首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coastal and estuarine intertidal sediments are commonly colonized by dense populations of microphytobenthos. Due to wind and tides, important fractions of microphytobenthic populations may be buried. A mathematical model describing the depth variation of chlorophyll a in intertidal sediments was developed and experimentally tested. The model assumed first-order chlorophylla degradation and a constant mean burial velocity which resulted in a negative exponential variationC Z =C O exp{-k/vz} (C Z andC O =chlorophylla concentration at depth zand at the surface;k=specific degradation rate of chlorophyll a to pheopigments;V=mean burial velocity). Chlorophylla concentration depth profiles in different sediment types measured at the Tagus estuary and Ria Formosa (Portugal) were used to validate the model. The model was adjusted to field data. The chlorophyll a degradation rate was measured in a microcosm experiment under total darkness and no tidal action, and sampled during three months. This rate was shown to be independent of time and depth for the upper 0–15 mm depth interval. This result allowed the estimation ofV for each sampling site. Comparison of predicted and observed temporal data further confirmed the validity of the model andk andV values. Despite its simplicity, the proposed model adequately described the depth distribution of chlorophylla in different types of intertidal sediments. The model allowed the quantitative characterization of the buried microphytobenthic biomass (depth-integrated biomass) and the assessment of its importance as potentially productive stock of cells.  相似文献   

2.
The depth profiles of phytoplanlkton pigments in the north-westernBay of Bengal are generally characterized by a subsurface chlorophyllmaximum The occurrence of subsurface chlorophyll maxima is discussedin relation to other information on water column propertiesin the study area. The gradual deepening of the subsurface maximumfrom inshore to offshore waters coincides with the deepeningof the thermocline Significant correlation between the depthof the subsurface chlorophyll maximum and depth of thermoclinesuggests that the formation of the subsurface maximum is influencedby the presence of seasonal thermocline. Further the subsurfacechlorophyll maximum is noticed within the depth ranges of ammoniummaximum and intracline, suggesting the regenerated nutrientsmay also extend a more important influence on the subsurfacemaxima. The presence of chlorophyll b and a high ratio of chlorophylla/phaeopigments in the subsurface layers substantiates the formationof the subsurface maximum due to growth of the photosyntheticallyactive phytoplanlkton community  相似文献   

3.
Summary Chlorophylla is very surface active in the system 2,2,4-trimethylpentanewater. The standard free energy of adsorption may be as high as 10.6 kcal/mole. However, chlorophyll adsorption at this interface is unable to stabilize black membranes. Black films formed from solutions of glyceryl monooleate and chlorophylla exhibit a weak fluorescence which indicates that a small amount of pigment, ca. 1 to 2% by area, may be contained in the membranes. Calculations based on adsorption data show that inclusion of somewhat more chlorophylla than this might be expected. However, interfacial tension data for mixed solutions do not support this expectation.Whether or not they are illuminated, black lipid membranes formed from mixed solutions of chlorophylla and glyceryl monooleate have electrical properties indistinguishable from those of films made in the absence of pigment.  相似文献   

4.
Summary Temperature and dissolved oxygen content measured weekly at various depths during 3 1/2 years in the filling phase of a tropical man-made lake, show that at the dam-site fluctuations of epilimnion values occurred, whereas the hypolimnion remained almost constant in temperature and permanently devoid of oxygen. This confirms previous reports concerning another mid-lake station. Apart from rather steep superficial temperature gradients, classical thermoclines did not occur. It is proposed that the lake could not become fully mixed by wind action because of the great vertical density differences at the prevailing temperatures, and because of the drowning forest still giving shelter by the extending crowns. On the other hand, the stratification was not static. Fluctuations between high and low epilimnion values for temperature, oxygen content and transparency oocurred yearly, but could not be related satisfactorily to the prevailing seasons. The depth of the epilimnion increased each year. It is suggested that the observed kind of stratification was effective though not absolute. Vertical exchange may have been reduced by increasing density differences, but it was not fully eliminated. This explains the varying degree of incorporation of upper hypolimnetic layers in the epilimnion in relation with epilimnetic temperature. Comparison with large African reservoirs accentuates the exceptional limnological development of Lake Brokopondo during ifs filling phase.  相似文献   

