首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Insulin and insulin growth factor have central roles in growth, metabolism and ageing of animals, including Drosophila melanogaster. In Drosophila, insulin-like peptides (Dilps) are produced by specialized neurons in the brain. Here we show that Drosophila short neuropeptide F (sNPF), an orthologue of mammalian neuropeptide Y (NPY), and sNPF receptor sNPFR1 regulate expression of Dilps. Body size was increased by overexpression of sNPF or sNPFR1. The fat body of sNPF mutant Drosophila had downregulated Akt, nuclear localized FOXO, upregulated translational inhibitor 4E-BP and reduced cell size. Circulating levels of glucose were elevated and lifespan was also extended in sNPF mutants. We show that these effects are mediated through activation of extracellular signal-related kinases (ERK) in insulin-producing cells of larvae and adults. Insulin expression was also increased in an ERK-dependent manner in cultured Drosophila central nervous system (CNS) cells and in rat pancreatic cells treated with sNPF or NPY peptide, respectively. Drosophila sNPF and the evolutionarily conserved mammalian NPY seem to regulate ERK-mediated insulin expression and thus to systemically modulate growth, metabolism and lifespan.  相似文献   

2.
SH Hong  KS Lee  SJ Kwak  AK Kim  H Bai  MS Jung  OY Kwon  WJ Song  M Tatar  K Yu 《PLoS genetics》2012,8(8):e1002857
Feeding behavior is one of the most essential activities in animals, which is tightly regulated by neuroendocrine factors. Drosophila melanogaster short neuropeptide F (sNPF) and the mammalian functional homolog neuropeptide Y (NPY) regulate food intake. Understanding the molecular mechanism of sNPF and NPY signaling is critical to elucidate feeding regulation. Here, we found that minibrain (mnb) and the mammalian ortholog Dyrk1a target genes of sNPF and NPY signaling and regulate food intake in Drosophila melanogaster and mice. In Drosophila melanogaster neuronal cells and mouse hypothalamic cells, sNPF and NPY modulated the mnb and Dyrk1a expression through the PKA-CREB pathway. Increased Dyrk1a activated Sirt1 to regulate the deacetylation of FOXO, which potentiated FOXO-induced sNPF/NPY expression and in turn promoted food intake. Conversely, AKT-mediated insulin signaling suppressed FOXO-mediated sNPF/NPY expression, which resulted in decreasing food intake. Furthermore, human Dyrk1a transgenic mice exhibited decreased FOXO acetylation and increased NPY expression in the hypothalamus, as well as increased food intake. Our findings demonstrate that Mnb/Dyrk1a regulates food intake through the evolutionary conserved Sir2-FOXO-sNPF/NPY pathway in Drosophila melanogaster and mammals.  相似文献   

3.
Four forms of short neuropeptide F (sNPF1–4), derived from the gene snpf, have been identified in Drosophila and are known to act on a single G-protein-coupled receptor (sNPFR). Several functions have been suggested for sNPFs in Drosophila, including the regulation of feeding and growth in larvae, the control of insulin signalling and the modulation of neuronal circuits in adult flies. Furthermore, sNPF has been shown to act as a nutritional state-dependent neuromodulator in the olfactory system. The role of sNPF in the larval nervous system is less well known. To analyse sites of action of sNPF in the larva, we mapped the distribution of sNPF- and sNPFR-expressing neurons. In particular, we studied circuits associated with chemosensory inputs and systems involved in the regulation of feeding, including neurosecretory cell systems and the hypocerebral ganglion. We employed a combination of immunocytochemistry and enhancer trap and promoter Gal4 lines to drive green fluorescent protein. We found a good match between the distribution of the receptor and its ligand. However, several differences between the larval and adult systems were observed. Thus, neither sNPF nor its receptor was found in the olfactory (or other sensory) systems in the larva and cells producing insulin-like peptides did not co-express sNPFR, as opposed to results from adults. Moreover, sNPF was expressed in a subpopulation of Hugin cells (second-order gustatory neurons) only in adult flies. We propose that the differences in sNPF signalling between the developmental stages is explained by differences in their feeding behaviour.  相似文献   

