首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The signal recognition particle (SRP) plays an important role in the delivery of secretory proteins to cellular membranes. Mammalian SRP is composed of six polypeptides among which SRP68 and SRP72 form a heterodimer that has been notoriously difficult to investigate. Human SRP68 was purified from overexpressing Escherichia coli cells and was found to bind to recombinant SRP72 as well as in vitro-transcribed human SRP RNA. Polypeptide fragments covering essentially the entire SRP68 molecule were generated recombinantly or by proteolytic digestion. The RNA binding domain of SRP68 included residues from positions 52 to 252. Ninety-four amino acids near the C terminus of SRP68 mediated the binding to SRP72. The SRP68-SRP72 interaction remained stable at elevated salt concentrations and engaged approximately 150 amino acids from the N-terminal region of SRP72. This portion of SRP72 was located within a predicted tandem array of four tetratricopeptide (TPR)-like motifs suggested to form a superhelical structure with a groove to accommodate the C-terminal region of SRP68.  相似文献   

2.
3.
The mammalian SRP (signal recognition particle) represents an important model for the assembly and role of inter-domain interactions in complex RNPs (ribonucleoproteins). In the present study we analysed the interdependent interactions between the SRP19, SRP68 and SRP72 proteins and the SRP RNA. SRP72 binds the SRP RNA largely via non-specific electrostatic interactions and enhances the affinity of SRP68 for the RNA. SRP19 and SRP68 both bind directly and specifically to the same two RNA helices, but on opposite faces and at opposite ends. SRP19 binds at the apices of helices 6 and 8, whereas the SRP68/72 heterodimer binds at the three-way junction involving RNA helices 5, 6 and 8. Even though both SRP19 and SRP68/72 stabilize a similar parallel orientation for RNA helices 6 and 8, these two proteins bind to the RNA with moderate anti-cooperativity. Long-range anti-cooperative binding by SRP19 and SRP68/72 appears to arise from stabilization of distinct conformations in the stiff intervening RNA scaffold. Assembly of large RNPs is generally thought to involve either co-operative or energetically neutral interactions among components. By contrast, our findings emphasize that antagonistic interactions can play significant roles in assembly of multi-subunit RNPs.  相似文献   

4.
Small cytoplasmic RNA (scRNA; 271 nucleotides) is an abundant and stable RNA of the gram-positive bacterium Bacillus subtilis. To investigate the function of scRNA in B. subtilis cells, we developed a strain that is dependent on isopropyl-beta-D-thiogalactopyranoside for scRNA synthesis by fusing the chromosomal scr locus with the spac-1 promoter by homologous recombination. Depletion of the inducer leads to a loss of scRNA synthesis, defects in protein synthesis and production of alpha-amylase and beta-lactamase, and eventual cell death. The loss of the scRNA gene in B. subtilis can be complemented by the introduction of human signal recognition particle 7S RNA, which is considered to be involved in protein transport, or Escherichia coli 4.5S RNA. These results provide further evidence for a functional relationship between B. subtilis scRNA, human signal recognition particle 7S RNA, and E. coli 4.5S RNA.  相似文献   

5.
《The Journal of cell biology》1990,111(5):1793-1802
Signal recognition particle (SRP) plays the key role in targeting secretory proteins to the membrane of the endoplasmic reticulum (Walter, P., and V. R. Lingappa. 1986. Annu. Rev. Cell Biol. 2:499- 516). It consists of SRP7S RNA and six proteins. The 54-kD protein of SRP (SRP54) recognizes the signal sequence of nascent polypeptides. The 19-kD protein of SRP (SRP19) binds to SRP7S RNA directly and is required for the binding of SRP54 to the particle. We used deletion mutants of SRP19 and SRP54 and an in vitro assembly assay in the presence of SRP7S RNA to define the regions in both proteins which are required to form a ribonucleoprotein particle. Deletion of the 21 COOH- terminal amino acids of SRP19 does not interfere with its binding to SRP7S RNA. Further deletions abolish SRP19 binding to SRP7S RNA. The COOH-terminal 207 amino acids of SRP54 (M domain) were found to be necessary and sufficient for binding to the SRP19/7S RNA complex in vitro. Limited protease digestion of purified SRP confirmed our results for SRP54 from the in vitro binding assay. The SRP54M domain could also bind to Escherichia coli 4.5S RNA that is homologous to part of SRP7S RNA. We suggest that the methionine-rich COOH terminus of SRP54 is a RNA binding domain and that SRP19 serves to establish a binding site for SRP54 on the SRP7S RNA.  相似文献   

