首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In anaphase, sister chromatids separate abruptly and are then segregated by the mitotic spindle. The protease separase triggers sister separation by cleaving the Scc1/Mcd1 subunit of the cohesin ring that holds sisters together. Polo-kinase phosphorylation of Scc1 promotes its cleavage, but the underlying regulatory circuits are unclear. We developed a separase biosensor in Saccharomyces cerevisiae that provides a quantitative indicator of cohesin cleavage in single cells. Separase is abruptly activated and cleaves most cohesin within 1?min, after which anaphase begins. Cohesin near centromeres and telomeres is cleaved at the same rate and time. Protein phosphatase PP2A(Cdc55) inhibits cohesin cleavage by counteracting polo-kinase phosphorylation of Scc1. In early anaphase, the previously described separase inhibition of PP2A(Cdc55) promotes cohesin cleavage. Thus, separase acts directly on Scc1 and also indirectly, through inhibition of PP2A(Cdc55), to stimulate cohesin cleavage, providing a feedforward loop that may contribute to a robust and timely anaphase.  相似文献   

2.
Sister chromatid cohesion is established during replication by entrapment of both dsDNAs within the cohesin ring complex. It is dissolved in anaphase when separase, a giant cysteine endopeptidase, cleaves the Scc1/Rad21 subunit of cohesin, thereby triggering chromosome segregation. Separase is held inactive by association with securin until this anaphase inhibitor is destroyed at the metaphase-to-anaphase transition by ubiquitin-dependent degradation. The relevant ubiquitin ligase, the anaphase-promoting complex/cyclosome, also targets cyclin B1, thereby causing inactivation of Cdk1 and mitotic exit. Although separase is essential, securin knock-out mice are surprisingly viable and fertile. Capitalizing on our previous finding that Cdk1-cyclin B1 can also bind and inhibit separase, we investigated whether this kinase might be suitable to maintain faithful timing and execution of anaphase in the absence of securin. We found that, similar to securin, Cdk1-cyclin B1 regulates separase in both a positive and negative manner. Although securin associates with nascent separase to co-translationally assist proper folding, Cdk1-cyclin B1 acts on native state separase. Upon entry into mitosis, Cdk1-cyclin B1-dependent phosphorylation of Ser-1126 renders separase prone to inactivation by aggregation/precipitation. Stable association of Cdk1-cyclin B1 with phosphorylated separase counteracts this tendency and stabilizes separase in an inhibited yet activatable state. These opposing effects are suited to prevent premature cleavage of cohesin in early mitosis while ensuring timely activation of separase by anaphase-promoting complex/cyclosome-dependent degradation of cyclin B1. Coupling sister chromatid separation with subsequent exit from mitosis by this simplified mode might have been the common scheme of mitotic control prior to the evolution of securin.  相似文献   

3.
Cohesion between sister chromatids is essential for their bi-orientation on mitotic spindles. It is mediated by a multisubunit complex called cohesin. In yeast, proteolytic cleavage of cohesin's alpha kleisin subunit at the onset of anaphase removes cohesin from both centromeres and chromosome arms and thus triggers sister chromatid separation. In animal cells, most cohesin is removed from chromosome arms during prophase via a separase-independent pathway involving phosphorylation of its Scc3-SA1/2 subunits. Cohesin at centromeres is refractory to this process and persists until metaphase, whereupon its alpha kleisin subunit is cleaved by separase, which is thought to trigger anaphase. What protects centromeric cohesin from the prophase pathway? Potential candidates are proteins, known as shugoshins, that are homologous to Drosophila MEI-S332 and yeast Sgo1 proteins, which prevent removal of meiotic cohesin complexes from centromeres at the first meiotic division. A vertebrate shugoshin-like protein associates with centromeres during prophase and disappears at the onset of anaphase. Its depletion by RNA interference causes HeLa cells to arrest in mitosis. Most chromosomes bi-orient on a metaphase plate, but precocious loss of centromeric cohesin from chromosomes is accompanied by loss of all sister chromatid cohesion, the departure of individual chromatids from the metaphase plate, and a permanent cell cycle arrest, presumably due to activation of the spindle checkpoint. Remarkably, expression of a version of Scc3-SA2 whose mitotic phosphorylation sites have been mutated to alanine alleviates the precocious loss of sister chromatid cohesion and the mitotic arrest of cells lacking shugoshin. These data suggest that shugoshin prevents phosphorylation of cohesin's Scc3-SA2 subunit at centromeres during mitosis. This ensures that cohesin persists at centromeres until activation of separase causes cleavage of its alpha kleisin subunit. Centromeric cohesion is one of the hallmarks of mitotic chromosomes. Our results imply that it is not an intrinsically stable property, because it can easily be destroyed by mitotic kinases, which are kept in check by shugoshin.  相似文献   