4.
5.
Whereas short neuropeptide F (sNPF) has already been reported to stimulate feeding behaviour in a variety of insect species, the opposite effect was observed in the desert locust. In the present study, we cloned a G protein-coupled receptor (GPCR) cDNA from the desert locust, Schistocerca gregaria. Cell-based functional analysis of this receptor indicated that it is activated by both known isoforms of Schgr-sNPF in a concentration dependent manner, with EC50 values in the nanomolar range. This Schgr-sNPF receptor constitutes the first functionally characterized peptide GPCR in locusts. The in vivo effects of the sNPF signalling pathway on the regulation of feeding in locusts were further studied by knocking down the newly identified Schgr-sNPF receptor by means of RNA interference, as well as by means of peptide injection studies. While injection of sNPF caused an inhibitory effect on food uptake in the desert locust, knocking down the corresponding peptide receptor resulted in an increase of total food uptake when compared to control animals. This is the first comprehensive study in which a clearly negative correlation is described between the sNPF signalling pathway and feeding, prompting a reconsideration of the diverse roles of sNPFs in the physiology of insects.  相似文献   

6.
Garczynski SF  Brown MR  Crim JW 《Peptides》2006,27(3):575-582
Among insects, short neuropeptide Fs (sNPF) have been implicated in regulation of reproduction and feeding behavior. For Drosophila melanogaster, the nucleotide sequence for the sNPF precursor protein encodes four distinctive candidate sNPFs. In the present study, all four peptides were identified by mass spectrometry in body extracts of D. melanogaster; some also were identified in hemolymph, suggesting potential neuroendocrine roles. Actions of sNPFs in D. melanogaster are mediated by the G protein-coupled receptor Drm-NPFR76F. Mammalian CHO-K1 cells were stably transfected with the Drm-NPFR76F receptor for membrane-based radioreceptor studies. Binding assays revealed that longer sNPF peptides comprised of nine or more amino acids were clearly more potent than shorter ones of eight or fewer amino acids. These findings extend understanding of the relationship between structure and function of sNPFs.  相似文献   

7.
We have isolated a Drosophila mutant, named pumpless, which is defective in food intake and growth at the larval stage. pumpless larvae can initially feed normally upon hatching. However, during late first instar stage, they fail to pump the food from the pharynx into the esophagus and concurrently begin moving away from the food source. Although pumpless larvae do not feed, they do not show the typical physiologic response of starving animals, such as upregulating genes involved in gluconeogenesis or lipid breakdown. The pumpless gene is expressed specifically in the fat body and encodes a protein with homology to a vertebrate enzyme involved in glycine catabolism. Feeding wild-type larvae high levels of amino acids could phenocopy the feeding and growth defects of pumpless mutants. Our data suggest the existence of an amino acid-dependent signal arising from the fat body that induces cessation of feeding in the larva. This signaling system may also mediate growth transition from larval to the pupal stage during Drosophila development.  相似文献   

8.
9.
10.
In Drosophila, neurosecretory cells that release peptide hormones play a prominent role in the regulation of development, growth, metabolism, and reproduction. Several types of peptidergic neurosecretory cells have been identified in the brain of Drosophila with release sites in the corpora cardiaca and anterior aorta. We show here that in adult flies the products of three neuropeptide precursors are colocalized in five pairs of large protocerebral neurosecretory cells in two clusters (designated ipc-1 and ipc-2a): Drosophila tachykinin (DTK), short neuropeptide F (sNPF) and ion transport peptide (ITP). These peptides were detected by immunocytochemistry in combination with GFP expression driven by the enhancer trap Gal4 lines c929 and Kurs-6, both of which are expressed in ipc-1 and 2a cells. This mix of colocalized peptides with seemingly unrelated functions is intriguing and prompted us to initiate analysis of the function of the ten neurosecretory cells. We investigated the role of peptide signaling from large ipc-1 and 2a cells in stress responses by monitoring the effect of starvation and desiccation in flies with levels of DTK or sNPF diminished by RNA interference. Using the Gal4-UAS system we targeted the peptide knockdown specifically to ipc-1 and 2a cells with the c929 and Kurs-6 drivers. Flies with reduced DTK or sNPF levels in these cells displayed decreased survival time at desiccation and starvation, as well as increased water loss at desiccation. Our data suggest that homeostasis during metabolic stress requires intact peptide signaling by ipc-1 and 2a neurosecretory cells.  相似文献   

