首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aims: For this study, we performed a genetic screen of S. cerevisiae’s deletion library for mutants sensitive to dehydration stress, with which we aimed to discover cell dehydration–tolerant genes. Methods and Results: We used a yeast gene deletion set (YGDS) of 4850 viable mutant haploid strains to perform a genome‐wide screen for the identification of desiccation stress modifiers. SIP18 is among the genes identified as essential for cells surviving to drying/rehydration process. Deletion of SIP18 promotes the accumulation of reactive oxygen species and enhances apoptotic and necrotic cell death in response to dehydration/rehydration process. Conclusions: SIP18p acts as an inhibitor of apoptosis in yeast under dehydration stress, as suggested by its antioxidative capacity through the ROS accumulation reduction after an H2O2 attack. Significance and Impact of the Study: To our knowledge, this is the first systematic screen for the identification of putative genes essential to overcoming cell dehydration process. A broad range of identified genes could help to understand why some strains of high biotechnological interest cannot cope with the drying and rehydration treatments. Dehydration sensitivity makes these strains not suitable to be commercialized by yeast manufactures.  相似文献   

3.
4.
5.
Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm2 relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses.  相似文献   

6.
7.
Hypoxia activates all components of the unfolded protein response (UPR), a stress response initiated by the accumulation of unfolded proteins within the endoplasmic reticulum (ER). Our group and others have shown previously that the UPR, a hypoxia-inducible factor-independent signaling pathway, mediates cell survival during hypoxia and is required for tumor growth. Identifying new genes and pathways that are important for survival during ER stress may lead to the discovery of new targets in cancer therapy. Using the set of 4,728 homozygous diploid deletion mutants in budding yeast, Saccharomyces cerevisiae, we did a functional screen for genes that conferred resistance to ER stress-inducing agents. Deletion mutants in 56 genes showed increased sensitivity under ER stress conditions. Besides the classic UPR pathway and genes related to calcium homeostasis, we report that two additional pathways, including the SLT2 mitogen-activated protein kinase (MAPK) pathway and the osmosensing MAPK pathway, were also required for survival during ER stress. We further show that the SLT2 MAPK pathway was activated during ER stress, was responsible for increased resistance to ER stress, and functioned independently of the classic IRE1/HAC1 pathway. We propose that the SLT2 MAPK pathway is an important cell survival signaling pathway during ER stress. This study shows the feasibility of using the yeast deletion pool to identify relevant mammalian orthologues of the UPR.  相似文献   

8.
9.

Main conclusion

Expression of eight LEA genes enhanced desiccation tolerance in yeast, including two LEA_2 genes encoding atypical, stably folded proteins. The recombinant proteins showed enzyme, but not membrane protection during drying. To screen for possible functions of late embryogenesis abundant (LEA) proteins in cellular stress tolerance, 15 candidate genes from six Arabidopsis thaliana LEA protein families were expressed in Saccharomyces cerevisiae as a genetically amenable eukaryotic model organism. Desiccation stress experiments showed that eight of the 15 LEA proteins significantly enhanced yeast survival. While none of the proteins belonging to the LEA_1, LEA_5 or AtM families provided protection to yeast cells, two of three LEA_2 proteins, all three LEA_4 proteins and three of four dehydrins were effective. However, no significantly enhanced tolerance toward freezing, salt, osmotic or oxidative stress was observed. While most LEA proteins are highly hydrophilic and intrinsically disordered, LEA_2 proteins are “atypical”, since they are more hydrophobic and possess a stable folded structure in solution. Because nothing was known about the functional properties of LEA_2 proteins, we expressed the three Arabidopsis proteins LEA1, LEA26 and LEA27 in Escherichia coli. The bacteria expressed all three proteins in inclusion bodies from which they could be purified and refolded. Correct folding was ascertained by Fourier transform Infrared (FTIR) spectroscopy. None of the proteins was able to stabilize liposomes during freezing or drying, but they were all able to protect the enzyme lactate dehydrogenase (LDH) from inactivation during freezing. Significantly, only LEA1 and LEA27, which also protected yeast cells during drying, were able to stabilize LDH during desiccation and subsequent rehydration.  相似文献   