6.
7.
We have cloned and characterized cDNA copies of larval and adult Drosophila 7SL RNA. The Drosophila 7SL sequence shares 66.3% homology with that of human 7SL RNA. The homology is not evenly distributed along the sequence, but is concentrated in blocks in the central part of the molecule. We have analysed the secondary structure of Drosophila and human 7SL RNA free in solution by digestion with single and double strand specific nucleases. Similar experiments with the 7SL RNA bound to proteins within the signal recognition particle show essentially the same digestion pattern. A model of the secondary structure common to Drosophila and human 7SL RNA is presented.  相似文献   

8.
The organization of the 7SL RNA in the signal recognition particle.   总被引:34,自引:11,他引:23       下载免费PDF全文
Digestion of the signal recognition particle (SRP) of dog pancreas with micrococcal nuclease results in the stepwise cleavage of the 300 nucleotide 7SL RNA moiety producing five major fragments approximately 220 (1), 150 (2), 72 (3), 62 (4) and 45 (5) nucleotides long. The RNA molecule is initially cut once yielding fragments 1 and 3. Further degradation releases fragments 2, 4 and 5. The introduction of the first nick into the 7SL RNA does not alter the structure nor the function of the SRP. Further degradation of the RNA results in disruption and loss of activity of the particle. The sequence of the RNA fragments shows that the nuclease causes discrete cuts in the RNA with minimal nibbling indicating that only few sites are accessible to the action of the enzyme. The five major products of nuclease digestion together span almost the entire length of the 7SL RNA. Nicking occurs mainly around the boundary region between the central S sequence and the flanking Alu sequences constituting the 7SL RNA (1). The S fragment is bound to the four largest polypeptides while the 5' and 3' Alu fragments are associated with the two smallest protein constituents of the SRP.  相似文献   

9.
Prediction of signal recognition particle RNA genes   总被引:3,自引:1,他引:3  
We describe a method for prediction of genes that encode the RNA component of the signal recognition particle (SRP). A heuristic search for the strongly conserved helix 8 motif of SRP RNA is combined with covariance models that are based on previously known SRP RNA sequences. By screening available genomic sequences we have identified a large number of novel SRP RNA genes and we can account for at least one gene in every genome that has been completely sequenced. Novel bacterial RNAs include that of Thermotoga maritima, which, unlike all other non-gram-positive eubacteria, is predicted to have an Alu domain. We have also found the RNAs of Lactococcus lactis and Staphylococcus to have an unusual UGAC tetraloop in helix 8 instead of the normal GNRA sequence. An investigation of yeast RNAs reveals conserved sequence elements of the Alu domain that aid in the analysis of these RNAs. Analysis of the human genome reveals only two likely genes, both on chromosome 14. Our method for SRP RNA gene prediction is the first convenient tool for this task and should be useful in genome annotation.  相似文献   

10.
The structure of 7SL RNA has been probed by chemical modification followed by primer extension, using four substrates: (i) naked 7SL RNA; (ii) free signal recognition particle (SRP); (iii) polysome bound SRP; and (iv) membrane bound SRP. Decreasing sensitivity to chemical modification between these different substrates suggests regions on 7SL RNA that: bind proteins associated with SRP might interact with ribosomes; and are protected by binding to membranes. Other areas increase in chemical sensitivity, exemplified by a tertiary interaction present in naked 7SL RNA but not in free SRP. Such changes suggest that 7SL RNA changes its conformation during the SRP cycle. These conformational changes could be a necessary component to move through the SRP cycle from one stage to the next.  相似文献   

11.
The signal recognition particle (SRP) from Escherichia coli consists of 4.5S RNA and protein Ffh. It is essential for targeting ribosomes that are translating integral membrane proteins to the translocation pore in the plasma membrane. Independently of Ffh, 4.5S RNA also interacts with elongation factor G (EF-G) and the 30S ribosomal subunit. Here we use a cross-linking approach to probe the conformation of 4.5S RNA in SRP and in the complex with the 30S ribosomal subunit and to map the binding site. The UV-activatable cross-linker p-azidophenacyl bromide (AzP) was attached to positions 1, 21, and 54 of wild-type or modified 4.5S RNA. In SRP, cross-links to Ffh were formed from AzP in all three positions in 4.5S RNA, indicating a strongly bent conformation in which the 5' end (position 1) and the tetraloop region (including position 54) of the molecule are close to one another and to Ffh. In ribosomal complexes of 4.5S RNA, AzP in both positions 1 and 54 formed cross-links to the 30S ribosomal subunit, independently of the presence of Ffh. The major cross-linking target on the ribosome was protein S7; minor cross-links were formed to S2, S18, and S21. There were no cross-links from 4.5S RNA to the 50S subunit, where the primary binding site of SRP is located close to the peptide exit. The functional role of 4.5S RNA binding to the 30S subunit is unclear, as the RNA had no effect on translation or tRNA translocation on the ribosome.  相似文献   