5.
Vertical distribution of phytoplankton and the formation of deep chlorophyll maximum (DCM) in the metalimnion of a small stratified and partly meromictic temperate lake was studied in 1999 and 2000. During summer DCM usually occurred on the borderline of H2S and oxygen-containing waters. At the depths where the bacteriochlorophyll (Bchl) maxima were observed, the sulphide concentration was usually relatively low compared to the bottom layers, where its concentration reached as high as possible saturation level. In April 2000, DCM was formed at the depth of 3.5 m, and lowered thereafter slowly to 6.5 m by October. The concentration of Bchl d reached the highest values (over 1000 μg l−1) just before the water column was mixed up in autumn. In December and April Bchl d was detectable only near the bottom of the lake. The concentration of chlorophyll a yielded by the spectrophotometric phaeopigment corrected method and by HPLC (high pressure liquid chromatography), fit rather well in the upper layers. In deeper water layers chlorophyll a concentration (Chl a) measured by spectrophotometry was overestimated about 47 times if compared to HPLC values because of the high Bchl d in that layer. In most cases vertical profiles of primary production (PP) did not coincide with the vertical distribution of the pigment content; the maximum values of PP were found in the epilimnion. In some cases PP had notably high values also at the depth of DCM. In the upper layers Chl a usually did not exceeded 20 μg l−1 in spring and 10 μg l−1 in summer. The moderately high Chl a in the epilimnion in spring was significantly reduced after the formation of thermocline most probably because of the establishment of the nutrient limitation in epilimnion. Decreasing Chl a concentration in the epilimnion led to increased water transparency and better light conditions for photosynthetic bacteria in metalimnion.  相似文献   

6.
Eau Galle Reservoir, Wisconsin, was treated with a hypolimnetic dose of aluminum sulfate (alum) in 1986 to diminish excessive phytoplankton production associated with high phosphorus loading from anoxic, profundal sediments. Prior to treatment, internal total phosphorus (TP) loading was 3 to 6 times greater than external TP loading during summer stratification. Periodic increases in epilimnetic TP mass and chlorophylla concentrations closely corresponded with elevated internal TP loading. For one year following treatment, internal TP loading and concentrations of soluble reactive phosphorus (SRP) in the hypolimnion were substantially reduced. However, abnormally high external TP loading during the stratified period of 1986 resulted in high TP mass and chlorophylla in the epilimnion. During the summers of 1987 and 1988, effects of alum treatment on internal TP loading were essentially negated, and epilimnetic TP mass and chlorophylla remained unchanged from pretreatment years. Multiple potential sources of P input to this reservoir make it difficult to reduce epilimnetic P and phytoplankton growth.  相似文献   

7.
Rippey  Brian  Jewson  David H. 《Hydrobiologia》1982,91(1):377-382
Oxygen is transported 30 mm into the sediment at an 8 m depth site in eutrophic Lough Neagh by the irrigational activities of the benthic fauna. Faunal activity also mixes the upper 20 mm of sediment. Sediment oxygen uptake rate, redox potential-depth profile and the chlorophylla concentration were measured in the upper sediment layers from February to November 1979. Chlorophylla input to the sediment, following the Spring phytoplankton maximum, remained in the 0–1 cm sediment layer but did cause the redox potential profile to change from one with potentials around 400 mV in the upper 50 mm to one with a strong gradient over the 0–30 mm region. The start of benthic faunal activity in May caused the chlorophylla to be mixed into the 1–2 cm layer and also caused oxygen to be transported into the sediment at a rate sufficient to change the redox potential back to its initial state. The biodiffusion coefficient for solids in the upper 20 mm was estimated to be 6 × 10−8 cm2 s−1. Oxygen transport in the pore, waters of the upper sediment layers was considered to be best described as advection, caused by the irrigational activities of the benthic fauna.  相似文献   

