首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow   总被引:5,自引:0,他引:5  
In this study the technique of laser-Doppler flowmetry was evaluated for the measurement of tissue blood flow by comparing laser-Doppler flow (LDF) signal in the renal cortex, gracilis muscle, and cremaster muscle of anesthetized rats to whole-organ blood flow measured with an electromagnetic flowmeter or radioactive microspheres. In vitro, LDF signal was closely correlated (r = 0.99) to changes in erythrocyte velocity generated with a rotating wheel. Although individual LDF readings varied in situ, mean LDF signal calculated from multiple readings on the tissue surface were significantly correlated (r = 0.74-0.95) with tissue blood flows measured at various perfusion pressures. However, significant differences in the slope of the LDF signal vs. blood flow relationship were observed in different tissues and with different methods of measurement in the same tissue. This study indicates that mean laser-Doppler flow signal provides a good estimate of tissue blood flow, provided a sufficient number of points is scanned. However, there appears to be no universal calibration factor for the method.  相似文献   

2.
Hyperbaric oxygen (HBO) treatment has been found to improve healing in living tissues, especially those poor in oxygen. The effects of HBO have also been tested in rat experiments. However, oxygen partial pressure in rat's arterial blood is normally about twice that in humans. Disregarding this, a human HBO protocol has been applied in previous rat experiments with HBO. Laser Doppler flowmetry (LDF) is a non-invasive means for measuring blood flow. Using LDF, we measured the blood perfusion rate in rats receiving HBO, according to a modified protocol, in a region of healing soft tissue with bone defect. The results indicate that, in rats, shorter HBO treatment with high O2 pressure can significantly improve the blood flow of healing tissues. In this study, an elevated blood perfusion rate was still evident 2 weeks after the ending of HBO therapy, which indicates improved revascularization in the wound area. A short HBO protocol would save time and effort in future HBO experiments on rats.  相似文献   

3.
Effects on skin blood perfusion of permanent ceramic magnets [0.1 T (1000 G) surface field], individually (disk shaped, 4 cm diameter x 1 cm thick) or in the form of a 11 x 7 in pad ( approximately 28 x 17.8 cm) with an array of 16 rectangular magnets (4.5 x 2.2 cm), were investigated in 16 female volunteers (27.4 +/- 1.7 years, range 21-48 years) using three separate protocols. In protocol A, a disk magnet was placed on the palmar surface of the hand in contact with the thenar eminence (n = 5). In protocol B, the magnet was placed on the hand dorsum overlying the thenar eminence (n = 5). In protocol C, the entire palm and fingers rested on the magnetic pad (n = 6). Magnets were in place for 36 min on one hand, and a sham was in place on the other hand. Blood perfusion was measured on the middle finger dorsum by laser Doppler flowmetry (LDF) and on the index finger by laser Doppler imaging (LDI). Perfusion measurements were simultaneously taken in sham and magnet exposed hands, before and during the entire magnet exposure interval. Magnetic field effects were tested by comparing skin blood perfusion sequences in magnet and sham exposed regions. Results showed no significant changes in either LDF or LDI perfusion at magnet or sham sites during exposure, nor were there any significant differences between sham and magnet sites for any protocol. Measurements of skin temperature at the LDF measurement sites also showed no significant change. It is concluded that in the healthy subjects studied with normal, unstressed circulation, magnets of the type and for the duration used, showed no detectible effect on skin blood perfusion in the anatomical area studied.  相似文献   

