首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Langerhans cells are antigen-presenting cells located in epithelia and have a dendritic outline, a convoluted nucleus surrounded by an electron lucent cytoplasm with sparse organelles and occasionally containing the characteristic Birbeck granule; their membrane contains class II molecules of the major histocompatibility complex and a strong membrane reactivity for both ATPase and non-specific esterase. Despite increasing knowledge about mammalian Langerhans cells, only a few studies have examined the possible occurrence of Langerhans-like cells in lower vertebrates. Our group has previously demonstrated the presence of dendritic cells in different epithelial membranes co-expressing a strong membrane ATPase reactivity and class II molecules of the major histocompatibility complex in the frog Rana pipiens. Adding another criterion in the characterization of Langerhans-like cells in amphibians, we now report evidence for the expression of membrane non-specific esterase reactivity in dendritic cells located in the epidermis, nictitant membrane and cornea with topographical and light and electron microscopical characteristics identical to those previously described for dendritic cells positive for ATPase and major histocompatibility complex class II in Rana pipiens. We postulate that, taking all this data together, these dendritic intraepithelial cells constitute the amphibian counterpart of mammalian Langerhans cells.  相似文献   

2.
3.
Langerhans cells are resident dendritic cells in the epidermis. Once they are loaded with epicutaneously-delivered antigens, they leave the epidermis and migrate to the regional lymph nodes where they initiate primary T cell responses as antigen-presenting cells. However, the stimulus that initiates such migration remains unknown. Because major histocompatibility complex class II (Ia) antigens on B lymphocytes or monocytic cells have been shown to function as signal transducers, we evaluated the effect of the engagement of Ia antigens on the migration of murine epidermal Langerhans cells. The intradermal injection of an anti-Ia monoclonal antibody (mAb) reduced the density of Langerhans cells in epidermis and produced a dose- and time-dependent increase in the frequency of cells reactive with NLDC145 (Langerhans cell- and dendritic cell-specific mAb) within the regional lymph nodes. Injection of a control mAb had no effect. The NLDC145+ cells that were induced to accumulate in the regional lymph nodes were Ia+, large dendritic cells, some of which were positive for both NLDC145 and F4/80, a phenotype corresponding to that of murine epidermal Langerhans cells. Thus, the engagement of Ia antigens on Langerhans cells by mAb induces the migration of Langerhans cells from the epidermis to the regional lymph nodes. Analysis of these changes in Langerhans cells in vitro may help to reveal the biochemical sequence of events involved in the activation and differentiation of Langerhans cells.  相似文献   

4.
Fonsecaea pedrosoi is the major etiological agent of chromoblastomycosis, a chronic, suppurative, granulomatous mycosis usually confined to skin and subcutaneous tissues, presenting a worldwide distribution. The host defense mechanisms in chromoblastomycosis have not been extensively investigated. Langerhans cells (LC) are bone-marrow-derived, dendritic antigen-presenting cells of the epidermis, which constitutively express major histocompatibility complex (MHC) class II, and comprise 1-3% of total epidermal cells. LC are localized in suprabasal layers of the epidermis and in mucosa, where they play important roles in skin immune responses. The purpose of the present study was to evaluate the interaction of F. pedrosoi conidia or sclerotic cells with LC purified from BALB/c mice skin. We demonstrate here that LC phagocytose F. pedrosoi conidia but not sclerotic cells in the first 3 h of interaction, inhibiting hyphae formation during 12-hour coculture from both forms, internalized or not. Also, LC maturation, analyzed using CD40 and B7-2 expression, was inhibited by conidia, but not by sclerotic cells, indicating an important innate immunity function of LC against F. pedrosoi infection in these mice.  相似文献   

5.
A rat monoclonal antibody (McAb 21:9) reactive with the human invariant gamma-chain of class II major histocompatibility complex (MHC)-encoded antigens was isolated and was shown to react with the carbohydrate-carrying, COOH-terminal part of the gamma-chain. The McAb 21:9 binds to a molecule that is identified as the gamma-chain for the following reasons: it has an apparent m.w. of 33,000, similar to that of the gamma-chain; it has a two-dimensional gel migration pattern identical to that of the gamma-chain; and it associates with immature, but not processed class II antigens. When used for immunohistochemical staining on sections of normal human skin, only dendritic, class II MHC antigen, and anti-Leu-6 reactive Langerhans cells are labeled in the epidermis. HLA-DR-expressing keratinocytes present in the tuberculin reaction, cutaneous T cell lymphoma, and lichen planus, however, did not react with the anti-gamma-chain antibody, nor with a HLA-DQ-reactive antibody. Cell surface expression of the gamma-chain was observed on 1 to 3% of normal viable epidermal cells in suspension. By using double indirect immunofluorescence, it was possible to demonstrate the simultaneous binding of anti-gamma-chain, anti-HLA-DR, anti-Leu-10, and anti-Leu-6 antibodies, respectively, on the same cells, thus confirming their identity as Langerhans cells. The presence of the gamma-chain on the surface of the immunocompetent Langerhans cells may indicate that the cell surface, not the cytoplasm as has been suggested, is the site of the primary function of the gamma-chain.  相似文献   