8.
Community succession in the metabolism, biomass and maturity of sessile organisms on concrete plates immersed at depths of 1.0, 2.5, 4.0 and 5.5 m in Nabeta Bay, Shimoda, pacific coast of Japan, was investigated over a period of about 3 yr. Gross primary production of the community (Pg) and community respiration (R) showed maxima at 10 and 13 months after immersion, and then Pg decreased significantly at all depths, whereas R was reduced only at the lower two depths. A parameter of community biomass, chlorophylla (Chl.a), showed a similar successional change to Pg. Five other parameters, i.e. dry mass (DM), ash dry mass (ADM), ash-free dry mass (AFDM), organic carbon (C) and organic nitrogen (N) increased significantly throughout succession, at least at the uppermost depth, but decreased significantly in the period 13–37 months after immersion at the lowest depth. Successional changes in five indices reflecting community maturity, i.e. the ratios of estimated daily gross primary production/estimated daily respiration (Pg/R), gross primary production/organic carbon (Pg/C), gross primary production/chlorophylla (Pg/Chl.a), organic carbon/organic nitrogen (C/N) and Margalef's pigment diversity (D430/D665), also differed among the depths, especially at 37 months after immersion. Succession at the upper two depths appeared to progress toward a mature state, as opposed to retrogression to an immature state at the lower two depths. This difference in successional changes in these 13 parameters between depths agrees with the prediction of Margalef (1968) and Odum (1969), despite the tendency for Pg/R to be more heterotrophic in an open system. Contributions from the Shimoda Marine Research Center, No. 515.  相似文献   

9.
1. Strong vertical gradients in light, water temperature, oxygen, algal concentration and predator encounters during summer in stratified lakes may influence patterns of depth selection in crustacean zooplankton, especially Daphnia species. 2. To test how crustacean depth selection varies among lakes along a gradient of catchment disturbance by recent residential development and land use change, we calculated the weighted mean depth distribution of the biomass of crustaceans by day and night in eight nutrient‐poor boreal lakes. 3. Generally, the greatest biomass of crustaceans was located at the metalimnion or at the lower boundary of the euphotic zone during thermal stratification in July. The crustacean zooplankton avoided warm surface layers and tended to stay in colder deep waters by both day and night. They also remained at greater depths in lakes with a more extensive euphotic zone. 4. There was some evidence of upward nocturnal migrations of large Daphnia and copepods in some lakes, and one case of downward migration in a lake inhabited by chaoborid larvae. 5. Multivariate regression trees (MRT) were used to cluster crustaceans and Daphnia species in homogeneous groups based on lake natural and disturbance factors. For crustaceans, the depth of the euphotic zone, the sampling depth (epilimnion, metalimnion and hypolimnion), time (day or night) of sampling and the biomass of chlorophyll a were the main driving factors. For Daphnia species, the drainage area, the sampling depth, the cleared land surface area within the catchment and the concentration of total dissolved phosphorus were the main factors.  相似文献   

10.
Zooplankton in the River Rhine was surveyed for five years at the Dutch sampling stations, Lobith (German/Dutch border) and Maassluis (at the point of discharge of the river into the North Sea). The zooplankton abundance showed an apparent seasonal pattern at both stations, characterized by low densities during the winter period, and higher densities during the summer period, with a spring peak. Zooplankton was dominated by rotifers at both stations, although during the winter periods the contribution of copepods was considerable. The rotifers were dominated byBrachionus angularis, B. calyciflorus, Keratella cochlearis andK. quadrata; the copepods by cyclopoid nauplii; the cladocerans by small-sized species mainly belonging toBosmina. At Maassluis the relative contribution of copepods was higher than at Lobith. Furthermore, the zooplankton at Maassluis included the speciesEurytemora affinis, characteristic for estuarine conditions. In spring, the rotifer density and water temperature and rotifer density and chlorophylla concentration were positively correlated. Furthermore, both rotifer density and chlorophylla were inversely correlated with discharge. The possible role of environmental factors (water temperature, chlorophyll content, discharge and biotic factors) controlling the river zooplankton dynamics is indicated.  相似文献   