10.
An important prelude to bacterial infection is the ability of a pathogen to survive independently of the host and to withstand environmental stress. The compatible solute trehalose has previously been connected with diverse abiotic stress tolerances, particularly osmotic shock. In this study, we combine molecular biology and biochemistry to dissect the trehalose metabolic network in the opportunistic human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is integrated with the biosynthesis of branched α-glucan (glycogen), with mutants in either biosynthetic pathway significantly compromised for survival on abiotic surfaces. While both trehalose and α-glucan are important for abiotic stress tolerance, we show they counter distinct stresses. Trehalose is important for the PAO1 osmotic stress response, with trehalose synthesis mutants displaying severely compromised growth in elevated salt conditions. However, trehalose does not contribute directly to the PAO1 desiccation response. Rather, desiccation tolerance is mediated directly by GlgE-derived α-glucan, with deletion of the glgE synthase gene compromising PAO1 survival in low humidity but having little effect on osmotic sensitivity. Desiccation tolerance is independent of trehalose concentration, marking a clear distinction between the roles of these two molecules in mediating responses to abiotic stress.  相似文献   

11.
This work deals with the survival analyses of the symbionts isolated from the lichen E. pusillum under desiccation and starvation stress. The mycobiont of the symbionts was under the desiccation in combination with starvation stress, and under starvation stress alone as well. The phycobiont of the symbionts was under desiccation stress alone. The experiments were detected by means of the biomass size, weight and cell density, deformity of the hyphae and cells, and metabolic activity through SEM (scanning electron microscopy), TEM (transmission electron microscopy), FM (fluorescence microscopy), spectrophotometry, and FCM (flow cytometry). The results show that the mycobiont can survive for seven months under desiccation stress in combination with starvation stress, and for eight months under starvation stress alone. The phycobiont can survive for two months under desiccation stress. It can provide a scientific basis for further research of the reproduction biology of lichens and arid desert biocarpet engineering to fix sand and carbon.  相似文献   

12.
In the budding yeast Saccharomyces cerevisiae, the Hsp104-mediated disaggregation of protein aggregates is essential for thermotolerance and to facilitate the maintenance of prions. In humans, protein aggregation is associated with neuronal death and dysfunction in many neurodegenerative diseases. Mechanisms of aggregation surveillance that regulate protein disaggregation are likely to play a major role in cell survival after acute stress. However, such mechanisms have not been studied. In a screen using the yeast gene deletion library for mutants unable to survive an aggregation-inducing heat stress, we find that SSD1 is required for Hsp104-mediated protein disaggregation. SSD1 is a polymorphic gene that plays a role in cellular integrity, longevity, and pathogenicity in yeast. Allelic variants of SSD1 regulate the level of thermotolerance and cell wall remodeling. We have shown that Ssd1 influences the ability of Hsp104 to hexamerize, to interact with the cochaperone Sti1, and to bind protein aggregates. These results provide a paradigm for linking Ssd1-mediated cellular integrity and Hsp104-mediated disaggregation to ensure the survival of cells with fewer aggregates.  相似文献   

13.
Staphylococcus aureus is a multidrug-resistant pathogen that not only causes a diverse array of human diseases, but also is able to survive in potentially dry and stressful environments, such as the human nose, on skin and on inanimate surfaces such as clothing and surfaces. This study investigated parameters governing desiccation tolerance of S. aureus and identified several components involved in the process. Initially, the role of environmental parameters such as temperature, growth phase, cell density, desiccation time and protectants in desiccation tolerance were determined. This established a robust model of desiccation tolerance in which S. aureus has the ability to survive on dry plastic surfaces for more than 1,097 days. Using a combination of a random screen and defined mutants, clpX, sigB and yjbH were identified as being required for desiccation tolerance. ClpX is a part of the ATP-dependent ClpXP protease, important for protein turnover, and YjbH has a proposed linked function. SigB is an accessory sigma factor with a role in generalized stress resistance. Understanding the molecular mechanisms that govern desiccation tolerance may determine the break points to be exploited to prevent the spread of this dangerous pathogen in hospitals and communities.  相似文献   

14.
15.
Örstan  Aydin 《Hydrobiologia》1995,313(1):373-375
Age at the time of drying affects the desiccation survival of the embryos of the bdelloid rotifer Adineta vaga. Although the embryos younger than 24 hours do not survive desiccation, up to 71% and 6% of the embryos at least 45 hours old survive desiccation for 2 and 10 days, respectively.  相似文献   

16.

