首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Atypical protein kinase C (aPKC) isozymes function in epithelial cell polarity, proliferation, and survival and have been implicated in cellular transformation. However, the role of these enzymes in human cancer is largely unexplored. Here, we report that aPKCiota is highly expressed in human non-small cell lung cancer cell lines, whereas the closely related aPKC isozyme PKCzeta is undetectable in these cells. Disruption of PKCiota signaling reveals that PKCiota is dispensable for adherent growth of non-small cell lung cancer cells but is required for transformed growth in soft agar in vitro and for tumorigenicity in vivo. Molecular dissection of signaling down-stream of PKCiota demonstrates that Rac1 is a critical molecular target for PKCiota-dependent transformation, whereas PKCiota is not necessary for NFkappaB activation in vitro or in vivo. Expression of the PB1 domain of PKCiota (PKCiota-(1-113)) blocks PKCiota-dependent Rac1 activity and inhibits cellular transformation indicating a role for this domain in the transforming activity of PKCiota. Taken together, our data demonstrate that PKCiota is a critical lung cancer gene that activates a Rac1-->Pak-->Mek1,2-->Erk1,2 signaling pathway required for transformed growth. Our data indicate that PKCiota may be an attractive molecular target for mechanism-based therapies for treatment of lung cancer.  相似文献   

2.
We recently identified the gold compound aurothiomalate (ATM) as a potent inhibitor of the Phox and Bem1p (PB1)-PB1 domain interaction between protein kinase C (PKC) iota and the adaptor molecule Par6. ATM also blocks oncogenic PKCiota signaling and the transformed growth of human lung cancer cells. Here we demonstrate that ATM is a highly selective inhibitor of PB1-PB1 domain interactions between PKCiota and the two adaptors Par6 and p62. ATM has no appreciable inhibitory effect on other PB1-PB1 domain interactions, including p62-p62, p62-NBR1, and MEKK3-MEK5 interactions. ATM can form thio-gold adducts with cysteine residues on target proteins. Interestingly, PKCiota (and PKCzeta) contains a unique cysteine residue, Cys-69, within its PB1 domain that is not present in other PB1 domain containing proteins. Cys-69 resides within the OPR, PC, and AID motif of PKCiota at the binding interface between PKCiota and Par6 where it interacts with Arg-28 on Par6. Molecular modeling predicts formation of a cysteinyl-aurothiomalate adduct at Cys-69 that protrudes into the binding cleft normally occupied by Par6, providing a plausible structural explanation for ATM inhibition. Mutation of Cys-69 of PKCiota to isoleucine or valine, residues frequently found at this position in other PB1 domains, has little or no effect on the affinity of PKCiota for Par6 but confers resistance to ATM-mediated inhibition of Par6 binding. Expression of the PKCiota C69I mutant in human non-small cell lung cancer cells confers resistance to the inhibitory effects of ATM on transformed growth. We conclude that ATM inhibits cellular transformation by selectively targeting Cys-69 within the PB1 domain of PKCiota.  相似文献   

3.
Phosphorylation of the cytoskeletal protein talin by protein kinase C   总被引:12,自引:0,他引:12  
Talin, a component of the focal contact of cultured cells, is an in vitro substrate for protein kinase C. Immunoprecipitation confirms that talin is the phosphorylated protein. Phosphorylation is dependent on both phosphatidylserine and calcium and reaches a level of incorporation of 0.8 mol phosphate/mol protein. Phosphoamino acid analysis demonstrates the presence of phosphoserine and phosphothreonine, but no phosphotyrosine. Two dimensional mapping of tryptic peptides, and V8 peptides reveals the existence of multiple phosphorylation sites. The identification of talin as a substrate for protein kinase C implicates talin as a potential regulator of focal contact organization and perhaps cell morphology.  相似文献   