6.
Mycoplasma pulmonis infection in rodents causes a chronic inflammatory airway disease with a strong immunological component, leading to mucosal remodeling and angiogenesis. We sought to determine the effect of this infection on the shape and number of dendritic cells and other major histocompatibility complex (MHC) class II expressing cells in the airway mucosa of Wistar rats. Changes in the shape of subepithelial OX6 (anti-MHC class II)-immunoreactive cells were evident in the tracheal mucosa 2 days after intranasal inoculation with M. pulmonis. By 1 week, the shape of the cells had changed from stellate to rounded (mean shape index increased from 0.42 to 0.77). The number of OX6-positive cells was increased 6-fold at 1 week and 16-fold at 4 weeks. Coincident with these changes, many columnar epithelial cells developed OX6 immunoreactivity, which was still present at 4 weeks. We conclude that M. pulmonis infection creates a potent immunologic stimulus that augments and transforms the OX6-immunoreactive cell population in the airways by changing the functional state of airway dendritic cells, initiating an influx of MHC class II expressing cells, and activating expression of MHC class II molecules by airway epithelial cells.  相似文献   

7.
The buccal mucosa, a prototype of pluristratified mucosal epithelia, contains a network of directly accessible class II(+) epithelial dendritic cells (DC), similar to skin Langerhans cells. We showed that a single buccal immunization with measles virus nucleoprotein (NP), by either topical application onto or intradermal injection in the buccal mucosa, induced in vivo priming of protective class I-restricted specific CD8(+) CTL. Both routes of immunization with NP induced a rapid recruitment of DC into the mucosa, which peaked at 2 h and decreased by 24 h. Treatment of mice with Flt3 ligand resulted in an increased number of DC in the buccal mucosa and enhanced the frequency of IFN-gamma-producing NP-specific effectors and the NP-specific CTL response generated after buccal immunization with NP. Finally, NP-pulsed bone marrow-derived DC induced NP-specific IFN-gamma-producing cells upon adoptive transfer to naive mice. These data demonstrate that a viral protein delivered to DC of the buccal mucosa induces in vivo priming of protective anti-viral CD8(+) CTL.  相似文献   

8.
朗格汉斯细胞位于黏膜状组织和皮肤分层鳞状上皮,是高度专职的抗原呈递细胞家族成员,也是表皮中唯一的树突细胞。其作为一种皮肤免疫细胞,在摄取、加工处理和呈递抗原及诱导 T 细胞反应等方面发挥着巨大作用。机体皮肤或黏膜在遭遇不同病原微生物入侵时,朗格汉斯细胞与病原体的相互作用及引起后续免疫反应的机制存在差异。本文就朗格汉斯细胞的生物学功能及其在一些病毒感染中的作用进行综述。  相似文献   

9.
The epidermis contains a population of dendritic cells, Langerhans cells (LC), derived from cells originating from bone marrow, bearing receptors for the Fc fragment of IgG and for the C3 fraction of complement and expressing at their surface Ia antigens of the major histocompatibility system. These cells with multiple immunological functions are capable of presenting antigens to immunocompetent cells. The labeling of LC through revelation of their membranous ATPase activity constitutes one of the best available techniques for their visualization. Moreover, the presence of this ATPase activity appears to be a prerequisite for the induction of contact sensitivity, since in the absence of such activity, the epicutaneous application of a hapten induces a state of immunological tolerance. Applying, at a sensitizing dose, 2,4-dinitrofluorobenzene (DNFB) on an untreated guinea-pig skin surface results in a momentary drop in the number of ATPase positive LC in the application zone. Using an improved technique for ATPase labeling (Hanau et coll. submitted for publication, 1985)--which allows one to extend the study from optical to electron microscopy--we observed by electron microscopy the formation, within the LC, of numerous Langerhans granules, concurrent with the loss of ATPase membranous activity. These granules, first described by Birbeck et coll. and specific to LC in the epidermis, have a complex structure. On a section, they may display either a linear aspect (rod-like)--with sometimes a vesicular portion at one extremity (racket-like)--or a circular shape. Whatever their shape, they always show a central striation, which gives them a zipper-like appearance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
During primary varicella-zoster virus (VZV) infection, it is presumed that virus is transmitted from mucosal sites to regional lymph nodes, where T cells become infected. The cell type responsible for VZV transport from the mucosa to the lymph nodes has not been defined. In this study, we assessed the susceptibility of human monocyte-derived dendritic cells to infection with VZV. Dendritic cells were inoculated with the VZV strain Schenke and assessed by flow cytometry for VZV and dendritic cell (CD1a) antigen expression. In five replicate experiments, 34.4% +/- 6.6% (mean +/- SEM) of CD1a(+) cells were also VZV antigen positive. Dendritic cells were also shown to be susceptible to VZV infection by the detection of immediate-early (IE62), early (ORF29), and late (gC) gene products in CD1a(+) dendritic cells. Infectious virus was recovered from infected dendritic cells, and cell-to-cell contact was required for transmission of virus to permissive fibroblasts. VZV-infected dendritic cells showed no significant decrease in cell viability or evidence of apoptosis and did not exhibit altered cell surface levels of major histocompatibility complex (MHC) class I, MHC class II, CD86, CD40, or CD1a. Significantly, when autologous T lymphocytes were incubated with VZV-infected dendritic cells, VZV antigens were readily detected in CD3(+) T lymphocytes and infectious virus was recovered from these cells. These data provide the first evidence that dendritic cells are permissive to VZV and that dendritic cell infection can lead to transmission of virus to T lymphocytes. These findings have implications for our understanding of how virus may be disseminated during primary VZV infection.  相似文献   