11.
The physical limnology of Augher Lough (Northern Ireland)   总被引:2,自引:0,他引:2  
SUMMARY.
  • 1 The physical limnology of Augher Lough, Northern Ireland (area=9.25 ha. z=5.5 m), including stratification pattern, heat budget, thermocline erosion rate, eddy diffusion rate in the thermocline and hypolimnion and areal hypolimnetic oxygen deficit is described.
  • 2 Oxygen and temperature profiles, recorded at two sites during 1978 and four sites during 1979, showed that spatial variability of these quantities was low and allowed the following lake characteristics to be estimated. Heat budgel was 5.30 kcal cm-2 (standard deviation=s=0.26) in 1978 and 5.00 (s= 0.26) in 1979. The thermocline depth was 3.5–6.5 m with an erosion rate of 1.9X10-7 m s-1 in 1979. Eddy diffusion coefficients of heat in the thermocline and hypolimnion normally ranged from 0.48X 10-2 cm2 s-1 (s=0.20X10-2) to 5.4X10-2 (s=2.6X10-2), but reached 10X10-2 cm2s-l (s=9X10-2) in early July 1978 after a cooling-mixing episode in the epilimnion. The hypolimnetic oxygen deficit was 680 mg O2 m-2 d-1 (s=76) and varied strongly with depth.
  • 3 A cooling-mixing episode in the epilimnion in June-July 1978 caused the movement of heat down to 8 m, movement of oxygen down to 6 m and increased the eddy diffusion coefficients of heat by an order of magnitude.
  相似文献   

12.
The effect of ammonium discharge from a food factory on the growth of attached microalgae was monitored north of the Hanko peninsula, on the southwestern coast of Finland. The impact of the discharge was studied at twelve localities, at four stages of seasonal succession. The microalgae were sampled from glass slides exposed at 0.4 m depth for two weeks. The variables measured for the microalgal growth were chlorophylla, primary production and total organic carbon (TOC). These were compared with planktonic chlorophylla and nutrient concentrations. The growth of attached microalgae displayed a consistent pattern of spatial distribution. Depending on season, TOC and primary production values were 7 to 70 times higher and chlorophylla values up to 1000 times higher close to the effluent outlet than in undisturbed areas of the archipelago. The microalgal samples near the discharge were characterized by low TOC/chlorophylla and TOC/primary production ratios. The temporal consistency of microalgal distribution illustrates the advantages of using attached algal assemblages in monitoring programmes.  相似文献   

13.
Nagata N  Satoh S  Tanaka R  Tanaka A 《Planta》2004,218(6):1019-1025
Chlorophyll b is a photosynthetic antenna pigment found in prochlorophytes and chlorophytes. In chlorophytes, its biosynthesis regulates the photosynthetic antenna size. Chlorophyll b is synthesized from chlorophyll a in a two-step oxygenation reaction by chlorophyllide a oxygenase (CAO). In this study, we first identified the entire sequence of a prochlorophyte CAO gene from Prochlorothrix hollandica to compare it with those from chlorophytes, and we examined the catalytic activity of the gene product. Southern blot analysis showed that the CAO gene is presented in one copy in the P. hollandica genome. The P. hollandica CAO gene (PhCAO) has a coding capacity for 367 amino acids, which is much smaller than that of Arabidopsis thaliana (537 amino acids) and Oryza sativa (542 amino acids) CAO genes. In spite of the small size, PhCAO catalyzed the formation of chlorophyll b. By comparing these sequences, we classified the land-plant sequences into four parts: the N-terminal sequence predicted to be a transit peptide, the successive conserved sequence unique in land plants (A-domain, 134 amino acids), a less-conserved sequence (B-domain, 30 amino acids) and the C-terminal conserved sequence common in chlorophytes and prochlorophytes (C-domain, 337 to 344 amino acids). We demonstrated that the C-domain is sufficient for catalytic activity by transforming the cyanobacterium Synechocystis sp. PCC6803 with the C-domain from A. thaliana. In this paper, the role of the A-domain is discussed in relation to the formation of light-harvesting chlorophyll a/b–protein complexes in land plants.Abbreviations CAO Chlorophyllide a oxygenase - CP Chlorophyll protein - HPLC High-performance liquid chromatography - LHC Light-harvesting complex - PCR Polymerase chain reaction - PS Photosystem  相似文献   

