首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been previously reported (Kerbiriou &; Hervé, 1972) that, when a uracil-requiring mutant of Escherichia coli is derepressed for the biosynthesis of the enzymes of the pyrimidine pathway in the presence of 2-thiouracil, it synthesizes a modified aspartate transcarbamylase which is still sensitive to the feedback inhibitor CTP, but which does not show homotropic positive interactions between catalytic sites. It is shown here that these homotropic interactions do not reappear upon strong inhibition by CTP, indicating that the two types of interactions are really disconnected and must involve different molecular mechanisms. CTP is acting at the level of the apparent Km of the enzyme for aspartate. It is also the case for ATP, which stimulates 2-thiouracil aspartate-transcarbamylase. Kinetic studies of the hybrid molecules made up of subunits prepared from normal and modified enzymes show that it is a modification at the level of the regulatory subunits which is responsible for the lack of co-operative interactions between catalytic sites. These results are discussed in terms of a four-state model.  相似文献   

2.
Pyrimidine Biosynthesis in Lactobacillus leichmannii   总被引:5,自引:1,他引:4       下载免费PDF全文
Tracer studies of pyrimidine biosynthesis in Lactobacillus leichmannii (ATCC 7830) indicated that, while aspartate is utilized in the usual manner, the guanido carbon of arginine, rather than carbon dioxide, is utilized as a pyrimidine precursor. The guanido carbon of arginine also contributes, to some extent, to the carbon dioxide pool utilized for purine biosynthesis. The enzyme of the first reaction leading from arginine to pyrimidines, arginine deiminase, was investigated in crude bacterial extracts. It was inhibited by thymidylic acid and purine ribonucleotides, and to a lesser extent by purine deoxynucleotides and deoxycytidylic acid. Under the assay conditions employed, a number of nucleotides had no effect on the enzyme activity of the aspartate transcarbamylase of L. leichmannii. Growth of the cells in media containing uracil, compared to growth in media without uracil, resulted in a four- to fivefold decrease in the concentrations of aspartate transcar-bamylase and dihydroorotase and a twofold increase in the concentration of arginine deiminase, as estimated from specific enzyme activity in crude extracts of the cells. A small increase in specific enzyme activity of ornithine transcarbamylase and carbamate kinase was also observed in extracts obtained from cells grown on uracil. No appreciable change in concentration of any of the five enzymes studied was detected when the cells were grown in media containing thymidine or guanylic acid. A hypothetical scheme which suggests a relationship between the control of purine and pyrimidine biosynthesis in this bacterium and which is consistent with the experimental results obtained is presented.  相似文献   

3.
Consigli, Richard A. (University of Pennsylvania, Philadelphia), and Harold S. Ginsberg. Activity of aspartate transcarbamylase in uninfected and type 5 adenovirus-infected HeLa cells. J. Bacteriol. 87:1034-1043. 1964.-A two- to three-fold increase in aspartate transcarbamylase (ATCase) activity was observed in type 5 adenovirus-infected HeLa cells 18 hr after infection. The enhanced enzyme activity was virus-specific and dependent on biosynthesis of deoxyribonucleic acid and protein. When various characteristics as well as the kinetics of the enzymes from uninfected and infected cells were compared, ATCase from adenovirus-infected cells was shown to have an altered pH optimum, greater heat stability, increased maximal velocity, and increased K(m) value for aspartate.  相似文献   

4.
A study of the enzymes of the orotate biosynthetic pathway in the kinetoplasid flagellate Crithidia fasciculata has revealed a number of differences between them and those of other organisms, either prokaryotic or eukaryotic. Carbamyl phosphate synthesis could not be demonstrated in cell-free extracts. However, the incorporation of both CO2 and the ureide carbon of citrulline into pyrimidines occurs in growing cells, the latter predominating over the former. The aspartate transcarbamylase of the flagellate has properties which are similar to those of this enzyme as it occurs in mammals rather than other microorganisms. Two enzymes, dihydroorotate synthetase and dihydroorotate hydrolase, are present, the former being responsible for the conversion of carbamylasparate to dihydroorotate. Dihydroorotate hydroxylase, a soluble enzyme requiring a reduced pteridine as a cofactor, converts dihydroorotate to orotate. The hydroxylase is inhibited by orotate, but not by pyrimidine or purine ribonucleotides. Thus orotate serves to control its own biosynthesis.  相似文献   