4.
Separase is a protease that triggers chromosome segregation at anaphase onset by cleaving cohesin, the chromosomal protein complex responsible for sister chromatid cohesion. After anaphase, cells exit from mitosis; that is, they complete downregulation of cyclin-dependent kinase activity, undergo cytokinesis and enter G1 of the next cell cycle. Here we show that separase activation at the onset of anaphase is sufficient to promote release from the nucleolus and activation of the budding yeast phosphatase, Cdc14, a key step in mitotic exit. The ability of separase to activate Cdc14 is independent of its protease function but may involve promoting phosphorylation of the Cdc14 inhibitor Net1. This novel separase function is coregulated with its proteolytic activity by the separase inhibitor securin. This helps to explain the coupling of anaphase and mitotic exit--after securin degradation at anaphase onset, separase cleaves cohesin to trigger chromosome segregation and concurrently uses a non-proteolytic mechanism to initiate mitotic exit.  相似文献   

5.
Separase, a large protease essential for sister chromatid separation, cleaves the cohesin subunit Scc1/Rad21 during anaphase and leads to dissociation of the link between sister chromatids. Securin, a chaperone and inhibitor of separase, is ubiquitinated by APC/cyclosome, and degraded by 26S proteasome in anaphase. Cdc48/VCP/p97, an AAA ATPase, is involved in a variety of cellular activities, many of which are implicated in the proteasome-mediated degradation. We previously reported that temperature-sensitive (ts) fission yeast Schizosaccharomyces pombe cdc48 mutants were suppressed by multicopy plasmid carrying the cut1(+)/separase gene and that the defective mitotic phenotypes of cut1 and cdc48 were similar. We here describe characterizations of Cdc48 mutant protein and the role of Cdc48 in sister chromatid separation. Mutant residue resides in the conserved D1 domain within the central hole of hexamer, while Cdc48 mutant protein possesses the ATPase activity. Consistent with the phenotypic similarity and the rescue of cdc48 mutant by overproduced Cut1/separase, the levels of Cut1 and also Cut2 are diminished in cdc48 mutant. We show that the stability of Cut1 during anaphase requires Cdc48. Cells lose viability during the traverse of anaphase in cdc48 mutant cells. Cdc48 may protect Cut1/separase and Cut2/securin against the instability during polyubiquitination and degradation in the metaphase-anaphase transition.  相似文献   

6.
At the onset of anaphase, a protease called separase breaks the link between sister chromatids by cleaving the cohesin subunit Scc1. This irreversible step in the cell cycle is promoted by degradation of the separase inhibitor, securin, and polo-like kinase (Plk) 1-dependent phosphorylation of the Scc1 subunit. Plk could recognize substrates through interaction between its phosphopeptide interaction domain, the polo-box domain, and a phosphorylated priming site in the substrate, which has been generated by a priming kinase beforehand. However, the physiological relevance of this targeting mechanism remains to be addressed for many of the Plk1 substrates. Here, we show that budding yeast Plk1, Cdc5, is pre-deposited onto cohesin engaged in cohesion on chromosome arms in G2/M phase cells. The Cdc5-cohesin association is mediated by direct interaction between the polo-box domain of Cdc5 and Scc1 phosphorylated at multiple sites in its middle region. Alanine substitutions of the possible priming phosphorylation sites (scc1-15A) impair Cdc5 association with chromosomal cohesin, but they make only a moderate impact on mitotic cell growth even in securin-deleted cells (pds1Δ), where Scc1 phosphorylation by Cdc5 is indispensable. The same scc1-15A pds1Δ double mutant, however, exhibits marked sensitivity to the DNA-damaging agent phleomycin, suggesting that the priming phosphorylation of Scc1 poses an additional layer of regulation that enables yeast cells to adapt to genotoxic environments.  相似文献   