14.
Paolo Madoni 《Hydrobiologia》1990,190(2):111-120
The ciliate taxa from epilimnion, hypolimnion, and littoral of Lake Kinneret were studied from November to December 1987 during stratification. Two collections of planktonic and benthic ciliates were taken at each of six sampling stations. Benthic ciliates from the littoral zone were collected at seven stations along the lake shore. Densities were determined for each ciliate species and for total protozoans at each station and sampling date. Thirty-six species of ciliates, representing 31 Genera, 18 Orders and 7 Classes, were identified. Planktonic protozoans characteristic of the epilimnion included Coleps hirtus and Vorticella mayeri. The more abundant taxa of benthic ciliates in the profundal of the lake included Saprodinium dentatum, Plagiopyla nasuta and Dexiotricha plagia. The predominant ciliate in the littoral was Pleuronema coronatum. Principal component analysis, performed on the correlation matrix of both sampling stations and species, revealed that epilimnion, hypolimnion, and littoral belt were colonized by different ciliate communities.  相似文献   

15.
1. The epiphytic flora of a characean meadow in Lake Coleridge, a deep, oligotrophic lake on the South Island of New Zealand, was dominated by diatoms, particularly Eunotia pectinalis and Achnanthes minutissima. The meadows occupied a depth range from 5 to 30 m. Adnate taxa predominated at all depths below 5 m, while increased taxonomic diversity at 5 m resulted from an increased abundance of erect taxa, including chlorophytes and stalked diatoms. 2. Seasonal changes in epiphyte biomass were followed using artificial substrata and by estimating epiphyte chlorophyll a concentration on host plants. The latter required development of a novel technique utilizing the consistent relationship between fucoxanthin and chlorophyll a concentrations in the epiphyton. Epiphyte chlorophyll a on host plants varied with depth and host species between 0.1 and 0.3 mg g–1 dry weight. Maximum epiphyte biomass was at 10–15 m depth. At depths of 15 m and less, epiphyte chlorophyll a reached a maximum of ≈ 200–300 mg m–2 in mid-summer, while at greater depths maximum biomass was less and coincided with a period of clear water in spring. 3. Photosynthetic carbon fixation was estimated from photosynthesis–radiation curves and estimates of radiation flux at sampling depths. At depths greater than 10 m, variability of the vertical extinction coefficient of lake water rather than seasonal fluctuations in incident radiation were responsible for determining the temporal pattern of production. Chlorophyll a-specific photosynthesis was estimated to peak in summer at 5 m (8 mg mg–1 day–1), and in spring at all other depths. 4. Annual epiphyte production was estimated as 27 g C m–2 year–1 at 5 m depth, falling to 15 g C m–2 year–1 at 15 m and 1 g C m–2 year–1 at 30 m. Areal biomass changes tended to be temporally but not quantitatively coupled to estimated in situ photosynthesis, and we hypothesize that epiphyte biomass may have been controlled by grazing gastropod snails.  相似文献   

16.
Chemical and thermal stratification in lakes   总被引:3,自引:0,他引:3  
An index that shows chemical stratification strength [IC-i; i = water quality item such as chlorophyll-a (Chl.a) and soluble phosphorus (SP)] was proposed and compared with one of thermal stratification strength indices, Schmidt’s stability index (SSI), in Shiozu Bay and Lake Biwa, Japan. The proposed indices of IC-i can be easily calculated with at least one set of each water quality data in both the epilimnion and the hypolimnion. The SSI was shown to be consistent with the traditional thermocline index of thermocline strength index (TSI), but SSI is used as the stability index of the whole lake, whereas TSI is used as the stability index near the thermocline. Analyses showed that chemical stratification strength is determined largely by thermal stratification strength. Totally different characteristics of IC-Chl.a and IC-phosphate (PO4) at high SSI in the main North Basin of Lake Biwa and in Shiozu Bay were possibly due to the difference in their volumes and hydrodynamic conditions. The proposed index and relationships are especially useful to roughly determine thermal and chemical stratification when only few water quality data are available.  相似文献   

17.
The relationship between total phosphorus and chlorophyll a concentration was determined for Skinner Lake, Indiana over an annual cycle in 1978–79. Total nitrogen:total phosphorus ratios in the epilimnion ranged from 19 to 220 suggesting a phosphorus-dependent algal yield in the epilimnion. Approximately 90% of annual TP loading reached the lake via streamflow, and 93% of this entered during snowmelt and spring-overturn periods. At that time incoming water flushed the lake 2.4 times. Atmospheric loading accounted for 1.4% of annual TP load. Internal hypolimnetic TP loading occurred during summer stratification. Mean [chl a] for the ice-free period was 15.15 mg m–3, within the range expected for eutrophic lakes.The 1978–79 data were used in conjuction with the Vollenweider & Kerekes (1980) model to produce a model specific for the Skinner Lake system. The model predicted mean epilimnetic total phosphorus and chlorophyll a concentrations from mean total phosphorus concentration in inlet streams and from lake water residence time during the period of spring overturn and summer stratification. The Skinner-specific model was tested in 1982 and it closely predicted observed mean epilimnetic [TP] and [chl a] during the ice-free period. This study shows that variability in lake models which average data over an annual period can be reduced by considering lake-specific seasonal variation in hydrology and external TP loading.  相似文献   

