首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current evidence suggests that the size of the capillary-to-fiber (C/F) interface is a major determinant of O2 flux into muscle fibers, and methods have been developed for estimating the size of this region via the C/F perimeter ratio in perfusion-fixed material (Mathieu-Costello O, Ellis CG, Potter RF, MacDonald IC, and Groom AC. Am J Physiol Heart Circ Physiol 261: H1617-H1625, 1991) and the quotient of the individual, fiber-based C/F number ratio and fiber perimeter (C/F perimeter exchange index) in muscle biopsies (Hepple RT. Can J Appl Physiol 22: 11-22, 1997). The purpose of this study was to compare the two methods and examine how differences in muscle tissue preparation between perfusion fixation and frozen biopsy can influence the estimate of the size of the C/F interface. The left medial gastrocnemius muscle of nine purpose-bred dogs was perfusion fixed in situ, and a sample from the midportion of the midbelly was processed for microscopy. A corresponding sample from the right gastrocnemius muscle obtained by open biopsy in six of the nine animals was frozen for histochemistry. A significant correlation was found between the two estimates of the size of the C/F interface in the same sections of perfusion-fixed material (r = 0.75, P < 0.05). However, estimates of the size of the C/F interface were smaller in biopsies than perfusion-fixed material, and there was no significant relationship between the estimates in the two preparations. This was due to differences in fiber size (33% larger fiber cross-sectional area in biopsy material after normalization for sarcomere length; P < 0.05) and muscle sampling between the two tissue preparations.  相似文献   

2.
Adaptations of the method of Takahashi et al. (1966. J. Gen. Physiol. 50:317-333) were used to test the validity of the one-dimensional diffusion equation for O2 in the resting excised frog sartorius muscle. This equation is: (formula: see text) where x is the distance perpendicular to the muscle surface. t is time, P(x, t) is the partial pressure of O2,D and alpha are the diffusion coefficient and solubility for O2 in the tissue, and Q is the rate of O2 consumption. P(O, t), the time-course of PO2 at one muscle surface, was measured by a micro-oxygen electrode. Transients in the PO2 profile of the muscle were induced by two methods: (a) after an equilibration period, one surface was sealed off by a disc in which the O2 electrode was embedded; (b) when PO2 at this surface reached a steady state, a step change was made in the PO2 at the other surface. With either method, the agreement between the measured P(O, t) and that predicted by the diffusion equation was excellent, making possible the calculation of D and Q. These two methods yielded statistically indistinguishable results, with the following pooled means (+/- SEM): (formula: see text) At each temperature, D was independent of muscle thickness (range, 0.67-1.34 mm). The activation energy (EA) for diffusion of oxygen in muscle was -3.85 kcal/mol, which closely matches the corresponding value in water. Together with absolute values of D in water taken from the literature, the present data imply that (Dmuscle/DH2O) is in the range 0.59-0.69. This value, and that of EA, are in agreement with the theory of Wang (1954, J. Am. Chem. Soc. 76:4755-4763), suggesting that with respects to the diffusion of O2, to a useful approximation, frog skeletal muscle may be considered simply as a homogeneous protein solution.  相似文献   

3.
4.
A technique has been developed to record 18O2 dilution curves of an organ in vivo by use of 51Cr-labeled erythrocytes as a reference tracer. The technique employs anaerobic sampling of venous outflow following an intraarterial injection of tracer-laden blood and off-line determination of [18O2] and [51Cr] profiles in the venous outflow. O2 and reference indicator-dilution curves of cerebral circulation were recorded in eight experiments with six halothane-anesthetized dogs. Autologous blood labeled with the tracers was injected into a carotid artery, and brain venous outflow was sampled from the sagittal sinus. The total net extraction of O2 tracer was equal to the extraction of elemental O2. Instantaneous extraction of 18O2 along the outflow curve fell linearly with time, from an initial value of 0.6-0.7 to very small or even negative values toward the end of a pulse. This indicates that O2 undergoes a flow-limited distribution. In all experiments, the mean transit time of unmetabolized 18O2 was longer than the mean transit time of the Cr tracer. An index of the tissue O2 dilution space, hence the mean tissue PO2, is calculated from this data with the use of a modified central volume principle. This estimate of mean tissue PO2 increases as a linear function of sagittal sinus PO2 with a slope of 0.97. The method may provide an index of the critical PO2 of venous blood, the PO2 below which O2 diffusion from blood to tissue may limit its rate of metabolic uptake.  相似文献   