4.
High mobility group (HMG) N1 protein, formerly known as HMG 14, is a member of the chromosomal HMG protein family. Protein kinase CK2 was previously reported to be able to phosphorylate bovine HMGN1 in vitro; Ser89 and Ser99, corresponding to Ser88 and Ser98 in human HMGN1, were shown to be major and minor recognition sites, respectively. In this report, we employed mass spectrometry and examined both the extent and the sites of phosphorylation in HMGN1 protein catalyzed by recombinant human protein kinase CK2. We found that five serine residues, i.e., Ser6, Ser7, Ser85, Ser88, and Ser98, in HMGN1 can be phosphorylated by the kinase in vitro. All five sites were previously shown to be phosphorylated in MCF-7 human breast cancer cells in vivo. Among these five sites, Ser6, Ser7, and Ser85 were new sites of phosphorylation induced by protein kinase CK2 in vitro.  相似文献   

5.
6.
Purified lamb thymus high-mobility-group (HMG) proteins 1, 2, and 17 have been investigated as potential substrates for the Ca2+-phospholipid-dependent protein kinase and the cAMP-dependent protein kinase. HMG proteins 1, 2, and 17 are phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the reactions are totally Ca2+ and lipid dependent and are not inhibited by the inhibitor protein of the cAMP-dependent protein kinase. HMG 17 is phosphorylated predominantly in a single seryl residue, Ser 24 in the sequence Gln-Arg-Arg-Ser 24-Ala-Arg-Leu-Ser 28-Ala-Lys, with the second seryl moiety, Ser 28, modified to a markedly lesser degree. HMGs 1 and 2 are also phosphorylated in only seryl residues but with each there are multiple phosphorylation sites. HMG 17, but not HMG 1 or 2, is also phosphorylated by the cAMP-dependent protein kinase with the site phosphorylated being the minor of the two phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the Km for phosphorylation by the cAMP-dependent enzyme is 50-fold higher than that by the Ca2+-phospholipid-dependent enzyme. HMG 17 is an equally effective substrate for the Ca2+-phospholipid-dependent protein kinase either as the pure protein or bound to nucleosomes. Preliminary evidence has indicated that lamb thymus HMG 14 is also a substrate for the Ca2+-phospholipid-dependent enzyme. It is phosphorylated with a Km similar to that of HMG 17 (4-6 microM), and a comparison of tryptic peptides suggests that it is phosphorylated in a site that is homologous with Ser 24 of HMG 17 and distinct from the sites phosphorylated by the cAMP-dependent protein kinase.  相似文献   

7.
We have examined the posttranslational modification of the human chromatin protein DEK and found that DEK is phosphorylated by the protein kinase CK2 in vitro and in vivo. Phosphorylation sites were mapped by quadrupole ion trap mass spectrometry and found to be clustered in the C-terminal region of the DEK protein. Phosphorylation fluctuates during the cell cycle with a moderate peak during G(1) phase. Filter binding assays, as well as Southwestern analysis, demonstrate that phosphorylation weakens the binding of DEK to DNA. In vivo, however, phosphorylated DEK remains on chromatin. We present evidence that phosphorylated DEK is tethered to chromatin throughout the cell cycle by the un- or underphosphorylated form of DEK.  相似文献   

8.
H Kanoh  T Ono 《FEBS letters》1986,201(1):97-100
Pig brain diacylglycerol kinase did not catalyze autophosphorylation. However, the kinase was phosphorylated on serine, when immunoprecipitated from the partially purified enzyme preparation preincubated with Mg2+ and [gamma-32P]ATP. The action of the endogenous protein kinase phosphorylating diacylglycerol kinase was independent of cyclic nucleotides and Ca2+, and became maximum at pH 5.5. Although the extent of enzyme phosphorylation was limited (maximally about 0.25 mol Pi incorporated per mol kinase), the results show that diacylglycerol kinase can be a phosphoprotein.  相似文献   