12.
N Campos  J Palau    C Zwieb 《Nucleic acids research》1989,17(4):1573-1588
An 11 S ribonucleoprotein particle was isolated from maize endosperm and shown to be functionally and structurally equivalent to the mammalian signal recognition particle. However, unlike animal cells which apparently contain a single 7 SL RNA species, maize endosperm contains a heterogeneous population of 7 SL RNA. To investigate this diversity, we have cloned and sequenced a number of the maize endosperm 7 SL RNAs isolated from functionally active SRP preparations. Some maize 7 SL RNAs are strikingly similar, differing by single base changes or short deletions; surprisingly, others share less than 70 percent sequence homology. Despite differences in primary sequence, nearly identical secondary structures can be suggested for all maize 7 SL RNAs, consistent with a proposed functional role in protein translocation for each of these RNAs. The amount of new available sequence data enabled us to define two conserved regions of presumed functional importance: A conserved sequence -G-N-A-R- in the center of a variable region which forms a well defined stem-loop and possibly is involved in an interaction with the 19 kDa protein of the SRP. Secondly, three short nucleotide stretches located in the central domain of 7 SL RNA may form part of a dynamic RNA-switch structure.  相似文献   

13.
14.
The signal recognition particle (SRP) functions in conjunction with the SRP receptor to target nascent ectoplasmic proteins to the protein translocation machinery of the endoplasmic reticulum membrane. SRP is a ribonucleoprotein consisting of six distinct polypeptides and one molecule of 7SL RNA 300 nucleotides long. SRP has previously been visualized by a variety of electron microscopic techniques as a rod-shaped particle 24 nm long and 6 nm wide. We report here microanalysis by electron spectroscopic imaging which localizes the RNA molecule in SRP to primarily the two ends of the particle. These results suggest that the single 7SL RNA molecule spans the length of the particle. Micrographs from a scanning transmission electron microscope permit visualization of unstained SRP with low electron exposure, as well as the direct measurement of the mol. wt of the particle. These micrographs confirm our earlier suggestion that SRP is divided into three structural domains and allow discrimination of the two ends of the structure. The results of both techniques have been combined in a model for the structure of SRP in which we propose the basic orientation of the 7SL RNA. The structure proposed is consistent with the secondary structure predicted for the RNA and with biochemical data.  相似文献   

15.
Signal recognition particle (SRP) takes part in protein targeting and secretion in all organisms. Searches for components of archaeal SRP in primary databases and completed genomes indicated that archaea possess only homologs of SRP RNA, and proteins SRP19 and SRP54. A recombinant SRP was assembled from cloned, expressed and purified components of the hyperthermophilic archaeon Archaeoglobus fulgidus. Recombinant Af-SRP54 associated with the signal peptide of bovine pre-prolactin translated in vitro. As in mammalian SRP, Af-SRP54 binding to Af-SRP RNA required protein Af-SRP19, although notable amounts bound in absence of Af-SRP19. Archaeoglobus fulgidus SRP proteins also bound to full-length SRP RNA of the archaeon Methanococcus jannaschii, to eukaryotic human SRP RNA, and to truncated versions which corresponded to the large domain of SRP. Dependence on SRP19 was most pronounced with components from the same species. Reconstitutions with heterologous components revealed a significant potential of human SRP proteins to bind to archaeal SRP RNAs. Surprisingly, M.jannaschii SRP RNA bound to human SRP54M quantitatively in the absence of SRP19. This is the first report of reconstitution of an archaeal SRP from recombinantly expressed purified components. The results highlight structural and functional conservation of SRP assembly between archaea and eucarya.  相似文献   