5.
A mathematical model has been formulated to analyze the effect of nonequilibrium kinetics on oxygen delivery to tissue. The model takes into account molecular diffusion, facilitated diffusion in the capillary blood, convection, chemical kinetics of O2 with hemoglobin, and the rate of metabolic consumption. A line iterative technique is described to solve numerically the resulting coupled system of nonlinear partial differential equations with physiologically relevant boundary and entrance conditions. With nonequilibrium kinetics the end-capillary PO2 is found to be lower than that in the venous blood. The effect is more pronounced during hypoxia and anemia. It is found that the tissue PO2 at the lethal corner decreases with the decrease in blood velocity, arterial PO2, hemoglobin concentration, P50, and increase in COHb concentration or metabolic rate, while the difference between end-capillary PO2 and venous PO2 increases, which reflects the effect of nonequilibrium kinetics on the delivery of O2 to tissue. Thus, the consideration of venous PO2 as an indicator of tissue PO2 in clinical and experimental studies may be questionable.  相似文献   

6.
The recent experiments in Hu et al. (Am J Physiol Heart Circ Physiol 279: H1724-H1736, 2000) and Adamson et al. (J Physiol 557: 889-907, 2004) in frog and rat mesentery microvessels have provided strong evidence supporting the Michel-Weinbaum hypothesis for a revised asymmetric Starling principle in which the Starling force balance is applied locally across the endothelial glycocalyx layer rather than between lumen and tissue. These experiments were interpreted by a three-dimensional (3-D) mathematical model (Hu et al.; Microvasc Res 58: 281-304, 1999) to describe the coupled water and albumin fluxes in the glycocalyx layer, the cleft with its tight junction strand, and the surrounding tissue. This numerical 3-D model converges if the tissue is at uniform concentration or has significant tissue gradients due to tissue loading. However, for most physiological conditions, tissue gradients are two to three orders of magnitude smaller than the albumin gradients in the cleft, and the numerical model does not converge. A simpler multilayer one-dimensional (1-D) analytical model has been developed to describe these conditions. This model is used to extend Michel and Phillips's original 1-D analysis of the matrix layer (J Physiol 388: 421-435, 1987) to include a cleft with a tight junction strand, to explain the observation of Levick (Exp Physiol 76: 825-857, 1991) that most tissues have an equilibrium tissue concentration that is close to 0.4 lumen concentration, and to explore the role of vesicular transport in achieving this equilibrium. The model predicts the surprising finding that one can have steady-state reabsorption at low pressures, in contrast to the experiments in Michel and Phillips, if a backward-standing gradient is established in the cleft that prevents the concentration from rising behind the glycocalyx.  相似文献   