5.
cDNA complementary to hamster mRNA encoding the CAD protein, a multifunctional protein which carries the first three enzymes of pyrimidine biosynthesis, was constructed. The longest of these recombinants (pCAD142) covers 82% of the 7.9-kilobase mRNA. Portions of the cDNA were excised and replaced by a lac promoter-operator-initiation codon segment. The resultant plasmids were transfected into an Escherichia coli mutant defective in aspartate transcarbamylase, the second enzyme of the pathway. Complementation of the bacterial defect was observed with as little as 2.2 kilobases of cDNA sequence, corresponding to the 3' region of the mRNA. DNA sequencing in this region of the hamster cDNA reveals stretches which are highly homologous to the E. coli gene for the catalytic subunit of aspartate transcarbamylase; other stretches show no homology. The highly conserved regions probably reflect areas of protein structure critical to catalysis, while the nonconserved regions may reflect differences between the quaternary structures of E. coli and mammalian aspartate transcarbamylases, one such difference being that the bacterial enzyme in its native form is allosterically regulated and the mammalian enzyme is not.  相似文献   

6.
A DEAE paper chromatographic method was developed to separate the six sequential intermediates on the pyrimidine biosynthetic pathway. This method has been utilized to assay aspartate transcarbamylase and dihydroorotase activities. Consequently, it can be inferred that the remaining three enzymes unique to pyrimidine biosynthesis can also be assayed in a similar manner.  相似文献   

7.
Pyrimidine-repressible carbamyl phosphate synthetase P was synthesized in parallel with aspartate transcarbamylase during growth of Bacillus subtilis on glucose-nutrient broth. Both enzymes were inactivated at the end of exponential growth, but at different rates and by different mechanisms. Unlike the inactivation of aspartate transcarbamylase, the inactivation of carbamyl phosphate synthetase P was not interrupted by deprivation for oxygen or in a tricarboxylic acid cycle mutant. The arginine-repressible isozyme carbamyl phosphate synthetase A was synthesized in parallel with ornithine transcarbamylase during the stationary phase under these growth conditions. Again, both enzymes were subsequently inactivated, but at different rates and by apparently different mechanisms. The inactivation of carbamyl phosphate synthetase A was not affected in a protease-deficient mutatn the inactivation of ornithine transcarbamylase was greatly slowed.  相似文献   

8.
Consigli, Richard A. (University of Pennsylvania, Philadelphia), and Harold S. Ginsberg. Control of aspartate transcarbamylase activity in type 5 adenovirus-infected HeLa cells. J. Bacteriol. 87:1027-1033. 1964.-Type 5 adenovirus infection induces increased aspartate transcarbamylase (ATCase) activity during the period of magnified nucleic acid biosynthesis. Increased activity can be prevented by addition of pyrimidines to the culture medium. ATCase in HeLa cells is regulated by feedback inhibition, and purified enzyme can be inhibited in vitro by cytidine triphosphate (CTP). The enzyme from infected cells has a pH optimum, maximal velocity, and K(m) for aspartate distinctly different from ATCase from control cells. However, heating of ATCase from uninfected cells converts the enzyme so that its characteristics are identical with enzyme from infected cells. Conversely, addition of CTP to ATCase from infected cells changes the characteristics of the enzyme so that they are the same as those of enzyme from uninfected cells. The evidence presented suggests that increased nucleic acid biosynthesis in infected cells initiates a release from feedback inhibition and increases ATCase activity by reducing the concentration of pyrimidines and purines in the acid-soluble pool.  相似文献   

9.
The deep-sea tube worm Riftia pachyptila (Vestimentifera) from hydrothermal vents lives in an intimate symbiosis with a sulfur-oxidizing bacterium. That involves specific interactions and obligatory metabolic exchanges between the two organisms. In this work, we analyzed the contribution of the two partners to the biosynthesis of pyrimidine nucleotides through both the "de novo" and "salvage" pathways. The first three enzymes of the de novo pathway, carbamyl-phosphate synthetase, aspartate transcarbamylase, and dihydroorotase, were present only in the trophosome, the symbiont-containing tissue. The study of these enzymes in terms of their catalytic and regulatory properties in both the trophosome and the isolated symbiotic bacteria provided a clear indication of the microbial origin of these enzymes. In contrast, the succeeding enzymes of this de novo pathway, dihydroorotate dehydrogenase and orotate phosphoribosyltransferase, were present in all body parts of the worm. This finding indicates that the animal is fully dependent on the symbiont for the de novo biosynthesis of pyrimidines. In addition, it suggests that the synthesis of pyrimidines in other tissues is possible from the intermediary metabolites provided by the trophosomal tissue and from nucleic acid degradation products since the enzymes of the salvage pathway appear to be present in all tissues of the worm. Analysis of these salvage pathway enzymes in the trophosome strongly suggested that these enzymes belong to the worm. In accordance with this conclusion, none of these enzyme activities was found in the isolated bacteria. The enzymes involved in the production of the precursors of carbamyl phosphate and nitrogen assimilation, glutamine synthetase and nitrate reductase, were also investigated, and it appears that these two enzymes are present in the bacteria.  相似文献   