4.
In this article, laser Doppler flowmeter (LDF) monitoring of blood flow in 94 free flaps is summarized. Seventy-six patients had uneventful postoperative courses, and 18 patients developed postoperative complications, with a salvage rate of 88 percent. Except for one case, the flowmeter identified developing complications before clear clinical indices appeared, and in two cases it was the only indication of vascular compromise of the flap. On the basis of the data obtained, the ranges of absolute flow values in different types of uncomplicated flaps are reported, along with their temporal pattern of flow. Decrease inflow pattern may be an early indicator of a developing perfusion disturbance. On the basis of LDF readings, the following classifications of free-flap blood flow are suggested. (1) If the flow is within or slightly above the established range, then normal diligence in observation is justified. If the flow is well above the normal range, artifacts that could falsely elevate readings should be investigated. (2) If the flow is somewhat below the established range, then a modest increase in observation is warranted (alert level 1). (3) If the relative flow falls to 50 percent of the initial flow of that flap and remains at that level for 30 minutes or longer, then more aggressive flap observation is indicated (alert level 2). (4) If the flow is below 0.4 LDF units for 30 minutes, then aggressive clinical observation should be performed (alert level 3, or "red alert") and exploration should be strongly considered.Falsely elevated measurements can be caused by vibration, motion of the probe or tissue, or location of the probe over a macroscopic blood vessel. False low readings are quite rare but can result from partial probe detachment from the flap or coagulum accumulating on the probe. Once artifacts are ruled out, LDF readings have a high level of credibility and, in the authors' experience, significantly improve salvage rates.  相似文献   

5.
Previous work showed that local cooling (LC) attenuates the vasoconstrictor response to whole body cooling (WBC). We tested the extent to which this attenuation was due to the decreased baseline skin blood flow following LC. In eight subjects, skin blood flow was assessed using laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was expressed as LDF divided by blood pressure. Subjects were dressed in water-perfused suits to control WBC. Four forearm sites were prepared with microdialysis fibers, local heating/cooling probe holders, and laser-Doppler probes. Three sites were locally cooled from 34 to 28 degrees C, reducing CVC to 45.9 +/- 3.9, 42 +/- 3.9, and 44.5 +/- 4.8% of baseline (P < 0.05 vs. baseline; P > 0.05 among sites). At two sites, CVC was restored to precooling baseline levels with sodium nitroprusside (SNP) or isoproterenol (Iso), increasing CVC to 106.4 +/- 12.4 and 98.9 +/- 10.1% of baseline, respectively (P > 0.05 vs. precooling). Whole body skin temperature, apart from the area of blood flow measurement, was reduced from 34 to 31 degrees C. Relative to the original baseline, CVC decreased (P < 0.05) by 44.9 +/- 2.8 (control), 11.3 +/- 2.4 (LC only), 29 +/- 3.7 (SNP), and 45.8 +/- 8.7% (Iso). The reductions at LC only and SNP sites were less than at control or Iso sites (P < 0.05); the responses at those latter sites were not different (P > 0.05), suggesting that the baseline change in CVC with LC is important in the attenuation of reflex vasoconstrictor responses to WBC.  相似文献   

6.
This article describes a laser Doppler flowmetry (LDF) system that enables repeated measurements and thereby long-term followup of cortical cerebral blood flow (CBF) in awake and freely moving rats. The system consists of a specially designed flow probe adapter, a flow probe connector, and a LDF flow probe, which may thereby rotate through its own axis. During the experiment, the flow adapter is permanently mounted onto the rat's skull bone. A thin layer of skull bone is left intact at the site for cortical CBF measurements. The probe connector and the flow probe may be repeatedly detached and remounted to the adapter, which allows for cortical cerebral blood flow recording from exactly the same anatomical location. The laser Doppler flowmetry system enables stable cortical CBF recordings in the conscious rat while it moves freely in a bowl cage.  相似文献   

7.
Anesthesia affects general hemodynamics and regulation of organ perfusion. We used colored microspheres to measure pancreatic islet blood flow in conscious rats at two time points, during either hyperglycemia or hypoglycemia. This method, using black and green microspheres, was validated by comparison with previous microsphere experiments and by lack of effect of a nonmetabolizable glucose analog, 3-O-methylglucose, on islet perfusion. Basal and glucose-stimulated islet blood flow levels were similar in pentobarbital sodium-anesthetized and conscious rats. However, the basal distribution of pancreatic blood flow was altered by anesthesia (fractional islet blood flow 5.8 +/- 0.4% in conscious rats, 7.9 +/- 0.8% in pentobarbital-anesthetized rats, P < 0.05). Insulin-induced hypoglycemia significantly increased whole pancreatic blood flow in conscious rats, whereas islet blood flow remained unchanged and fractional islet blood flow was decreased (5.8 +/- 0.5% in the basal state, 4.2 +/- 0.4% during hypoglycemia, P < 0.001). Methylatropine pretreatment significantly increased islet blood flow during hypoglycemia by 181%. This result suggests that prevention of hypoglycemia-induced increase in islet perfusion may be mediated, at least in part, by a cholinergic, vagal muscarinic mechanism.  相似文献   