7.
A compartmental model is developed for oxygen (O(2)) transport in brain microcirculation in the presence of blood substitutes (hemoglobin-based oxygen carriers). The cerebrovascular bed is represented as a series of vascular compartments, on the basis of diameters, surrounded by a tissue compartment. A mixture of red blood cells (RBC) and plasma/extracellular hemoglobin solution flows through the vascular bed from the arterioles through the capillaries to the venules. Oxygen is transported by convection in the vascular compartments and by diffusion in the surrounding tissue where it is utilized. Intravascular resistance and the diffusive loss of oxygen from the arterioles to the tissue are incorporated in the model. The model predicts that most of the O(2) transport occurs at the level of capillaries. Results computed from the present model in the presence of hemoglobin-based oxygen carriers are consistent with those obtained from the earlier validated model (Sharan et al., 1989, 1998a) on oxygen transport in brain circulation in the absence of extracellular hemoglobin. We have found that: (a) precapillary PO(2) gradients increase as PO(2) in the arterial blood increases, P(50 p) (oxygen tension at 50% saturation of hemoglobin with O(2) in plasma) decreases, i.e. O(2) affinity of the extracellular hemoglobin is increased, the flow rate of the mixture decreases, hematocrit decreases at constant flow, metabolic rate increases, and intravascular transport resistance in the arterioles is neglected; (b) precapillary PO(2) gradients are not sensitive to (i) intracapillary transport resistance, (ii) cooperativity (n(p)) of hemoglobin with oxygen in plasma, (iii) hemoglobin concentration in the plasma and (iv) hematocrit when accounting for viscosity variation in the flow; (c) tissue PO(2) is not sensitive to the variation of intravascular transport resistance in the arterioles. We also found that tissue PO(2) is a non-monotonic function of the Hill coefficient n(p) for the extracellular hemoglobin with a maximum occurring when n(p) equals the blood Hill coefficient. The results of the computations give estimates of the magnitudes of the increases in tissue PO(2) as arterial PO(2) increases,P(50 p) increases, flow rate increases, hematocrit increases, hemoglobin concentration in the plasma increases, metabolic rate decreases, the capillary mass transfer coefficient increases or the intracapillary transport resistance decreases.  相似文献   

8.
We investigated the relationships among maximal O2 uptake (VO2max), effluent venous PO2 (PvO2), and calculated mean capillary PO2 (PCO2) in isolated dog gastrocnemius in situ as arterial PO2 (PaO2) was progressively reduced with muscle blood flow held constant. The hypothesis that VO2max is determined in part by peripheral tissue O2 diffusion predicts proportional declines in VO2max and PCO2 if the diffusing capacity of the muscle remains constant. The inspired O2 fraction was altered in each of six dogs to produce four different levels of PaO2 [22 +/- 2, 29 +/- 1, 38 +/- 1, and 79 +/- 4 (SE) Torr]. Muscle blood flow, with the circulation isolated, was held constant at 122 +/- 15 ml.100 g-1.min-1 while the muscle worked maximally (isometric twitches at 5-7 Hz) at each of the four different values of PaO2. Arterial and venous samples were taken to measure lactate, pH, PO2, PCO2, and muscle VO2. PCO2 was calculated using Fick's law of diffusion and a Bohr integration procedure. VO2max fell progressively (P less than 0.01) with decreasing PaO2. The decline in VO2max was proportional (R = 0.99) to the fall in both muscle PvO2 and calculated PCO2 while the calculated muscle diffusing capacity was not different among the four conditions. Fatigue developed more rapidly with lower PaO2, although lactate output from the muscle was not different among conditions. These results are consistent with the hypothesis that resistance to O2 diffusion in the peripheral tissue may be a principal determinant of VO2max.  相似文献   