7.
Kitagawa R  Law E  Tang L  Rose AM 《Current biology : CB》2002,12(24):2118-2123
Accurate chromosome segregation is achieved by a series of highly regulated processes that culminate in the metaphase-to-anaphase transition of the cell cycle. In the budding yeast Saccharomyces cerevisiae, the degradation of the securin protein Pds1 reverses the binding and inhibition of the separase protein Esp1. Esp1 cleaves Scc1. That cleavage promotes the dissociation of the cohesin complex from the chromosomes and leads the separation of sister chromatids. Proteolysis of Pds1 is regulated by the anaphase-promoting complex (APC), a large multi-subunit E3 ubiquitin ligase whose activity is regulated by Cdc20/Fizzy. We have previously shown that the Caenorhabditis elegans genes mdf-1/MAD1 and mdf-2/MAD2 encode key members of the spindle checkpoint. Loss of function of either gene leads to an accumulation of somatic and heritable defects and ultimately results in death. Here we show that a missense mutation in fzy-1/CDC20/Fizzy suppresses mdf-1 lethality. We identified a FZY-1-interacting protein, IFY-1, a novel destruction-box protein. IFY-1 accumulates in one-cell-arrested emb-30/APC4 embryos and interacts with SEP-1, a C. elegans separase, suggesting that IFY-1 functions as a C. elegans securin.  相似文献   

8.
The onset of anaphase is triggered by the activation of a site-specific protease called separase. Separase cleaves the chromosomal cohesins holding the duplicated sister chromatids together, allowing sisters to simultaneously separate and segregate to opposite ends of the cell before division. Activated separase cleaves not only cohesin, but also itself; however, the biological significance of separase self-cleavage has remained elusive. Before anaphase, separase is inhibited by at least two mechanisms. The first involves the binding of securin, whereas the second requires the phosphorylation-dependent binding of cyclin-dependent kinase 1 (Cdk1)/cyclin B1. Because securin and Cdk1/cyclin B1 interact with separase in a mutually exclusive manner, the degradation of both these inhibitors plays an important role in activating separase at anaphase. Here we identify a new separase interacting partner, a specific subtype of the heterotrimeric protein phosphatase 2A (PP2A). PP2A associates with separase through the B' (B56) regulatory subunit and does so independently of securin and cyclin B1 binding. The association of PP2A with separase requires a 55-amino acid domain closely juxtaposed to separase autocleavage sites. Strikingly, mutation of these cleavage sites increases PP2A binding, suggesting that separase cleavage disrupts the interaction of PP2A with separase. Furthermore, expression of a non-cleavable separase, but not a non-cleavable mutant that cannot bind PP2A, causes a premature loss of centromeric cohesion. Together these observations provide a new mechanistic insight into a physiological function for separase self-cleavage.  相似文献   

9.
Hornig NC  Uhlmann F 《The EMBO journal》2004,23(15):3144-3153
The final irreversible step in the duplication and dissemination of eukaryotic genomes takes place when sister chromatid pairs split and separate in anaphase. This is triggered by the protease separase that cleaves the Scc1 subunit of 'cohesin', the protein complex responsible for holding sister chromatids together in metaphase. Only part of cellular cohesin is bound to chromosomes in metaphase, and it is unclear whether and how separase specifically targets this fraction for cleavage. We established an assay to compare cleavage of chromatin-bound versus soluble budding yeast cohesin. Scc1 in chromosomal cohesin is significantly preferred by separase over Scc1 in soluble cohesin. The difference is most likely due to preferential phosphorylation of chromatin-bound Scc1 by Polo-like kinase. Site-directed mutagenesis of 10 Polo phosphorylation sites in Scc1 slowed cleavage of chromatin-bound cohesin, and hyperphosphorylation of soluble Scc1 by Polo overexpression accelerated its cleavage to levels of chromosomal cohesin. Polo is bound to chromosomes independently of cohesin's presence, providing a possible explanation for chromosome-specific cohesin modification and targeting of separase cleavage.  相似文献   