8.
We tested for regional differences in perfusion responses, within the renal medulla and cortex, to renal nerve stimulation in pentobarbital sodium-anesthetized rabbits. Laser-Doppler flux (LDF) was monitored at various depths below the cortical surface (1-15 mm). Basal cortical LDF (1-3 mm, approximately 200-450 U) was greater than medullary LDF (5-15 mm, approximately 70-160 U), but there were no statistically significant differences in basal LDF within these regions. The background LDF signal during aortic occlusion was similar in the cortex (2 mm, 31 U) and outer medulla (7 mm, 31 U), but slightly greater in the inner medulla (12 mm, 44 U). During electrical stimulation of the renal nerves (0.5-8 Hz), cortical LDF and total renal blood flow were similarly progressively reduced with increasing stimulus frequency. Medullary LDF (measured between 5 and 15 mm) was overall less responsive than cortical LDF. For example, 4-Hz stimulation reduced inner medullary LDF (9 mm) by 19 +/- 6% but reduced cortical LDF (1 mm) by 54 +/- 11%. However, medullary LDF responses to nerve stimulation were similar at all depths measured. Our results indicate that while the vascular elements controlling medullary perfusion are less sensitive to the effects of electrical stimulation of the renal nerves than are those controlling cortical perfusion, sensitivity within these vascular territories appears to be relatively homogeneous.  相似文献   

9.
Mitochondrial damage is the main source of cellular injury upon ischemia-reperfusion, and calcium loading has been implicated in this phenomenon. The use of optical probes for calcium monitoring of the intact heart is hampered by internal filter effects of intracellular hemoproteins, endogenous fluorescence, and their sensitivity to pH. We describe here a method for measurement of intracellular free calcium in isolated myoglobin-deficient perfused mouse hearts under conditions of large intracellular pH fluctuations by simultaneous fluorescence monitoring of the calcium-probe Fura-2 and the pH probe BCECF through dual wavelength excitation of both probes. In myoglobin-containing mouse heart endogenous chromophores interfere with Fura-2 fluorometry. It is shown that a paradoxical decrease in Fura-2 fluorescence occurs during ischemia in isolated mouse hearts. Simultaneous recording of BCECF fluorescence (calibrated against pH measurement with phosphorus NMR) and data reduction based on continual recalculation of the apparent dissociation constant of the calcium-probe complex revealed that a marked increase in intracellular free calcium occurs, and that the Fura-2 fluorescence decrease was caused by an increase in dissociation constant due to intracellular acidification. Intracellular free calcium rose almost linearly during a 20-min period of ischemia and returned to basal values rapidly upon the commencement of perfusion.  相似文献   

10.
Mitochondrial damage is the main source of cellular injury upon ischemia–reperfusion, and calcium loading has been implicated in this phenomenon. The use of optical probes for calcium monitoring of the intact heart is hampered by internal filter effects of intracellular hemoproteins, endogenous fluorescence, and their sensitivity to pH.We describe here a method for measurement of intracellular free calcium in isolated myoglobin-deficient perfused mouse hearts under conditions of large intracellular pH fluctuations by simultaneous fluorescence monitoring of the calcium-probe Fura-2 and the pH probe BCECF through dual wavelength excitation of both probes. In myoglobin-containing mouse heart endogenous chromophores interfere with Fura-2 fluorometry.It is shown that a paradoxical decrease in Fura-2 fluorescence occurs during ischemia in isolated mouse hearts. Simultaneous recording of BCECF fluorescence (calibrated against pH measurement with phosphorus NMR) and data reduction based on continual recalculation of the apparent dissociation constant of the calcium-probe complex revealed that a marked increase in intracellular free calcium occurs, and that the Fura-2 fluorescence decrease was caused by an increase in dissociation constant due to intracellular acidification. Intracellular free calcium rose almost linearly during a 20-min period of ischemia and returned to basal values rapidly upon the commencement of perfusion.  相似文献   