10.
Control of Pyrimidine Biosynthesis in Pseudomonas aeruginosa   总被引:29,自引:17,他引:12       下载免费PDF全文
The pathway of pyrimidine biosynthesis in Pseudomonas aeruginosa has been shown to be the same as in other bacteria. Twenty-seven mutants requiring uracil for growth were isolated and the mutant lesions were identified. Mutants lacking either dihydroorotic acid dehydrogenase, orotidine monophosphate pyrophosphorylase, orotidine monophosphate decarboxylase, or aspartic transcarbamylase were isolated; none lacking dihydroorotase were found. By using transduction and conjugation, four genes affecting pyrimidine biosynthetic enzymes have been identified and shown to be unlinked to each other. The linkage of pyrB to met-28 and ilv-2 was shown by contransduction. Repression by uracil alone or by broth could not be demonstrated for any enzymes of this pathway, in contrast to the situation in Escherichia coli and Serratia marcescens. In addition, derepression of these enzymes could not be demonstrated. A low level of feedback inhibition of aspartic transcarbamylase was found to occur. It is suggested that the control of such constitutive biosynthetic enzymes in P. aeruginosa may be related to the comprehensive metabolic activities of this organism.  相似文献   

11.
Five mutant versions of aspartate transcarbamylase have been isolated, all with single amino acid substitutions in the catalytic chain of the enzyme. A previously isolated pyrB nonsense mutant was suppressed with supB, supC, supD and supG to create enzymes with glutamine, tyrosine, serine or lysine, respectively, inserted at the position of the nonsense codon. Each of these enzymes was purified to homogeneity and kinetically characterized. The approximate location of the substitution was determined by using tryptic fingerprints of the wild-type enzyme and the enzyme obtained with a tyrosine residue inserted at the position of the nonsense codon. By first cloning the pyrBI operon, from the original pyrB nonsense strain, followed by sequencing of the appropriate portion of the gene, the exact location of the mutation was determined to be at position 209 of the catalytic chain. Site-directed mutagenesis was used to generate versions of aspartate transcarbamylase with tyrosine and glutamic acid at this position. The Tyr209 enzyme is identical with that obtained by suppression of the original nonsense mutation with supC. The two enzymes produced by site-directed mutagenesis were purified using a newly created overproducing strain. Kinetic analysis revealed that each mutant has an altered affinity for aspartate, as judged by variations in the substrate concentration at one-half maximal activity. In addition, the mutants exhibit altered Hill coefficients and maximal activities. In the wild-type enzyme, position 209 is a tryptophan residue that is involved in the stabilization of a bend in the molecule near the subunit interface region. The alteration in homotropic cooperativity seems to be due to changes induced in this bend in the molecule, which stabilizes alternate conformational states of the enzyme.  相似文献   

12.
Some metabolic pathways are nearly ubiquitous among organisms: the genes encoding the enzymes for such pathways must therefore be ancient and essential. De novo pyrimidine biosynthesis is an example of one such metabolic pathway. In animals a single protein called CAD
  • 1 Abbreviations: CAD, trifunctional protein catalyzing the first three steps of de novo pyrimidine biosynthesis in higher eukaryotes; CPS, carbamyl phosphate synthetase domain; CPSase, carbamyl phosphate synthetase activity; ATC, aspartate transcarbamylase domain; ATCase, aspartate transcarbamylase activity; DHO, dihydroorotase domain; DHOase, dihydroorotase activity; GLN, glutaminase subdomain or subunit of carbamyl phosphate synthetase, GL Nase, glutaminase activity; SYN, synthetase subdomain or subunit of carbamyl phosphate synthetase; SYNase, synthetase activity.
  • carries the first three steps of this pathway. The same three enzymes in prokaryotes are associated with separate proteins. The CAD gene appears to have evolved through a process of gene duplication and DNA rearrangement, leading to an in-frame gene fusion encoding a chimeric protein. A driving force for the creation of eukaryotic genes encoding multienzymatic proteins such as CAD may be the advantage of coordinate expression of enzymes catalyzing steps in a biosynthetic pathway. The analogous structure in bacteria is the operon. Differences in the translational mechanisms of eukaryotes and prokaryotes may have dictated the different strategies used by organisms to evolve coordinately regulated genes.  相似文献   