9.
Direct measurements from many laboratories indicate that the oxygen tension in skeletal muscle is significantly less than in the large veins draining these tissues. Harris (1986) has proposed that because of the parallel anatomic arrangement of large arterioles and venules in skeletal muscle, a counter-current exchange between these vessels can occur. He theorized that diffusion of O2 between arteriole and venule would lower the PO2 in the blood as it enters capillaries and result in a decreased tissue PO2 and an increase in large vein PO2. Calculations (Appendix) show that the amount of O2 transferred between arteriole and venule is inadequate to account for this difference in PO2 between tissue and veins due to the small surface area that is involved. It is well documented that the microcirculatory hematocrit ranges between 20 and 50% of that in the supply vessels. The reduced hematocrit lowers the oxygen content in these vessels and results in a low oxygen tension in the surrounding tissue. True arteriovenous shunts are not present in most skeletal muscles, but 15-20% of the microvessels represent thoroughfare or preferential flow channels. It is suggested that these vessels contain a greater than normal hematocrit to account for a conservation of red cell mass across the microcirculation. Furthermore, it is shown that the hematocrit in the preferential flow channels is an inverse function of the flow rate for any level of the microcirculatory hematocrit. The increased hematocrit raises the flow resistance in these vessels which reduces flow further and represents a positive feedback condition which may contribute to the intermittent and uneven flow patterns which are present within the microcirculation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Maximal O2 delivery and O2 uptake (VO2) per 100 g of active muscle mass are far greater during knee extensor (KE) than during cycle exercise: 73 and 60 ml. min-1. 100 g-1 (2.4 kg of muscle) (R. S. Richardson, D. R. Knight, D. C. Poole, S. S. Kurdak, M. C. Hogan, B. Grassi, and P. D. Wagner. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H1453-H1461, 1995) and 28 and 25 ml. min-1. 100 g-1 (7.5 kg of muscle) (D. R. Knight, W. Schaffartzik, H. J. Guy, R. Predilleto, M. C. Hogan, and P. D. Wagner. J. Appl. Physiol. 75: 2586-2593, 1993), respectively. Although this is evidence of muscle O2 supply dependence in itself, it raises the following question: With such high O2 delivery in KE, are the quadriceps still O2 supply dependent at maximal exercise? To answer this question, seven trained subjects performed maximum KE exercise in hypoxia [0.12 inspired O2 fraction (FIO2)], normoxia (0.21 FIO2), and hyperoxia (1.0 FIO2) in a balanced order. The protocol (after warm-up) was a square wave to a previously determined maximum work rate followed by incremental stages to ensure that a true maximum was achieved under each condition. Direct measures of arterial and venous blood O2 concentration in combination with a thermodilution blood flow technique allowed the determination of O2 delivery and muscle VO2. Maximal O2 delivery increased with inspired O2: 1.3 +/- 0.1, 1.6 +/- 0.2, and 1.9 +/- 0.2 l/min at 0.12, 0.21, and 1.0 FIO2, respectively (P < 0.05). Maximal work rate was affected by variations in inspired O2 (-25 and +14% at 0.12 and 1.0 FIO2, respectively, compared with normoxia, P < 0.05) as was maximal VO2 (VO2 max): 1.04 +/- 0.13, 1. 24 +/- 0.16, and 1.45 +/- 0.19 l/min at 0.12, 0.21, and 1.0 FIO2, respectively (P < 0.05). Calculated mean capillary PO2 also varied with FIO2 (28.3 +/- 1.0, 34.8 +/- 2.0, and 40.7 +/- 1.9 Torr at 0.12, 0.21, and 1.0 FIO2, respectively, P < 0.05) and was proportionally related to changes in VO2 max, supporting our previous finding that a decrease in O2 supply will proportionately decrease muscle VO2 max. As even in the isolated quadriceps (where normoxic O2 delivery is the highest recorded in humans) an increase in O2 supply by hyperoxia allows the achievement of a greater VO2 max, we conclude that, in normoxic conditions of isolated KE exercise, KE VO2 max in trained subjects is not limited by mitochondrial metabolic rate but, rather, by O2 supply.  相似文献   

11.
Tissue oxygen extraction during hypovolemia: role of hemoglobin P50   总被引:2,自引:0,他引:2  
When the delivery of O2 to tissues (QO2 = blood flow X O2 content) falls below a critical threshold, tissue O2 uptake (VO2) becomes limited by QO2. The mechanism responsible for this extraction limitation is not understood but may involve molecular diffusion limitation as mean capillary PO2 drops below a critical minimum level in some capillaries. We tested this hypothesis by measuring the critical QO2 necessary to maintain VO2 independent of QO2 in anesthetized, paralyzed normal dogs (n = 7) and in a second group in which PO2 at 50% saturation of hemoglobin (P50) was reduced by exchange transfusion with low-P50 erythrocytes (n = 7). QO2 was reduced in stages by removing blood volume to reduce blood flow while VO2 was measured by spirometry at each step. To the extent that O2 extraction was limited by a critical capillary PO2, we reasoned that the onset of diffusion limitation should occur at a higher QO2 with low P50, since a lower end-capillary PO2 is required to achieve the same O2 extraction. The critical QO2 (7.8 +/- 1.2 ml X min-1 X kg-1) and extraction ratio (0.63 +/- 0.06) in dogs with reduced P50 were not different from controls. At the critical delivery, mixed venous PO2 was lower in low P50 (16.1 +/- 2.9 Torr) than controls (29.9 +/- 2.3 Torr). We concluded that diffusion limitation does not initiate the early fall in VO2 below the critical QO2 and offer an alternative model to explain the onset of supply dependency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
1. O2 consumption, glucose metabolism and the energy status of skeletal muscle were compared in isolated rat hindquarters perfused with aged (21--35 days), fresh and aged-rejuvenated human erythrocytes. 2. The age of the erythrocytes did not affect O2 consumption, glucose utilization or lactate release either at rest or during exercise. The concentrations of ATP, phosphocreatine and lactate within the muscle were also unaffected by the use of aged erythrocytes. 3. Perfusion with acetoacetate did not inhibit glucose utilization; but, it caused a marked increase in the tissue concentration of citrate in the soleus, a slow-twitch red muscle, and a smaller increase in the gastrocnemius, which contains fast-twitch red and white fibres. Results were similar in hindquarters perfused with aged and aged-rejuvenated erythrocytes. 4. These findings suggest that perfusion with aged human erythrocytes does not cause major alterations in the metabolic performance of the isolated rat hindquarter.  相似文献   