11.
To examine the role of nitric oxide (NO) in cutaneous active vasodilation, we measured the NO concentration from skin before and during whole body heat stress in nine healthy subjects. A forearm site was instrumented with a NO-selective, amperometric electrode and an adjacent intradermal microdialysis probe. Skin blood flow (SkBF) was monitored by laser-Doppler flowmetry (LDF). NO concentrations and LDF were measured in normothermia and heat stress. After heat stress, a solution of ACh was perfused through the microdialysis probe to pharmacologically generate NO and verify the electrode's function. During whole body warming, both SkBF and NO concentrations began to increase at the same internal temperature. Both SkBF and NO concentrations increased during heat stress (402 +/- 76% change from LDF baseline, P < 0.05; 22 +/- 5% change from NO baseline, P < 0.05). During a second baseline condition after heat stress, ACh perfusion led to increases in both SkBF and NO concentrations (496 +/- 119% change from LDF baseline, P < 0.05; 16 +/- 10% change from NO baseline, P < 0.05). We conclude that NO does increase in skin during heat stress in humans, attendant to active vasodilation. This result suggests that NO has a role beyond that of a permissive factor in the process; rather, NO may well be an effector of cutaneous vasodilation during heat stress.  相似文献   

12.
The dynamic light scattering methods are widely used in biomedical diagnostics involving evaluation of blood flow. However, there exist some difficulties in quantitative interpretation of backscattered light signals from the viewpoint of diagnostic information. This study considers the application of the high‐speed videocapillaroscopy (VCS) method that provides the direct measurement of the red blood cells (RBCs) velocity into a capillary. The VCS signal presents true oscillation nature of backscattered light caused by moving RBCs. Thus, the VCS signal can be assigned as a reference one with respect to more complicated signals like in laser Doppler flowmetry (LDF). An essential correlation between blood flow velocity oscillations in a separate human capillary and the integral perfusion estimate obtained by the LDF method has been found. The observation of blood flow by the VCS method during upper arm occlusion has shown emergence of the reverse blood flow effect in capillaries that corresponds to the biological zero signal in the LDF. The reverse blood flow effect has to be taken into account in interpretation of LDF signals.   相似文献   

13.
Most techniques currently available to measure blood flow in bone are time consuming and require destruction of the tissue, but laser-Doppler technology offers a less invasive method. This study assessed the utility of laser-Doppler perfusion imaging (LDI) to measure perfusion in cortical bone. Twelve mature New Zealand White rabbits were assigned to one of three groups: normal control, constriction (norepinephrine), or dilatation (nitroprusside). The left and right medial tibiae were consecutively scanned at red (634-nm) and near-infrared (810-nm) wavelengths to examine the repeatability of LDI output. The pharmacological intervention groups were injected with the respective drug, and LDI measurements at 810 nm were obtained concurrently with colored microsphere-determined flow in all of the groups. LDI effectively quantified blood flow in cortical bone and detected physiologically induced changes in perfusion. A significant positive correlation was found between microsphere-determined flow and LDI output (r = 0.6, P < 0.05). Repeatability of consecutive LDI measurements was within 5%. The effectiveness of LDI to measure perfusion in bone suggests this method has potential for investigating the role of blood flow in bone metabolism and remodeling.  相似文献   

14.
These studies were carried out using chronically implanted thermode probes in conscious oxen at 15 degrees C air temperature. The probes were perfused with water either 4 degrees C above or 5 degrees C below resiting hypothalamic temperature and the thermoregulatory response measured by the change in auditory meatal temperature during the perfusion periods of 25 or 40 min duration, respectively. The anatomical position of the probes was known relative to the third cerebral ventricle in each animal. The thermosensitive area of the ox anterior hypothalamic/preoptic region was shown to be highly localized in a position corresponding to the posterior part of the area preoptica. The same area was responsible for both warm and cold sensitivity, the warm sensitivity being approximately three times greater than the cold.  相似文献   