11.
A number of bioactive peptides are involved in regulating a wide range of animal behaviors, including food consumption. Vertebrate neuropeptide Y (NPY) is a potent stimulator of appetitive behavior. Recently, Drosophila neuropeptide F (dNPF) and short NPF (sNPF), the Drosophila homologs of the vertebrate NPY, were identified to characterize the functions of NPFs in the feeding behaviors of this insect. Dm-NPFR1 and NPFR76F are the receptors for dNPF and sNPF, respectively; both receptors are G protein-coupled receptors (GPCRs). Another GPCR (CG5811; NepYR) was indentified in Drosophila as a neuropeptide Y-like receptor. Here, we identified 2 ligands of CG5811, dRYamide-1 and dRYamide-2. Both peptides are derived from the same precursor (CG40733) and have no significant structural similarities to known bioactive peptides. The C-terminal sequence RYamide of dRYamides is identical to that of NPY family peptides; on the other hand, dNPF and sNPF have C-terminal RFamide. When administered to blowflies, dRYamide-1 suppressed feeding motivation. We propose that dRYamides are related to the NPY family in vertebrates, similar to dNPF and sNPF.  相似文献   

12.
We have found two novel lipocalins in the fruit fly Drosophila melanogaster that are homologous to the grasshopper Lazarillo, a singular lipocalin within this protein family which functions in axon guidance during nervous system development. Sequence analysis suggests that the two Drosophila proteins are secreted and possess peptide regions unique in the lipocalin family. The mRNAs of DNLaz (for Drosophila neural Lazarillo) and DGLaz (for Drosophila glial Lazarillo) are expressed with different temporal patterns during embryogenesis. They show low levels of larval expression and are highly expressed in pupa and adult flies. DNLaz mRNA is transcribed in a subset of neurons and neuronal precursors in the embryonic CNS. DGLaz mRNA is found in a subset of glial cells of the CNS: the longitudinal glia and the medial cell body glia. Both lipocalins are also expressed outside the nervous system in the developing gut, fat body and amnioserosa. The DNLaz protein is detected in a subset of axons in the developing CNS. Treatment with a secretion blocker enhances the antibody labeling, indicating the DNLaz secreted nature. These findings make the embryonic nervous system expression of lipocalins a feature more widespread than previously thought. We propose that DNLaz and DGLaz may have a role in axonal outgrowth and pathfinding, although other putative functions are also discussed.  相似文献   

13.
14.
Previous work has shown that a transgene consisting of a fusion between the rat atrial natriuretic peptide and a green fluorescent protein reporter (ANF-gfp) is processed, localized, and released, as would be an endogenous neuropeptide when it is expressed in the nervous system of Drosophila melanogaster using the GAL4/UAS expression system. Here we have tested the utility of this targetable transgene for detecting neuropeptide release following the execution of a peptide-controlled behavior. For the behavior we used ecdysis, the behavior expressed by insects to shed their old cuticle at the end of the molt. We found that larval ecdysis was accompanied by a readily detectable reduction in gfp fluorescence from relevant secretory cells in the periphery and peptidergic neurons in the CNS. We also found that expression of the ANF-gfp products did not have detrimental effects on larval ecdysis or adult circadian rhythmicity, when the transgene was expressed in peptidergic cells that are known to control these behaviors. Finally, we used a broadly expressed GAL4 driver to show that the UAS-ANF-gfp transgene could be used to identify axons that show a reduction in gfp fluorescence following the expression of ecdysis behavior. These findings, coupled with the availability of an increasing number of strains bearing different GAL4 drivers, suggest that this transgene will be a useful tool for identifying peptidergic neurons and secretory cells (and, eventually, their secretory product) that release their peptide content during the occurrence, in the intact animal, of a developmental, physiological or behavioral process of interest.  相似文献   

15.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including stimulation of pheromone biosynthesis in female moths, stimulation of muscle contraction, induction of embryonic diapause in Bombyx mori, and stimulation of melanization in some larval moths. Recently, this family of peptides has been implicated in accelerating the formation of the puparium in a dipteran. Using bioassay and immunocytochemical techniques, we demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Pheromonotropic activity was shown in the moths Helicoverpa zeaand Helicoverpa armigera by using dissected larval nervous systems and adult heads and bodies of D. melanogaster. Polyclonal antisera against the C-terminal ending of PBAN revealed the location of cell bodies and axons in the central nervous systems of larval and adult flies. Immunoreactive material was detected in at least three groups of neurons in the subesophageal ganglion of 3rd instar larvae, pupae, and adults. The ring gland of both larvae and adults contained immunoreactivity. Adult brain-subesophageal ganglion complex possessed additional neurons. The fused ventral ganglia of both larvae and adults contained three pairs of neurons that sent their axons to a neurohemal organ connected to the abdominal nervous system. These results indicate that the D. melanogasternervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph.  相似文献   