10.
Cyclin-specific control of ribosomal DNA segregation   总被引:1,自引:0,他引:1  
Following chromosome duplication in S phase of the cell cycle, the sister chromatids are linked by cohesin. At the onset of anaphase, separase cleaves cohesin and thereby initiates sister chromatid separation. Separase activation results from the destruction of its inhibitor, securin, which is triggered by a ubiquitin ligase called the anaphase-promoting complex (APC). Here, we show in budding yeast that securin destruction and, thus, separase activation are not sufficient for the efficient segregation of the repetitive ribosomal DNA (rDNA). We find that rDNA segregation also requires the APC-mediated destruction of the S-phase cyclin Clb5, an activator of the protein kinase Cdk1. Mutations that prevent Clb5 destruction are lethal and cause defects in rDNA segregation and DNA synthesis. These defects are distinct from the mitotic-exit defects caused by stabilization of the mitotic cyclin Clb2, emphasizing the importance of cyclin specificity in the regulation of late-mitotic events. Efficient rDNA segregation, both in mitosis and meiosis, also requires APC-dependent destruction of Dbf4, an activator of the protein kinase Cdc7. We speculate that the dephosphorylation of Clb5-specific Cdk1 substrates and Dbf4-Cdc7 substrates drives the resolution of rDNA in early anaphase. The coincident destruction of securin, Clb5, and Dbf4 coordinates bulk chromosome segregation with segregation of rDNA.  相似文献   

11.
Sister chromatid separation at anaphase is triggered by cleavage of the cohesin subunit Scc1, which is mediated by separase. Centriole disengagement also requires separase. This dual role of separase permits concurrent control of these events for accurate metaphase to anaphase transition. Although the molecular mechanism underlying sister chromatid cohesion has been clarified, that of centriole cohesion is poorly understood. In this study, we show that Akt kinase–interacting protein 1 (Aki1) localizes to centrosomes and regulates centriole cohesion. Aki1 depletion causes formation of multipolar spindles accompanied by centriole splitting, which is separase dependent. We also show that cohesin subunits localize to centrosomes and that centrosomal Scc1 is cleaved by separase coincidentally with chromatin Scc1, suggesting a role of Scc1 as a connector of centrioles as well as sister chromatids. Interestingly, Scc1 depletion strongly induces centriole splitting. Furthermore, Aki1 interacts with cohesin in centrosomes, and this interaction is required for centriole cohesion. We demonstrate that centrosome-associated Aki1 and cohesin play pivotal roles in preventing premature cleavage in centriole cohesion.  相似文献   

12.
Sister chromatid cohesion is resolved at anaphase onset when separase, a site-specific protease, cleaves the Scc1 subunit of the chromosomal cohesin complex that is responsible for holding sister chromatids together. This mechanism to initiate anaphase is conserved in eukaryotes from budding yeast to man. Budding yeast separase recognizes and cleaves two conserved peptide motifs within Scc1. In addition, separase cleaves a similar motif in the kinetochore and spindle protein Slk19. Separase may cleave further substrate proteins to orchestrate multiple cellular events that take place during anaphase. To investigate substrate recognition by budding yeast separase we analyzed the sequence requirements at one of the Scc1 cleavage site motifs by systematic mutagenesis. We derived a cleavage site consensus motif (not(FKRWY))(ACFHILMPVWY)(DE)X(AGSV)R/X. This motif is found in 1,139 of 5,889 predicted yeast proteins. We analyzed 28 candidate proteins containing this motif as well as 35 proteins that contain a core (DE)XXR motif. We could so far not confirm new separase substrates, but we have uncovered other forms of mitotic regulation of some of the proteins. We studied whether determinants other than the cleavage site motif mediate separase-substrate interaction. When the separase active site was occupied with a peptide inhibitor covering the cleavage site motif, separase still efficiently interacted with its substrate Scc1. This suggests that separase recognizes both a cleavage site consensus sequence as well as features outside the cleavage site.  相似文献   

