons 428 and 429 followed by a stop codon in the new frame. Two temperature-sensitive mutations are available in dnaX. The 2016(Ts) mutation altered both tau and gamma by changing codon 118 from glycine to aspartate; the 36(Ts) mutation affected the activity only of tau because it altered codon 601 (from glutamate to lysine). Evidence which indicates that, of these two proteins, only the longer tau is essential includes the following. (i) The 36(Ts) mutation is a temperature-sensitive lethal allele, and overproduction of wild-type gamma cannot restore its growth. (ii) An allele which produced tau only could be substituted for the wild-type chromosomal gene, but a gamma-only allele could not substitute for the wild-type dnaX in the haploid state. Thus, the shorter subunit gamma is not essential, suggesting that tau can be substitute for the usual function(s) of gamma. Consistent with these results, we found that a functional polymerase was assembled from nine pure subunits in the absence of the gamma subunit. However, the possibility that, in cells growing without gamma, proteolysis of tau to form a gamma-like product in amounts below the Western blot (immunoblot) sensitivity level cannot be excluded.  相似文献   

9.
The nucleoids in Mycoplasma capricolum cells were visualized by phase-combined fluorescence microscopy of DAPI (4', 6-diamidino-2-phenylindole)-stained cells. Most growing cells in a rich medium had one or two nucleoids in a cell, and no anucleate cells were found. The nucleoids were positioned in the center in mononucleoid cells and at one-quarter and three-quarters of the cell length in binucleoid cells. These formations may have the purpose of ensuring delivery of replicated DNA to daughter cells. Internucleoid distances in binucleoid cells correlated with the cell lengths, and the relationship of DNA content to cell length showed that cell length depended on DNA content in binucleoid cells but not in mononucleoid cells. These observations suggest that cell elongation takes place in combination with nucleoid movement. Lipid synthesis was inhibited by transfer of cells to a medium lacking supplementation for lipid synthesis. The transferred cells immediately stopped dividing and elongated while regular spaces were maintained between the nucleoids for 1 h. After 1 h, the cells changed their shapes from rod-like to round, but the proportion of multinucleoid cells increased. Inhibition of protein synthesis by chloramphenicol induced nucleoid condensation and abnormal positioning, although partitioning was not inhibited. These results suggest that nucleoid partitioning does not require lipid or protein synthesis, while regular positioning requires both. When DNA replication was inhibited, the cells formed branches, and the nucleoids were positioned at the branching points. A model for the reproduction process of M. capricolum, including nucleoid migration and cell division, is discussed.  相似文献   

10.
During bacterial cytokinesis, a proteinaceous contractile ring assembles in the cell middle. The Z ring tethers to the membrane and contracts, when triggered, to form two identical daughter cells. One mechanism for positioning the ring involves the MinC, MinD and MinE proteins, which oscillate between cell poles to inhibit ring assembly. Averaged over time, the concentration of the inhibitor MinC is lowest at midcell, restricting ring assembly to this region. A second positioning mechanism, called Nucleoid Occlusion, acts through protein SlmA to inhibit ring polymerization in the location of the nucleoid. Here, a mathematical model was developed to explore the interactions between Min oscillations, nucleoid occlusion, Z ring assembly and positioning. One-dimensional advection-reaction-diffusion equations were built to simulate the spatio-temporal concentrations of Min proteins and their effect on various forms of FtsZ. The resulting partial differential equations were numerically solved using a finite volume method. The reduced chemical model assumed that the ring is composed of overlapping FtsZ filaments and that MinC disrupts lateral interactions between filaments. SlmA was presumed to break long FtsZ filaments into shorter units. A term was developed to account for the movement of FtsZ subunits in membrane-bound filaments as they touch and align with other filaments. This alignment was critical in forming sharp stable rings. Simulations qualitatively reproduced experimental results showing the incorrect positioning of rings when Min proteins were not expressed, and the formation of multiple rings when FtsZ was overexpressed.  相似文献   