    13.
    Aspartate transcarbamylase from Bacillus subtilis has been purified to apparent homogeneity. A subunit molecular weight of 33,500 +/- 1,000 was obtained from electrophoresis in polyarcylamide gels containing sodium dodecyl sulfate and from sedimentation equilibrium analysis of the protein dissolved in 6 M guanidine hydrochloride. The molecular weight of the native enzyme was determined to be 102,000 +/- 2,000 by sedimentation velocity and sedimentation equilibrium analysis. Aspartate transcarbamylase thus appears to be a trimeric protein; cross-linking with dimethyl suberimidate and electrophoretic analysis confirmed this structure. B. subtilis aspartate transcarbamylase has an amino acid composition quite similar to that of the catalytic subunit from Escherichia coli aspartate transcarbamylase; only the content of four amino acids is substantially different. The denaturated enzyme has one free sulfhydryl group. Aspartate transcarbamylase exhibited Michaelis-Menten kinetics and was neither inhibited nor activated by nucleotides. Several anions stimulated activity 2- to 5-fold. Immunochemical studies indicated very little similarity between B. subtilis and E. coli aspartate transcarbamylase or E. coli aspartate transcarbamylase catalytic subunit.  相似文献   

    14.
    Drosophila cells were treated in vitro with N-phosphonacetyl-L-aspartate (PALA) which is a specific inhibitor of aspartate transcarbamylase, the second enzyme of the pyrimidine biosynthetic pathway. By stepwise selection using increasing amounts of this inhibitor, PALA-resistant (PALAr) stable clones have been isolated. Enzymatic activities of aspartate transcarbamylase, carbamyl phosphate synthetase and dihydro-orotase, borne by the same multifunctional protein, CAD, are increased 6-12-fold in these resistant clones compared with parental cells. The aspartate transcarbamylase in PALAr cells is shown by physical, kinetic and immunological criteria to be normal. The data from immunotitration and immunoblotting experiments indicate that the increased enzyme activities result from the overproduction of CAD.  相似文献   

    15.
    The reaction mechanism of Saccharomyces cerevisiae aspartate transcarbamylase was studied in permeabilized cells of a mutant in which this enzyme is not associated to carbamylphosphate synthetase. The results obtained indicate an ordered mechanism in which carbamylphosphate binds first, followed by aspartate, with dissociation of the products in the order phosphate then carbamylaspartate. Interestingly, this clear-cut mechanism differs from the more complex behavior shown by aspartate transcarbamylase when this enzyme is associated to carbamylphosphate synthetase in wild-type S. cerevisiae (B. Penverne and G. Hervé, Arch. Biochem. Biophys. (1983) 225, 562-575). This difference indicates that the association of the two enzymes within the multienzymatic complex alters the apparent kinetic properties of aspartate transcarbamylase. Such an enzyme-enzyme interaction might be related to the channeling of carbamylphosphate from one catalytic site to the other one.  相似文献   

    16.
    The isolation and characterization of a new mutant of Chinese hamster ovary cells is described. This mutant, Urd-A, shows an absolute requirement for exogenously added pyrimidines for growth. Complementation analysis indicates that the lesion in this mutant is recessive. Revertants can be isolated at frequencies suggesting that it is a single gene alteration. Biochemical analysis of cell-free extracts of CHO-K1 (Urd+) and Urd-A revealed that Urd-A possesses no more than 10% of wild-type levels of carbamyl phosphate synthetase (EC 2.7.2.9) activity, no more than 1% of wild-type levels of aspartate transcarbamylase (EC 1.2.3.2) activity, and undetectable levels of dihydroorotase (EC 3.5.2.3) activity. Thus, this mutant appears simultaneously to possess marked or complete deficiencies in the activities of the first three enzymes of pyrimidine biosynthesis. Activities of the other enzymes of the pathway appear normal. The use of this mutant for biochemical-genetic studies of pyrimidine biosynthesis is discussed.  相似文献   