13.
Vanadium pentoxide (V(2)O(5)) is a cause of occupational asthma and bronchitis. We previously reported that intratracheal instillation of rats with V(2)O(5) causes fibrosis of the lung parenchyma (J. C. Bonner, P. M. Lindroos, A. B. Rice, C. R. Moomaw, and D. L. Morgan. Am. J. Physiol. Lung Cell. Mol. Physiol. 274: L72-L80, 1998). In this report, we show that intratracheal instillation of V(2)O(5) induces airway remodeling similar to that observed in individuals with asthma. These changes include airway smooth muscle cell thickening, mucous cell metaplasia, and airway fibrosis. The transient appearance of peribronchiolar myofibroblasts, which were desmin and vimentin positive, coincided with a twofold increase in the thickness of the airway smooth muscle layer at day 6 after instillation and preceded the development of airway fibrosis by day 15. The number of nuclear profiles within the smooth muscle layer also increased twofold after V(2)O(5) instillation, suggesting that hyperplasia accounted for thickening of the smooth muscle layer. The majority of cells incorporating bromodeoxyuridine at day 3 were located in the connective tissue surrounding the airway smooth muscle wall that was positive for vimentin and desmin. These data suggest that myofibroblasts are the principal proliferating cell type that contributes to the progression of airway fibrosis after V(2)O(5) injury.  相似文献   

14.
Blood flow, lactate extraction, and tissue lactate concentration were measured in an autoperfused pure red muscle (dog gracilis). Muscles were frozen in situ during steady-twitch contraction at frequencies of 1-8 Hz [10-100% of maximum O2 consumption (VO2max)]. Myoglobin saturation was determined spectrophotometrically with subcellular spatial resolution. Intracellular PO2 (Pto2) was calculated from the oxymyoglobin-dissociation curve. Tissue lactate was well correlated with VO2 but not with Pto2. Lactate efflux increased markedly above a threshold work rate near 50% VO2max. Efflux was neither linearly correlated with tissue lactate nor related to Pto2. Pto2 exceeded the minimum PO2 for maximal VO2 in each of 2,000 cells examined in muscles frozen at 1-6 Hz. A small population of anoxic cells was found in three muscles at 8 Hz, but lactate efflux from these muscles was not greater than from six other muscles at 8 Hz. Our conclusions are that 1) the concept of an anaerobic threshold does not apply to red muscle and 2) in absence of anoxia neither tissue lactate nor blood lactate can be used to impute muscle O2 availability or glycolytic rate. A mechanism by which the blood-tissue lactate gradient could support aerobic metabolism is discussed.  相似文献   