13.
The universal triggering event of eukaryotic chromosome segregation is cleavage of centromeric cohesin by separase. Prior to anaphase, most separase is kept inactive by association with securin. Protein phosphatase 2A (PP2A) constitutes another binding partner of human separase, but the functional relevance of this interaction has remained enigmatic. We demonstrate that PP2A stabilizes separase‐associated securin by dephosphorylation, while phosphorylation of free securin enhances its polyubiquitylation by the ubiquitin ligase APC/C and proteasomal degradation. Changing PP2A substrate phosphorylation sites to alanines slows degradation of free securin, delays separase activation, lengthens early anaphase, and results in anaphase bridges and DNA damage. In contrast, separase‐associated securin is destabilized by introduction of phosphorylation‐mimetic aspartates or extinction of separase‐associated PP2A activity. G2‐ or prometaphase‐arrested cells suffer from unscheduled activation of separase when endogenous securin is replaced by aspartate‐mutant securin. Thus, PP2A‐dependent stabilization of separase‐associated securin prevents precocious activation of separase during checkpoint‐mediated arrests with basal APC/C activity and increases the abruptness and fidelity of sister chromatid separation in anaphase.  相似文献   

14.
The final irreversible step in the duplication and distribution of genomes to daughter cells takes place at the metaphase to anaphase transition. At this point aligned sister chromatid pairs split and separate. During metaphase, cohesion between sister chromatids is maintained by the chromosomal multi-subunit cohesin complex. Here, I review recent findings as to how anaphase is initiated by proteolytic cleavage of the Scc1 subunit of cohesin. Scc1 is cleaved by a site-specific protease that is conserved in all eukaryotes, and is now called ‘separase’. As a result of this cleavage, the cohesin complex is destroyed, allowing the spindle to pull sister chromatids into opposite halves of the cell. Because of the final and irreversible nature of Scc1 cleavage, this reaction is tightly controlled. Several independent mechanisms seem to impose regulation on Scc1 cleavage, acting on both the activity of separase and the susceptibility of the substrate.  相似文献   

15.
Regulation of human separase by securin binding and autocleavage   总被引:20,自引:0,他引:20  
BACKGROUND: Sister chromatid separation is initiated by separase, a protease that cleaves cohesin and thereby dissolves sister chromatid cohesion. Separase is activated by the degradation of its inhibitor securin and by the removal of inhibitory phosphates. In human cells, separase activation also coincides with the cleavage of separase, but it is not known if this reaction activates separase, which protease cleaves separase, and how separase cleavage is regulated.RESULTS: Inhibition of separase expression in human cells by RNA interference causes the formation of polyploid cells with large lobed nuclei. In mitosis, many of these cells contain abnormal chromosome plates with unseparated sister chromatids. Inhibitor binding experiments in vitro reveal that securin prevents the access of substrate analogs to the active site of separase. Upon securin degradation, the active site of full-length separase becomes accessible, allowing rapid autocatalytic cleavage of separase at one of three sites. The resulting N- and C-terminal fragments remain associated and can be reinhibited by securin. A noncleavable separase mutant retains its ability to cleave cohesin in vitro.CONCLUSIONS: Our results suggest that separase is required for sister chromatid separation during mitosis in human cells. Our data further indicate that securin inhibits separase by blocking the access of substrates to the active site of separase. Securin proteolysis allows autocatalytic processing of separase into a cleaved form, but separase cleavage is not essential for separase activation.  相似文献   

16.
The dual mechanism of separase regulation by securin   总被引:8,自引:0,他引:8  
BACKGROUND: Sister chromatid separation and segregation at anaphase onset are triggered by cleavage of the chromosomal cohesin complex by the protease separase. Separase is regulated by its binding partner securin in two ways: securin is required to support separase activity in anaphase; and, at the same time, securin must be destroyed via ubiquitylation before separase becomes active. The molecular mechanisms underlying this dual regulation of separase by securin are unknown.RESULTS: We show that, in budding yeast, securin supports separase localization. Separase enters the nucleus independently of securin, but securin is required and sufficient to cause accumulation of separase in the nucleus, where its known cleavage targets reside. Securin also ensures that separase gains full proteolytic activity in anaphase. We also show that securin, while present, directly inhibits the proteolytic activity of separase. Securin prevents the binding of separase to its substrates. It also hinders the separase N terminus from interacting with and possibly inducing an activating conformational change at the protease active site 150 kDa downstream at the protein's C terminus.CONCLUSIONS: Securin inhibits the proteolytic activity of separase in a 2-fold manner. While inhibiting separase, securin is able to promote nuclear accumulation of separase and help separase to become fully activated after securin's own destruction at anaphase onset.  相似文献   