15.
The autocorrelation of laser speckles from coherent near infrared light is used for noninvasive estimates of relative changes in blood perfusion in techniques such as laser Doppler flowmetry (LDF) and diffuse correlation spectroscopy (DCS). In this study, a 2D array of single photon avalanche diodes (SPADs) was used to combine the strengths of multiple detectors in LDF with high light sensitivity in DCS. The system was tested on milk phantoms with varying detector fiber diameter (200 and 600 μm), source‐detector fiber separation (4.6‐10.2 mm), fiber‐SPAD distance (2.5‐36.5 mm), contiguous measurement time per repetition for the autocorrelation (1‐33 ms) and temperature (15.6‐46.7°C). An in vivo blood occlusion test was also performed. The multipixel approach improved signal‐to‐noise ratio (SNR) and, in our setup, the use of a multimode detector fiber was beneficial for SNR. In conclusion, the multipixel system works, but improvements and further studies regarding, for example, the data acquisition and optimal settings are still needed.   相似文献   

16.
Objective: Assessments of endothelial cell function with acetylcholine have typically used systemic, regional intra-arterial, or iontophoretic delivery of drug. Each of these techniques induces systemic and/or local changes that compromise their safety or effectiveness. Using translucent drug preparations applied under laser Doppler flowmetry (LDF) probes, we tested whether local vasodilation can be induced with non-iontophoretic transdermal delivery of acetylcholine and how such dilation would compare to the dilation achieved with topical nitroglycerin in healthy volunteers. Methods: Ten subjects without known vascular disease were recruited for LDF monitoring at sites of drug application for this preliminary investigation. Topical acetylcholine chloride, nitroglycerin, and placebo were applied via translucent patches to the forehead directly below LDF probes. Results: LDF readings increased by 406 percent (245 percent to 566 percent) and 36 percent (26 percent to 46 percent), respectively, at the acetylcholine and placebo sites (p = .005 by Wilcoxon Signed Rank Test (WSRT) for acetylcholine vs. placebo); and they increased by 365 percent (179 percent to 550 percent) at the nitroglycerin site (p = .005 by WSRT for nitroglycerin vs. placebo; p = .6 vs. acetylcholine). Conclusion: Transdermal delivery of acetylcholine can induce significant local vasodilatory responses comparable to those achieved with nitroglycerin without requiring iontophoresis. The means of transdermal delivery and monitoring described herein may constitute a new minimally invasive way to interrogate the microvasculature and thereby assess the microcirculatory changes induced by various disorders and therapeutic interventions.  相似文献   

17.
To find whether the measurement of skin blood flow (SkBF) by laser-Doppler flowmetry (LDF) is influenced by blood flow to underlying skeletal muscle, five subjects performed mild forearm exercise to induce a metabolic hyperemia in muscle in both forearms. This exercise consisted of alternative opening and closing of both hands at a frequency of approximately 1/s for a duration of 3 min. This exercise was performed twice by each subject. Forearm blood flow (FBF) by plethysmography increased from 2.64 +/- 0.49 (rest) to 31.11 +/- 9.95 ml.100 ml-1.min-1 (immediately after exercise) (P less than 0.001). No statistically significant postexercise increase was observed in LDF measured on the dorsal (110 +/- 21 to 105 +/- 21 mV) or ventral surface (266 +/- 113 to 246 +/- 77 mV) of the forearm. LDF measured from the chest also showed no significant change, indicating that the exercise was too mild to have reflex effects on SkBF. Moreover, the slope of the logarithmic linear regression and the half-time for recovery during the postexercise period for FBF were not reflected in LDF measurements from any of the three sites. We conclude that LDF measured from the skin surface is not influenced by blood flow to underlying skeletal muscle.  相似文献   