16.
17.
Peptidomics of the larval Drosophila melanogaster central nervous system   总被引:10,自引:0,他引:10  
Neuropeptides regulate most, if not all, biological processes in the animal kingdom, but only seven have been isolated and sequenced from Drosophila melanogaster. In analogy with the proteomics technology, where all proteins expressed in a cell or tissue are analyzed, the peptidomics approach aims at the simultaneous identification of the whole peptidome of a cell or tissue, i.e. all expressed peptides with their posttranslational modifications. Using nanoscale liquid chromatography combined with tandem mass spectrometry and data base mining, we analyzed the peptidome of the larval Drosophila central nervous system at the amino acid sequence level. We were able to provide biochemical evidence for the presence of 28 neuropeptides using an extract of only 50 larval Drosophila central nervous systems. Eighteen of these peptides are encoded in previously cloned or annotated precursor genes, although not all of them were predicted correctly. Eleven of these peptides were never purified before. Eight other peptides are entirely novel and are encoded in five different, not yet annotated genes. This neuropeptide expression profiling study also opens perspectives for other eukaryotic model systems, for which genome projects are completed or in progress.  相似文献   

18.
Previous work has shown that a transgene consisting of a fusion between the rat atrial natriuretic peptide and a green fluorescent protein reporter (ANF‐gfp) is processed, localized, and released, as would be an endogenous neuropeptide when it is expressed in the nervous system of Drosophila melanogaster using the GAL4/UAS expression system. Here we have tested the utility of this targetable transgene for detecting neuropeptide release following the execution of a peptide‐controlled behavior. For the behavior we used ecdysis, the behavior expressed by insects to shed their old cuticle at the end of the molt. We found that larval ecdysis was accompanied by a readily detectable reduction in gfp fluorescence from relevant secretory cells in the periphery and peptidergic neurons in the CNS. We also found that expression of the ANF‐gfp products did not have detrimental effects on larval ecdysis or adult circadian rhythmicity, when the transgene was expressed in peptidergic cells that are known to control these behaviors. Finally, we used a broadly expressed GAL4 driver to show that the UAS‐ANF‐gfp transgene could be used to identify axons that show a reduction in gfp fluorescence following the expression of ecdysis behavior. These findings, coupled with the availability of an increasing number of strains bearing different GAL4 drivers, suggest that this transgene will be a useful tool for identifying peptidergic neurons and secretory cells (and, eventually, their secretory product) that release their peptide content during the occurrence, in the intact animal, of a developmental, physiological or behavioral process of interest. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 181–191, 2004  相似文献   

19.
Feeding activities of animals, including insects, are influenced by various signals from the external environment, internal energy status, and physiological conditions. Full understanding of how such signals are integrated to regulate feeding activities has, however, been hampered by a lack of knowledge about the genes involved. Here, we identified an anorexic Drosophila melanogaster mutant (GS1189) in which the expression of a newly identified gene, Anorexia (Anox), is mutated. In Drosophila larvae, Anox encodes an acyl-CoA binding protein with an ankyrin repeat domain that is expressed in the cephalic chemosensory organs and various neurons in the central nervous system (CNS). Loss of its expression or disturbance of neural transmission in Anox-expressing cells decreased feeding activity. Conversely, overexpression of Anox in the CNS increased food intake. We further found that Anox regulates expression of the insulin receptor gene (dInR); overexpression and knockdown of Anox in the CNS, respectively, elevated and repressed dInR expression, which altered larval feeding activity in parallel with Anox expression levels. Anox mutant adults also showed significant repression of sugar-induced nerve responses and feeding potencies. Although Anox expression levels did not depend on the fasting and feeding states cycle, stressors such as high temperature and desiccation significantly repressed its expression levels. These results strongly suggest that Anox is essential for gustatory sensation and food intake of Drosophila through regulation of the insulin signaling activity that is directly regulated by internal nutrition status. Therefore, the mutant strain lacking Anox expression cannot enhance feeding potencies even under starvation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号