17.
谢新耀  蒲晓允 《遗传》2004,26(3):383-386
姐妹染色单体的分离是一精确时空调控事件,分离的紊乱会造成遗传物质传递的不稳定,从而可能引起严重的后果-细胞或个体的死亡或病态。在真核生物细胞中,一种比较保守的机制调控着姐妹染色单体的分离:随DNA复制过程建立由黏合素维持的姐妹染色单体的结合,在有丝分裂中期向后期转变过程中,随保全素的降解,分离酶发挥活性,裂解黏合素一个亚单位,促成黏合素蛋白质复合体的解离和姐妹染色单体的分离。  相似文献   

18.
BACKGROUND: Chromosome segregation during mitosis and meiosis is triggered by dissolution of sister chromatid cohesion, which is mediated by the cohesin complex. Mitotic sister chromatid disjunction requires that cohesion be lost along the entire length of chromosomes, whereas homolog segregation at meiosis I only requires loss of cohesion along chromosome arms. During animal cell mitosis, cohesin is lost in two steps. A nonproteolytic mechanism removes cohesin along chromosome arms during prophase, while the proteolytic cleavage of cohesin's Scc1 subunit by separase removes centromeric cohesin at anaphase. In Saccharomyces cerevisiae and Caenorhabditis elegans, meiotic sister chromatid cohesion is mediated by Rec8, a meiosis-specific variant of cohesin's Scc1 subunit. Homolog segregation in S. cerevisiae is triggered by separase-mediated cleavage of Rec8 along chromosome arms. In principle, chiasmata could be resolved proteolytically by separase or nonproteolytically using a mechanism similar to the mitotic "prophase pathway." RESULTS: Inactivation of separase in C. elegans has little or no effect on homolog alignment on the meiosis I spindle but prevents their timely disjunction. It also interferes with chromatid separation during subsequent embryonic mitotic divisions but does not directly affect cytokinesis. Surprisingly, separase inactivation also causes osmosensitive embryos, possibly due to a defect in the extraembryonic structures, referred to as the "eggshell." CONCLUSIONS: Separase is essential for homologous chromosome disjunction during meiosis I. Proteolytic cleavage, presumably of Rec8, might be a common trigger for the first meiotic division in eukaryotic cells. Cleavage of proteins other than REC-8 might be necessary to render the eggshell impermeable to solutes.  相似文献   

19.
Separase is an evolutionarily conserved protease that is essential for chromosome segregation and cleaves cohesin Scc1/Rad21, which joins the sister chromatids together. Although mammalian separase also functions in chromosome segregation, our understanding of this process in mammals is still incomplete. We generated separase knockout mice, reporting an essential function for mammalian separase. Separase-deficient mouse embryonic fibroblasts exhibited severely restrained increases in cell number, polyploid chromosomes, and amplified centrosomes. Chromosome spreads demonstrated that multiple chromosomes connected to a centromeric region. Live observation demonstrated that the chromosomes of separase-deficient cells condensed, but failed to segregate, although subsequent cytokinesis and chromosome decondensation proceeded normally. These results establish that mammalian separase is essential for the separation of centromeres, but not of the arm regions of chromosomes. Other cell cycle events, such as mitotic exit, DNA replication, and centrosome duplication appear to occur normally. We also demonstrated that heterozygous separase-deficient cells exhibited severely restrained increases in cell number with apparently normal mitosis in the absence of securin, which is an inhibitory partner of separase.  相似文献   

20.
During mitosis, equal transmission of the duplicated chromosomes demands a strict regulation of separase, which cleaves cohesin and triggers sister chromatid separation in anaphase. Vertebrate separase is inhibited by securin and the inhibitory phosphorylation of separase. However, knockout experiments indicate that securin is dispensable and the inhibitory phosphorylation was observed only in M phase cells. This begs the question how cohesin cleavage by separase is prevented in the absence these two mechanisms. Here we show that separase is excluded from cohesin by the nuclear envelope, which forms in telophase and disassembles in mitosis. The exclusion is achieved passively by its large physical mass and may be backed up by the CRM1-dependent nuclear export. A functional NES motif is identified in separase. We demonstrated that the nuclear envelope is sufficient to prevent active separase from cleaving nuclear cohesin. We propose that the nuclear exclusion is important to prevent cohesin cleavage during interphase in the absence of securin and the phosphorylation inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号