Background

Filamentous Zygnematophyceae are typical components of algal mats in the polar hydro-terrestrial environment. Under field conditions, they form senescent vegetative cells, designated as pre-akinetes, which are tolerant to desiccation and osmotic stress.

Key Findings

Pre-akinete formation and desiccation tolerance was investigated experimentally under monitored laboratory conditions in four strains of Arctic and Antarctic isolates with vegetative Zygnema sp. morphology. Phylogenetic analyses of rbcL sequences revealed one Arctic strain as genus Zygnemopsis, phylogenetically distant from the closely related Zygnema strains. Algae were cultivated in liquid or on solidified medium (9 weeks), supplemented with or lacking nitrogen. Nitrogen-free cultures (liquid as well as solidified) consisted of well-developed pre-akinetes after this period. Desiccation experiments were performed at three different drying rates (rapid: 10% relative humidity, slow: 86% rh and very slow); viability, effective quantum yield of PS II, visual and ultrastructural changes were monitored. Recovery and viability of pre-akinetes were clearly dependent on the drying rate: slower desiccation led to higher levels of survival. Pre-akinetes survived rapid drying after acclimation by very slow desiccation.

Conclusions

The formation of pre-akinetes in polar Zygnema spp. and Zygnemopsis sp. is induced by nitrogen limitation. Pre-akinetes, modified vegetative cells, rather than specialized stages of the life cycle, can be hardened by mild desiccation stress to survive rapid drying. Naturally hardened pre-akinetes play a key role in stress tolerance and dispersal under the extreme conditions of polar regions, where sexual reproduction and production of dormant stages is largely suppressed.  相似文献   

17.
Budding yeast shows a progressive decline in viability after entering stationary phase, a phenomenon known as chronological aging. We show here that the fission yeast Schizosaccharomyces pombe also undergoes chronological aging and that the process is regulated by genes controlling two related nutrient signalling pathways. The first pathway includes the serine/threonine cAMP-activated protein kinase Pka1 and the second pathway comprises the serine/threonine kinase Sck2, a homologue of Saccharomyces cerevisiae SCH9. A double mutant for pka1 and sck2 displayed an additive effect on prolonging the fission yeast lifespan, suggesting that these genes regulate related but independent pathways. These long-lived mutants also accumulated less reactive oxygen species and had a delayed initiation of apoptosis compared with wild-type cells. We also found that strains carrying pka1 deletion but not those with sck2 deletion gained resistance to oxidative stress due to exposure to H(2)O(2) or menadione. On the other hand, the additional increase in lifespan shown by the Deltapka1Deltasck2 double-mutant strain correlated with an increased resistance to both oxidative stress and heat shock. These results underscore the importance of nutrient signalling pathways and reactive oxygen species on organismal lifespan and establish S. pombe as a new model organism to study the molecular mechanisms underlying aging.  相似文献   

18.
19.
20.
Developing seeds accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered and hydrophilic proteins that confer cellular protection upon stress. Many different LEA proteins exist in seeds, but their relative contribution to seed desiccation tolerance or longevity (duration of survival) is not yet investigated. To address this, a reference map of LEA proteins was established by proteomics on a hydrophilic protein fraction from mature Medicago truncatula seeds and identified 35 polypeptides encoded by 16 LEA genes. Spatial and temporal expression profiles of the LEA polypeptides were obtained during the long maturation phase during which desiccation tolerance and longevity are sequentially acquired until pod abscission and final maturation drying occurs. Five LEA polypeptides, representing 6% of the total LEA intensity, accumulated upon acquisition of desiccation tolerance. The gradual 30-fold increase in longevity correlated with the accumulation of four LEA polypeptides, representing 35% of LEA in mature seeds, and with two chaperone-related polypeptides. The majority of LEA polypeptides increased around pod abscission during final maturation drying. The differential accumulation profiles of the LEA polypeptides suggest different roles in seed physiology, with a small subset of LEA and other proteins with chaperone-like functions correlating with desiccation tolerance and longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号