18.
The effects of low laser irradiation on angiogenesis in injured rat tibiae   总被引:4,自引:0,他引:4  
The influence of He-Ne laser radiation on the formation of new blood vessels in the bone marrow compartment of a regenerating area of the mid-cortical diaphysis of the tibiae of young adult rats was studied. A small hole was surgically made with a dentistry burr in the tibia and the injured area received a daily laser therapy over 7 or 14 days transcutaneously starting 24 h from surgery. Incident energy density dosages of 31.5 and 94.5 Jcm(-2) were applied during the period of the tibia wound healing investigated. Light microscopic examination of histological sections of the injured area and quantification of the newly-formed blood vessels were undertaken. Low-level energy treatment accelerated the deposition of bone matrix and histological characteristics compatible with an active recovery of the injured tissue. He-Ne laser therapy significantly increased the number of blood vessels after 7 days irradiation at an energy density of 94.5 Jcm(-2), but significantly decreased the number of vessels in the 14-day irradiated tibiae, independent of the dosage. These effects were attributed to laser treatment, since no significant increase in blood vessel number was detected between 8 and 15 non-irradiated control tibiae. Molecular mechanisms involved in low-level laser therapy of angiogenesis in post-traumatic bone regeneration needs further investigation.  相似文献   

19.
Cardiovascular parameters such as arterial blood pressure (ABP) and heart rate display pronounced circadian variation. The present study was performed to detect whether there is a circadian periodicity in the regulation of cerebral perfusion. Normotensive Sprague-Dawley rats (SDR, approximately 15 wk old) and hypertensive (mREN2)27 transgenic rats (TGR, approximately 12 wk old) were instrumented in the abdominal aorta with a blood pressure sensor coupled to a telemetry system for continuous recording of ABP, heart rate, and locomotor activity. After 5-12 days, a laser-Doppler flow (LDF) probe was attached to the skull by means of a guiding device to measure changes in brain cortical blood flow (CBF). After the animals recovered from anesthesia, measurements were taken for 3-4 days. The time series were analyzed with respect to the midline estimating statistic of rhythm (i.e., mean value of a periodic event after fit to a cosine function), amplitude, and acrophase (i.e., phase angle that corresponds to the peak of a given period) of the 24-h period. The LDF signal displayed a significant circadian rhythm, with the peak occurring at around midnight in SDR and TGR, despite inverse periodicity of ABP in TGR. This finding suggests independence of LDF periodicity from ABP regulation. Furthermore, the acrophase of the LDF was consistently found before the acrophase of the activity. From the present data, it is concluded that there is a circadian periodicity in the regulation of cerebral perfusion that is independent of circadian changes in ABP and probably is also independent of locomotor activity. The presence of a circadian periodicity in CBF may have implications for the occurrence of diurnal alterations in cerebrovascular events in humans.  相似文献   

20.
The microcirculation in the subpleural region of the lung is thought to be physiologically typical of the entire vasculature. To investigate this issue, an in situ blood-perfused dog lung lobe (500 ml/min) was prepared and the blood flow in the subpleural region (Qs) was monitored with laser-Doppler flowmetry (LDF). The flow rates into and out of the lobe were monitored with in-line flow probes, and the arterial and venous pressures were recorded from side ports in the cannulas. The LDF signal measures flow in arbitrary units over a region less than 2 mm deep and 1 mm2. The LDF signal was independent of site of measurement and was linearly proportional to total flow rate (r2 greater than 0.9), suggesting that during baseline conditions Qs behaves similarly to, although not necessarily the same as, blood flow in the rest of the lung. However, if the vasculature is constricted by serotonin (arterial constriction) or by histamine (venous constriction), Qs decreases significantly relative to total flow. In fact, in some cases Qs approached zero during vasoconstriction, despite the fact that total flow was maintained constant and the pulmonary arterial pressure became elevated. Reduction in Qs most likely reflects a redistribution from the subpleural to the central regions of the lung. The results of this study suggest that LDF is a useful tool for monitoring flow in the subpleural region of the lung.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号