15.
The oxygen transport capacity of nonhypertensive polyethylene glycol (PEG)-conjugated hemoglobin solutions were investigated in the hamster chamber window model. Microvascular measurements were made to determine oxygen delivery in conditions of extreme hemodilution [hematocrit (Hct) 11%]. Two isovolemic hemodilution steps were performed with a 6% Dextran 70 (70-kDa molecular mass) plasma expander until Hct was 35% of control. Isovolemic blood volume exchange was continued using two surface-modified PEGylated hemoglobins (P5K2, P(50) = 8.6, and P10K2, P(50) = 8.3; P(50) is the hemoglobin Po(2) corresponding to its 50% oxygen saturation) until Hct was 11%. P5K2 and P10K2 are PEG-conjugated hemoglobins that maintain most of the hemoglobin allosteric properties and have a cooperativity index of n = 2.2. The effects of these molecular solutions were compared with those obtained in a previous study using MP4, a PEG-modified hemoglobin whose P(50) was 5.4 and cooperativity was 1.2 (Tsai et al., Am J Physiol Heart Circ Physiol 285: H1411-H1419, 2003). Tissue oxygen levels were higher after P5K2 (7.0 +/- 2.5 mmHg) and P10K2 (6.3 +/- 2.3 mmHg) versus MP4 (1.7 +/- 0.5 mmHg) or the nonoxygen carrier Dextran 70 (1.3 +/- 1.2 mmHg). Microvascular oxygen delivery was higher after P5K2 and P10K2 (2.22 and 2.34 ml O(2)/dl blood) compared with MP4 (1.41 ml O(2)/dl blood) or Dextran 70 (0.90 ml O(2)/dl blood); however, all these values were lower than control (7.42 ml O(2)/dl blood). The total hemoglobin in blood was similar in all cases; therefore, the improvement in tissue Po(2) and oxygen delivery appears to be due to the increased cooperativity of the new molecules.  相似文献   

16.
Metabolic models of microcirculatory regulation.   总被引:2,自引:0,他引:2  
The functions and integrity of body tissues are critically dependent on an adequate oxygen supply. Because the transport of oxygen to the cells is intimately linked to the microcirculation, the concept of microcirculation-metabolism coupling has received much attention. In essence, the metabolic theory of intrinsic control of the microcirculation states that microvascular tone is locally modulated to maintain adequate oxygen levels in the parenchymal cells. We propose a two-component control system for the regulation of tissue O2 delivery in accordance with metabolic needs. A precapillary sphincter control mechanism maintains tissue PO2 by governing the number of perfused capillaries. Functional capillary density in turn determines surface area available for diffusion and capillary-to-cell diffusion distance. On the other hand, the arteriolar control system modulates local blood flow in accordance with parenchymal O2 utilization and thereby minimizes changes in capillary PO2 when the O2 availability/demand ratio is decreased. We propose that the precapillary sphincters are more sensitive to changes in tissue PO2 than are the flow-regulating arterioles. Consequently, for mild stresses, adequate tissue oxygenation is maintained mainly by precapillary sphincter control of diffusion parameters without the need for changes in blood flow. However, as metabolic stresses become greater, blood flow regulation becomes the dominant factor in the control of tissue O2 delivery. Thus, by working in concert, the local mechanisms regulating microvascular resistance and effective capillary density provide a wide margin of safety against the development of cellular hypoxia.  相似文献   

17.
The solvent drag reflection coefficient (sigma) for total proteins can be estimated by comparing the relative degrees of concentration of erythrocytes and plasma proteins that occur during fluid filtration in an isolated perfused organ. In this analysis, we evaluated the accuracy of equations proposed by Pilati and Maron [Am. J. Physiol. 247 (Heart Circ. Physiol. 16): H1-H7, 1984] and Wolf et al. [Am. J. Physiol. 253 (Heart Circ. Physiol. 22): H194-H204, 1987] to calculate sigma from these concentration changes. We calculated sigma with each equation using data generated from a mathematical model of fluid and solute flux in membranes with known sigma's. We found that the equation of Wolf et al. provided the closest approximation to the true sigma over the entire range of filtration fractions tested (0.1-0.6), with the differences between the two equations increasing with filtration fraction. At low filtration fractions, the difference in sigma obtained using either approach was found to be inconsequential. At larger filtration fractions, a closer approximation of the true sigma can be obtained using the equation of Wolf et al.  相似文献   