9.
Mitogen-activated protein kinases (MAPKs) transduce extracellular signals into responses such as growth, differentiation, and death through their phosphorylation of specific substrate proteins. Early studies showed the consensus sequence (Pro/X)-X-(Ser/Thr)-Pro to be phosphorylated by MAPKs. Docking domains such as the "kinase interaction motif" (KIM) also appear to be crucial for efficient substrate phosphorylation. Here, we show that stress-activated protein kinase-3 (SAPK3), a p38 MAPK subfamily member, localizes to the mitochondria. Activated SAPK3 phosphorylates the mitochondrial protein Sab, an in vitro substrate of c-Jun N-terminal kinase (JNK). Sab phosphorylation by SAPK3 was dependent on the most N-terminal KIM (KIM1) of Sab and occurred primarily on Ser321. This appeared to be dependent on the position of Ser321 within Sab and the sequence immediately surrounding it. Our results suggest that SAPK3 and JNK may share a common target at the mitochondria and provide new insights into the substrate recognition by SAPK3.  相似文献   

10.
Human and bovine fibrinogen as well as fibrin are shown to be phosphorylated by Co631 (monolayer, hamster) and RPL12 (suspension, chicken) cells by their surface protein kinase of the casein kinase II type. The phosphate label is introduced into the alpha-peptide. The kinase system phosphorylates serine residues and utilizes GTP equally well as ATP. The participation of intact cell surfaces indicates the possibility of phosphorylation of extracellular fibrinogen independently of the site of its biosynthesis.  相似文献   

11.
beta-Glucuronidases purified from human hepatoma and from normal liver could serve as a substrate for a cAMP-dependent protein kinase. The rate of phosphorylation reaction of the hepatoma beta-glucuronidase was rapid, whereas that of the normal liver beta-glucuronidase was slow and much lower. Stoichiometry of phosphorylation was 4.3 and 0.46 mol of phosphate/mol of the beta-glucuronidase from the hepatoma and normal liver, respectively. Tryptic peptide mapping of 32P-labeled beta-glucuronidase from hepatoma identified two distinct phosphopeptides (X and Y). The peptide from hepatoma hydrolase was phosphorylated predominantly at the X, while the peptide Y was the major phosphopeptide in the hydrolase of normal liver. Analysis of phosphoamino acids revealed two sites, phosphoserine and phosphothreonine. beta-Glucuronidase from hepatoma consisted of a major subunit with molecular mass of 64,000 (64 kDa) and a minor subunit with 76 kDa, whereas the hydrolase from normal liver had almost exclusively 64 kDa subunit. 32P-labeled beta-glucuronidase indicated that the 64 kDa subunit was phosphorylated both in hepatoma and normal liver beta-glucuronidases.  相似文献   

12.
Calmodulin-dependent protein kinase IV (CaM-kinase IV), a neuronal calmodulin-dependent multifunctional protein kinase, undergoes autophosphorylation in response to Ca2+ and calmodulin, resulting in activation of the enzyme (Frangakis et al. (1991) J. Biol. Chem. 266, 11309-11316). In contrast, the enzyme was phosphorylated by cAMP-dependent protein kinase, leading to a decrease in the enzyme activity. Thus, the results suggest differential regulation of CaM-kinase IV by two representative second messengers, Ca2+ and cAMP.  相似文献   

13.
14.
Phosphorylation of phospholipase C-gamma by cAMP-dependent protein kinase   总被引:9,自引:0,他引:9  
The mechanism by which cAMP modulates the activity of phosphoinositide-specific phospholipase C (PLC) was studied. Elevation of cAMP inhibited both basal and norepinephrine-stimulated phosphoinositide breakdown in C6Bu1 cells which contain at least three PLC isozymes, PLC-beta, PLC-gamma, and PLC-delta. Treatment of C6Bu1 cells with cAMP-elevating agents (cholera toxin, isobutylmethylxanthine, forskolin, and 8-bromo-cAMP) increased serine phosphate in PLC-gamma, but the phosphate contents in PLC-beta and PLC-delta were not changed. In addition, cAMP-dependent protein kinase selectively phosphorylated purified PLC-gamma among the three isozymes and added a single phosphate at serine. The serine phosphorylation, nevertheless, did not affect the activity of PLC-gamma in vitro. We propose, therefore, that the phosphorylation of PLC-gamma by cAMP-dependent protein kinase alters its interaction with putative modulatory proteins and leads to its inhibition.  相似文献   