11.
12.
In this report, we have investigated cell division after inhibition of initiation of chromosome replication in Escherichia coli. In a culture grown to the stationary phase, cells containing more than one chromosome were able to divide some time after restart of growth, under conditions not allowing initiation of chromosome replication. This shows that there is no requirement for cell division to take place within a certain time after initiation of chromosome replication. Continued growth without initiation of replication resulted in filamented cells that generally did not have any constrictions. Interestingly, FtsZ rings were formed in a majority of these cells as they reached a certain cell length. These rings appeared and were maintained for some time at the cell quarter positions on both sides of the centrally localized nucleoid. These results confirm previous findings that cell division sites are formed independently of chromosome replication and indicate that FtsZ ring assembly is dependent on cell size rather than on the capacity of the cell to divide. Disruption of the mukB gene caused a significant increase in the region occupied by DNA after the replication runout, consistent with a role of MukB in chromosome condensation. The aberrant nucleoid structure was accompanied by a shift in FtsZ ring positioning, indicating an effect of the nucleoid on the positioning of the FtsZ ring. A narrow cell length interval was found, under and over which primarily central and non-central FtsZ rings, respectively, were observed. This finding correlates well with the previously observed oscillatory movement of MinC and MinD in short and long cells.  相似文献   

13.
The Podospora anserina ami1-1 mutant was identified as a male-sterile strain. Microconidia (which act as male gametes) form, but are anucleate. Paraphysae from the perithecium beaks are also anucleate when ami1-1 is used as the female partner in a cross. Furthermore, in crosses heterozygous for ami1-1, some crozier cells are uninucleate rather than binucleate. In addition to these nuclear migration defects, which occur at the transition between syncytial and cellular states, ami1-1 causes abnormal distribution of the nuclei in both mycelial filaments and asci. Finally, an ami1-1 strain bearing information for both mating types is unable to self-fertilize. The ami1 gene is an orthologue of the Aspergillus nidulans apsA gene, which controls nuclear positioning in filaments and during conidiogenesis (at the syncytial/cellular transition). The ApsA and AMI1 proteins display 42% identity and share structural features. The apsA gene complements some ami1-1 defects: it increases the percentage of nucleate microconidia and restores self-fertility in an ami1-1 mat+ (mat-) strain. The latter effect is puzzling, since in apsA null mutants sexual reproduction is quite normal. The functional differences between the two genes are discussed with respect to their possible history in these two fungi, which are very distant in terms of evolution.  相似文献   

14.
The mechanism used by Escherichia coli to determine the correct site for cell division is unknown. In this report, we have attempted to distinguish between a model in which septal position is determined by the position of the nucleoids and a model in which septal position is predetermined by a mechanism that does not involve nucleoid position. To do this, filaments with extended nucleoid-free regions adjacent to the cell poles were produced by simultaneous inactivation of cell division and DNA replication. The positions of septa that formed within the nucleoid-free zones after division was allowed to resume were then analyzed. The results showed that septa were formed at a uniform distance from cell poles when division was restored, with no relation to the distance from the nearest nucleoid. In some cells, septa were formed directly over nucleoids. These results are inconsistent with models that invoke nucleoid positioning as the mechanism for determining the site of division site formation.  相似文献   

15.
NDP reductase activity can be inhibited either by treatment with hydroxyurea or by incubation of an nrdA ts mutant strain at the non-permissive temperature. Both methods inhibit replication, but experiments on these two types of inhibition yielded very different results. The chemical treatment immediately inhibited DNA synthesis but did not affect the cell and nucleoid appearance, while the incubation of an nrdA101 mutant strain at the non-permissive temperature inhibited DNA synthesis after more than 50 min, and resulted in aberrant chromosome segregation, long filaments, and a high frequency of anucleate cells. These phenotypes are not induced by SOS. In view of these results, we suggest there is an indirect relationship between NDP reductase and the chromosome segregation machinery through the maintenance of the proposed replication hyperstructure.  相似文献   