18.
Diurnal variation of phytoplankton in Loch Lomond   总被引:2,自引:2,他引:0  
A study of diurnal variation over a 48 hour period was undertaken in July 1973 to ascertain the extent and timing of some major chemical, physical and biological variables in Loch Lomond. The phytoplankton population was dominated by the diatom Tabellaria fenestrata, with a maximum abundance between 04.00 and 06.00 h in surface waters on both days. A distinct diurnal variation in cell numbers was also recorded. Chlorophyll a values also showed a regular pattern of variation with a single peak between 10.00 and 14.00 h each day. Some chemical changes appeared to be a direct consequence of phytoplankton multiplication. Nitrate-nitrogen showed a decrease in concentration coinciding with the period of cell multiplication, whereas dissolved silica concentrations only fell on the completion of this process. Other common diatoms displayed less distinct patterns of variation although Fragilaria crotonensis attained its maximum abundance in surface waters. Considerable variation was recorded in the number of organisms and chlorophyll a levels at 25 cm intervals in the upper metre of the water column, with large variations in standing-crop and chemical parameters in the space of one hour. Diurnal oscillations in the position of the thermocline were recorded, with the thermal discontinuity being at its greatest depth in the early hours of the morning. The hypolimnion and thermocline regions clearly acted as a source of nutrient supply to the epilimnion. From this investigation it is apparent that for the proper understanding of diurnal variation a 24 hour study alone is insufficient and may give rise to misleading results.Department of Botany, University of GlasgowDepartment of Botany, University of Glasgow  相似文献   

19.
Phytoplankton productivity was measured in Byram Lake Reservoir during summer 1977. Depth integrated productivity (0–5 gC m– 2 d–1) increased with station depth, which together with visibility measurements indicated that light did not limit deep station productivity (C1 and S2). Macrophytes at station C5 (shallow) reduced the euphotic zone to 0 in June.On a unit depth basis, C5 was the most productive station. Apparently changes in macrophyte growth, regulated by light and temperature, controlled phytoplankton production. At C1, productivity was related to levels of different nutrients at different depths, the thermocline influencing nutrient availability at mid-depth. At S2, NH3-N controlled mid-depth productivity. Surface and mid-depth productivity appeared influenced by factors not measured in this study.  相似文献   

20.
The seasonal changes in the size-fractionated chlorophylla concentrations (<3 μm, 3 to 25 μm, and >25 μm) were investigated at a pelagic site of the north basin of Lake Biwa during June to December 1985. Autofluorescing plankton cells in the <3-μm fractions were also examined using the fluorescein isothiocyanate staining epifluorescence microscopic technique. The <3-μm phytoplankton (usually dominated by chroococcoid cyanobacteria except for a few cases dominated by small eukaryotes) showed a clearly different pattern of seasonal change compared with the larger fractions. That is, from August to early September, chlorophylla of the larger fractions declined considerably, while the <3-μm chlorophylla did not decrease significantly. Moreover, cyanobacterial cell density in the <3-μm fraction showed a maximum value (2–3.5×105 cells·ml−1) during this period. The relative contribution of the <3-μm chlorophylla to the total chlorophylla increased from <5% to 45% during the course of this change. No clear vertical trend in the distribution and composition of the <3-μm phytoplankton was found, except that relatively large cyanobacteria (>4 μm3) appeared at a depth of 15m but not at 0,5 and 10 m from late July to August. These large cells were also found in November and December. The drastic seasonal change of phytoplankton size structure occurring in this basin was discussed in relation to grazing, nutrient depletion and sinking. Contribution from Otsu Hydrobiological Station, Kyoto Univeristy (No. 308, foreign language series).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号