16.
The signal recognition particle (SRP) is a ribonucleoprotein complex which is crucial for the delivery of proteins to cellular membranes. Among the six proteins of the eukaryotic SRP, the two largest, SRP68 and SRP72, form a stable SRP68/72 heterodimer of unknown structure which is required for SRP function. Fragments 68e′ (residues 530 to 620) and 72b′ (residues 1 to 166) participate in the SRP68/72 interface. Both polypeptides were expressed in Escherichia coli and assembled into a complex which was stable at high ionic strength. Disruption of 68e′/72b′ and SRP68/72 was achieved by denaturation using moderate concentrations of urea. The four predicted tetratricopeptide repeats (TPR1 to TPR4) of 72b′ were required for stable binding of 68e′. Site‐directed mutagenesis suggested that they provide the structural framework for the binding of SRP68. Deleting the region between TPR3 and TPR4 (h120) also prevented the formation of a heterodimer, but this predicted alpha‐helical region appeared to engage several of its amino acid residues directly at the interface with 68e′. A 39‐residue polypeptide (68h, residues 570–605), rich in prolines and containing an invariant aspartic residue at position 585, was found to be active. Mutagenesis scanning of the central region of 68h demonstrated that D585 was solely responsible for the formation of the heterodimer. Coexpression experiments suggested that 72b′ protects 68h from proteolytic digestion consistent with the assertion that 68h is accommodated inside a groove formed by the superhelically arranged four TPRs of the N‐terminal region of SRP72.  相似文献   

17.
The signal recognition particle (SRP) is a ribonucleoprotein complex responsible for targeting proteins to the ER membrane in eukaryotes, the plasma membrane in bacteria and the thylakoid membrane in chloroplasts. In higher plants two different SRP-dependent mechanisms have been identified: one post-translational for proteins imported to the chloroplast and one co-translational for proteins encoded by the plastid genome. The post-translational chloroplast SRP (cpSRP) consists of the protein subunits cpSRP54 and cpSRP43. An RNA component has not been identified and does not seem to be required for the post-translational cpSRP. The co-translational mechanism is known to involve cpSRP54, but an RNA component has not yet been identified. Several chloroplast genomes have been sequenced recently, making a phylogenetically broad computational search for cpSRP RNA possible. We have analysed chloroplast genomes from 27 organisms. In higher plant chloroplasts, no SRP RNA genes were identified. However, eight plastids from red algae and Chlorophyta were found to contain an SRP RNA gene. These results suggest that SRP RNA forms a complex in these plastids with cpSRP54, reminiscent of the eubacterial SRP.  相似文献   

18.
The eukaryotic signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein particle that targets secretory and membrane proteins to the endoplasmic reticulum. The binding of SRP54 to the S domain of 7SL RNA is highly dependent on SRP19. Here we present the crystal structure of a human SRP ternary complex consisting of SRP19, the M domain of SRP54 and the S domain of 7SL RNA. Upon binding of the M domain of SRP54 to the 7SL RNA-SRP19 complex, the asymmetric loop of helix 8 in 7SL RNA collapses. The bases of the four nucleotides in the long strand of the asymmetric loop continuously stack and interact with the M domain, whereas the two adenines in the short strand flip out and form two A-minor motifs with helix 6. This stabilizing interaction is only possible when helix 6 has been positioned parallel to helix 8 by the prior binding of SRP19 to the tetraloops of helices 6 and 8. Hence, the crystal structure of the ternary complex suggests why SRP19 is necessary for the stable binding of SRP54 to the S domain RNA.  相似文献   

19.
B Haas  A Klanner  K Ramm    H L Snger 《The EMBO journal》1988,7(13):4063-4074
From tomato leaf tissue we sequenced and characterized a 7S RNA which consists of 299 nucleotides with either two or three additional uridine nucleotides at its 3'-terminus. About 56% of the nucleotides of this higher plant 7S RNA are in nearly identical positions as those of the human 7SL RNA which is an integral component of the signal recognition particle (SRP) that mediates protein translocation. Computer modelling and digestion studies with nucleases led to a secondary structure model for tomato 7S RNA, the overall shape of which is very similar to that of the human 7SL (SRP) RNA. This structural similarity strongly suggests that tomato 7S RNA is actually an SRP RNA and an integral part of the plant SRP, and that the protein translocation system of higher plants is very similar to the one operating in mammalian cells. Tomato SRP RNA contains a stretch of 36-53 nucleotides which exhibit a high degree of sequence complementarity to five viroid 'species' that cause disease in tomato. In the case of potato spindle tuber viroid and citrus exocortis viroid this complementarity spans the lower strand of the region, the nucleotides of which are known to modulate virulence. This extensive sequence complementarity could lead to a thermodynamically favoured base-pairing in vivo which renders the tomato SRP RNA a possible host target with which viroids could interact and thus incite disease.  相似文献   

20.
S Boehm 《FEBS letters》1987,212(1):15-20
A new secondary structure model for parts of the 7 SL RNA is proposed which indicates for a stretch of at least 40 bases a strong structural homology to the ribosomal protein L5 binding site of eukaryotic 5 S rRNA. It is suggested that the 5 S rRNA-like structural part of 7 SL RNA mediates binding of the signal recognition particle near to the peptidyl transferase center of the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号