18.
A theoretical two-dimensional model is used to investigate oxygen gradients in a red skeletal muscle fiber. The model describes the steady state, free and myoglobin-facilitated diffusion of oxygen into a respiring cylindrical muscle fiber cross section. The oxygen tension at the sarcolemma is assumed to vary along the sarcolemma as an approximation to the discrete capillary oxygen supply around the fiber. Maximal oxygen gradients are studied by considering parameters relevant to a maximally-respiring red muscle fiber. The model predicts that angular variations in the oxygen tension imposed at the sarcolemma due to the discrete capillary sources do not penetrate deeply into the fiber over a range of physiological values for myoglobin concentration, diffusion coefficients, number of surrounding capillaries, and oxygen tension level at the sarcolemma. Also, the oxygen tension in the core of the fiber is determined by the average oxygen tension at the sarcolemma. The drop in oxygen tension from fiber periphery to core, however, does depend significantly on the myoglobin concentration, the oxygen tension level at the sarcolemma, and the oxygen and myoglobin diffusivities. This dependence is summarized by calculating the minimum average sarcolemmal oxygen tension for maximal respiration without the development of an intracellular anoxic region. For a myoglobin-rich muscle fiber (0.5 mM myoglobin), the model predicts that maximal oxygen consumption can proceed with a relatively flat (less than 5 mm Hg) oxygen tension drop from fiber periphery to core over a large range for diffusion coefficients.  相似文献   

19.
M T Pérez  M Pinilla  P Sancho 《Life sciences》1999,64(24):2273-2283
In order to explore possibilities of using erythrocytes as carrier systems for delivery of pharmacological agents, we have studied the in vivo survival of murine carrier red blood cell populations enriched in young or old cells. Hypotonic-isotonic dialysis has been used to modify the cells as carrier systems and Percoll/albumin density gradients or counter-current distribution in aqueous polymer two-phase systems to separate them according to age. Hypotonic-isotonic dialysis produces a decrease in the red blood cell populations in vivo survival rate (from 9.5 to 7.8 days). Among the cells modified as carriers, the enriched young red blood cell populations show a higher in vivo survival (half-life 6.5-7.4 days) than populations made up of predominantly old red blood cells (half-life 4.7-6.2 days). Half-life of young or old circulating red blood cells was approximately one day longer when these cells were separated by counter-current distribution rather than by Percoll density gradients. Based on these results, hypotonic-isotonic dialysis of whole and enriched young or old red blood cell populations, with higher or lower survival rates, can be considered as a useful tool for modification of these cells as carriers. The final outcome of such changes can be translated into better control of plasma drug delivery during therapy.  相似文献   

20.
In a previous study [G. C. M. Beaufort-Krol, J. Takens, M. C. Molenkamp, G. B. Smid, J. J. Meuzelaar, W. G. Zijlstra, and J. R. G. Kuipers. Am. J. Physiol. 275 (Heart Circ. Physiol. 44): H1503-H1512, 1998], a lower systemic O2 supply was found in lambs with aortopulmonary left-to-right shunts. To determine whether the lower systemic O2 supply results in increased anaerobic metabolism, we used [1-13C]lactate to investigate lactate kinetics in eight 7-wk-old lambs with shunts and eight control lambs, at rest and during moderate exercise [treadmill; 50% of peak O2 consumption (VO2)]. The mean left-to-right shunt fraction in the shunt lambs was 55 +/- 3% of pulmonary blood flow. Arterial lactate concentrations and the rate of appearance (Ra) and disappearance (Rd) of lactate were similar in shunt and control lambs, both at rest (lactate: 1, 201 +/- 76 vs. 1,214 +/- 151 micromol/l; Ra = Rd: 12.97 +/- 1.71 vs. 12.55 +/- 1.25 micromol. min-1. kg-1) and during a similar relative workload. We found a positive correlation between Ra and systemic blood flow, O2 supply, and VO2 in both groups of lambs. In conclusion, shunt lambs have similar lactate kinetics as do control lambs, both at rest and during moderate exercise at a similar fraction of their peak VO2, despite a lower systemic O2 supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号