16.
The mechanisms by which chromosomes condense and segregate during developmentally regulated cell division are of interest for Streptomyces coelicolor, a sporulating, filamentous bacterium with a large, linear genome. These processes coordinately occur as many septa synchronously form in syncytial aerial hyphae such that prespore compartments accurately receive chromosome copies. Our genetic approach analyzed mutants for ftsK, smc, and parB. DNA motor protein FtsK/SpoIIIE coordinates chromosome segregation with septum closure in rod-shaped bacteria. SMC (structural maintenance of chromosomes) participates in condensation and organization of the nucleoid. ParB/Spo0J partitions the origin of replication using a nucleoprotein complex, assembled at a centromere-like sequence. Consistent with previous work, we show that an ftsK-null mutant produces anucleate spores at the same frequency as the wild-type strain (0.8%). We report that the smc and ftsK deletion-insertion mutants (ftsK′ truncation allele) have developmental segregation defects (7% and 15% anucleate spores, respectively). By use of these latter mutants, viable double and triple mutants were isolated in all combinations with a previously described parB-null mutant (12% anucleate spores). parB and smc were in separate segregation pathways; the loss of both exacerbates the segregation defect (24% anucleate spores). For a triple mutant, deletion of the region encoding the FtsK motor domain and one transmembrane segment partially alleviates the segregation defect of the smc parB mutant (10% anucleate spores). Considerable redundancy must exist in this filamentous organism because segregation of some genomic material occurs 90% of the time during development in the absence of three functions with only a fourfold loss of spore viability. Furthermore, we report that scpA and scpAB mutants (encoding SMC-associated proteins) have spore nucleoid organization defects. Finally, FtsK-enhanced green fluorescent protein (EGFP) localized as bands or foci between incipient nucleoids, while SMC-EGFP foci were not uniformly positioned along aerial hyphae, nor were they associated with every condensing nucleoid.  相似文献   

17.
18.
A Jaff  R D'Ari    S Hiraga 《Journal of bacteriology》1988,170(7):3094-3101
The Escherichia coli minB mutant originally isolated is known to septate at cell poles to form spherical anucleate minicells. Three new minicell-producing mutants were isolated during a screening by autoradiography for chromosome partition mutants giving rise spontaneously to normal-sized anucleate cells. These min mutants were affected close to or in the minB locus. Autoradiography analysis as well as fluorescent staining of DNA showed that in addition to minicells, these strains and the original minB mutant also spontaneously produced anucleate rods of normal size and had an abnormal DNA distribution in filaments. These aberrations were not associated with spontaneous induction of the SOS response. Inhibition of DNA synthesis in these mutants gave rise to anucleate cells whose size was longer than unit cell length, suggesting that the min defect allows septation to take place at normally forbidden sites not only at cell poles but also far from poles. Abnormal DNA distribution and production of anucleate rods suggest that the Min product(s) could be involved in DNA distribution.  相似文献   

19.
Previous work has shown that the ponA gene, encoding penicillin-binding protein 1 (PBP1), is in a two-gene operon with prfA (PBP-related factor A) (also called recU), which encodes a putative 206-residue basic protein (pI = 10.1) with no significant sequence homology to proteins with known functions. Inactivation of prfA results in cells that grow slower and vary significantly in length relative to wild-type cells. We now show that prfA mutant cells have a defect in chromosome segregation resulting in the production of approximately 0.9 to 3% anucleate cells in prfA cultures grown at 30 or 37 degrees C in rich medium and that the lack of PrfA exacerbates the chromosome segregation defect in smc and spoOJ mutant cells. In addition, overexpression of prfA was found to be toxic for and cause nucleoid condensation in Escherichia coli.  相似文献   

20.
Boye E  Blinkova A  Walker JR 《Biochimie》2001,83(1):25-32
Mutations in the Escherichia coli gene for initiation of DNA replication, dnaA, which suppress the polymerization defect and growth inhibition caused by temperature-sensitive (Ts) mutations in the polymerization gene, dnaX, are called Cs,Sx. We show here that these mutations, on their own, also cause defects in initiation, including inhibition of initiation at both low (20 degrees C) and high (44 degrees C) temperatures and asynchronous initiation at both the permissive (34 degrees C) and suppression (39 degrees C) temperatures. These findings suggests a relationship between partially defective initiation and suppression of the polymerization defect, both of which occur at 39 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号