    17.
    Glutamine-dependent carbamyl phosphate synthetase of rat liver, purified about 2,100-fold, existed as a complex with aspartate transcarbamylase and dihydroorotase, the second and third enzymes of pyrimidine biosynthesis, with a sedimentation coefficient of 27 S. Treatment of this complex with pancreatic elastase caused a selective inactivation of the transcarbamylase with concomitant dissociation of the complex. The dissociated synthetase was as sensitive to allosteric effectors as the enzyme within the complex, but had a 5 times higher apparent Km for MgATP2?. This change appears to be intimately related to the release of the enzyme from the complex.  相似文献   

    18.
    Aspartate transcarbamylase is synthesized during exponential growth of Bacillus subtilis and is inactivated when the cells enter the stationary phase. This work is a study of the regulation of aspartate transcarbamylase synthesis during growth and the stationary phase. Using specific immunoprecipitation of aspartate transcarbamylase from extracts of cells pulse-labeled with tritiated leucine, we showed that the synthesis of the enzyme decreased very rapidly at the end of exponential growth and was barely detectable during inactivation of the enzyme. Synthesis of most cell proteins continued during this time. When the cells ceased growing because of pyrimidine starvation of a uracil auxotroph, however, synthesis and inactivation occurred simultaneously. Measurement of pools of pyrimidine nucleotides and guanosine tetra- and pentaphosphate demonstrated that failure to synthesize aspartate transcarbamylase in the stationary phase was not explained by simple repression by these compounds. The cessation of aspartate transcarbamylase synthesis may reflect the shutting off of a "vegetative gene" as part of the program of differential gene expression during sporulation. However, aspartate transcarbamylase synthesis decreased normally at the end of exponential growth at the nonpermissive temperature in a mutant strain that is temperature-sensitive in sporulation and RNA polymerase function. Cessation of aspartate transcarbamylase synthesis appeared to be normal in three other temperature-sensitive RNA polymerase mutants and in several classes of spo0 mutants.  相似文献   

    19.
    A strain of Escherichia coli has been constructed which greatly overproduces the enzyme aspartate transcarbamylase. This strain has a deletion in the pyrB region of the chromosome and also carries a leaky mutation in pyrF. Although this strain is a pyrimidine auxotroph, it will grow very slowly without pyrimidines if a plasmid containing the pyrB gene is introduced into it. Derepression occurs when this strain exhausts its uracil supply during exponential growth. Under extreme derepression, aspartate transcarbamylase can account for as much as 60% of the total cellular protein. This host strain/plasmid system can be utilized for the rapid purification of wild-type aspartate transcarbamylase or plasmid-born mutant versions of the enzyme. This system is particularly well-suited for analysis of the latter since the control of overproduction resides exclusively on the bacterial chromosome. Therefore, any plasmid bearing the pyrBI operon can be made to overproduce aspartate transcarbamylase in this host strain. Based on this system, a rapid purification procedure has been developed for E. coli aspartate transcarbamylase. The purification scheme involves an ammonium sulfate fractionation followed by a single precipitation of the enzyme at its isoelectric point. In a similar fashion, this strain can also be employed to produce exclusively the catalytic subunit of the enzyme if the plasmid only carries the pyrB gene. This system may be adapted to overproduce other proteins as well by using this host strain and the strong pyrB promoter linked to another gene.  相似文献   

    20.
    The repressive effects of exogenous cytidine on growing cells was examined in a specially constructed strain in which the pool sizes of endogenous uridine 5'-diphosphate and uridine 5'-triphosphate cannot be varied by the addition of uracil and/or uridine to the medium. Five enzymes of the pyrimidine biosynthetic pathway and one enzyme of the arginine biosynthetic pathway were assayed from cells grown under a variety of conditions. Cytidine repressed the synthesis of dihydroorotase (encoded by pyrC), dihydroorotate dehydrogenase (encoded by pyrD), and ornithine transcarbamylase (encoded by argI). Moreover, aspartate transcarbamylase (encoded by pyrB) became further derepressed upon cytidine addition, whereas no change occurred in the levels of the last two enzymes (encoded by pyrE and pyrF) of the pyrimidine pathway. Quantitative nucleotide pool determinations have provided evidence that any individual ribo- or deoxyribonucleoside mono-, di-, or triphosphate of cytosine or uracil is not a repressing metabolite for the pyrimidine biosynthetic enzymes. Other nucleotide derivatives or ratios must be considered.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号