15.
16.
17.
Phosphorylation of tubulin by a calmodulin-dependent protein kinase   总被引:16,自引:0,他引:16  
Calmodulin-dependent protein kinase was purified from porcine brain cytosol through sequential steps involving acid precipitation, DEAE-chromatography, and calmodulin-Sepharose chromatography. The purified enzyme contained a major Mr 50,000 and a minor Mr 60,000 peptide. Porcine brain tubulin was a major substrate for this kinase. Under optimal conditions 2.6 mol of phosphate were incorporated per mol of tubulin. The kinase phosphorylated both tubulin subunits at their carboxyl-terminal region. Limited proteolysis, using trypsin and chymotrypsin, of phosphorylated and unphosphorylated tubulins resulted in different cleavage patterns as determined by peptide mapping. Phosphorylated tubulin was unable to bind to microtubule-associated protein or to polymerize, but regained its assembly capacity after phosphatase treatment.  相似文献   

18.
Several extracellular proteins have been reported to be phosphorylated. Previous studies of our laboratory indicated that laminin-1 can be phosphorylated by protein kinase A (PKA). Moreover, it has been reported that protein kinase C (PKC), although known to be intracellular, can phosphorylate extracellular proteins in the case of cellular damage and/or platelet activation. In the present study we examined the possibility of laminin-1 serving as a substrate of PKC. Amino acid analysis revealed that laminin-1 is phosphorylated by this enzyme on serine residues. Self assembly, heparin binding, and cell attachment on the phosphorylated molecule were then studied. Phosphorylated laminin-1 showed an increased and more rapid self assembly than the non-phosphorylated molecule. Heparin binding and cell attachment experiments indicated enhanced heparin and cell binding capacity of the phosphorylated molecule in comparison to the non- phosphorylated control. These results indicate that laminin-1 can be phosphorylated by protein kinase C. Furthermore, phosphorylation by protein kinase C seems to alter several properties of the molecule, though, the in vivo significance of this phenomenon remains to be studied.  相似文献   

19.
Phosphorylation of neurofilament proteins by protein kinase C   总被引:9,自引:0,他引:9  
R K Sihag  A Y Jeng  R A Nixon 《FEBS letters》1988,233(1):181-185
The low molecular mass (70 kDa) subunit of neurofilaments (NF-L) contains at least three phosphorylation sites in vivo and is phosphorylated by multiple kinases in a site-specific manner [(1987) J. Neurochem. 48, S101; Sihag, R.K. and Nixon, R.A. submitted]. In this study, we observed that the three subunits of neurofilament proteins from retinal ganglion cell neurons are substrates for purified mouse brain protein kinase C. Two-dimensional alpha-chymotryptic phosphopeptide map analyses of the NF-L subunit demonstrated that protein kinase C phosphorylates four polypeptide sites, two of which incorporate phosphate when retinal ganglion cells are pulse-radiolabeled with [32P]orthophosphate in vivo.  相似文献   

20.
We investigated the effects of enzyme phosphorylation in vitro on the properties of diacylglycerol kinase. Diacylglycerol kinase and protein kinase C, both present as Mr-80,000 proteins, were highly purified from pig thymus cytosol. Protein kinase C phosphorylated diacylglycerol kinase (up to 1 mol of 32P/mol of enzyme) much more actively than did cyclic AMP-dependent protein kinase. Phosphorylated and non-phosphorylated diacylglycerol kinase showed a similar pI, approx. 6.8. Diacylglycerol kinase phosphorylated by either protein kinase C or cyclic AMP-dependent protein kinase was almost exclusively associated with phosphatidylserine membranes. In contrast, soluble kinase consisted of the non-phosphorylated form. The catalytic properties of the lipid kinase were not much affected by phosphorylation, although phosphorylation-linked binding with phosphatidylserine vesicles resulted in stabilization of the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号