11.
A number of antigen-presenting cells (APCs) expressing major histocompatibility complex class II (MHC-II) have been identified in healthy human skin including the Langerhans cells of the epidermis and the three recently defined dermal APC subsets. It is well documented that in other tissues HLA-DR expression is not exclusive to APCs. Following a comprehensive analysis of the cells in human skin using flow cytometry and fluorescence immunohistochemistry, we have identified additional cell subsets that express HLA-DR. Using markers exclusive for blood and lymphatic endothelium, we demonstrated that both of these cell populations have the capacity to express HLA-DR. In addition, a small subset of dermal T lymphocytes was found to express low-level HLA-DR suggesting an activated phenotype. Dermal T lymphocytes were often in intimate contact with either CD1a(+) CD207(-) dermal APCs or CD1a(+) CD207(+) dermal Langerhans cells, possibly explaining the activated phenotype of a subset of dermal T lymphocytes.  相似文献   

12.
Langerhans cells, a subset of skin dendritic cells in the epidermis, survey peripheral tissue for invading pathogens. In recent functional studies it was proven that Langerhans cells can present exogenous antigen not merely on major histocompatibility complexes (MHC)-class II molecules to CD4+ T cells, but also on MHC-class I molecules to CD8+ T cells. Immune responses against topically applied antigen could be measured in skin-draining lymph nodes. Skin barrier disruption or co-application of adjuvants was required for maximal induction of T cell responses. Cytotoxic T cells induced by topically applied antigen inhibited tumor growth in vivo, thus underlining the potential of Langerhans cells for immunotherapy. Here we review recent work and report novel observations relating to the potential use of Langerhans cells for immunotherapy. We investigated the potential of epicutaneous immunization strategies in which resident skin dendritic cells are loaded with tumor antigen in situ. This contrasts with current clinical approaches, where dendritic cells generated from progenitors in blood are loaded with tumor antigen ex vivo before injection into cancer patients. In the current study, we applied either fluorescently labeled protein antigen or targeting antibodies against DEC-205/CD205 and langerin/CD207 topically onto barrier-disrupted skin and examined antigen capture and transport by Langerhans cells. Protein antigen could be detected in Langerhans cells in situ, and they were the main skin dendritic cell subset transporting antigen during emigration from skin explants. Potent in vivo proliferative responses of CD4+ and CD8+ T cells were measured after epicutaneous immunization with low amounts of protein antigen. Targeting antibodies were mainly transported by langerin+ migratory dendritic cells of which the majority represented migratory Langerhans cells and a smaller subset the new langerin+ dermal dendritic cell population located in the upper dermis. The preferential capture of topically applied antigen by Langerhans cells and their ability to induce potent CD4+ and CD8+ T cell responses emphasizes their potential for epicutaneous immunization strategies. This article is a symposium paper from the conference “Immunotherapy—From Basic Research to Clinical Applications,” Symposium of the Collaborative Research Center (SFB) 685, held in Tübingen, Germany, 6–7 March 2008.  相似文献   

13.
Cells other than the macrophage can function as antigen-presenting cells (APCs). These class II-bearing accessory cells include dendritic cells, epidermal Langerhans cells, B cells, murine B-cell tumors, and human Epstein-Barr virus-transformed lymphoblastoid cell lines (EBV-LCL). We investigated the ability of EBV-LCL to present two soluble antigens, Candida albicans and purified protein derivative of tuberculin (PPD). The EBV-LCL derived from B cells of two different individuals can present both antigens to bulk cultures of autologous antigen-primed peripheral blood lymphocytes. The responses of PPD-reactive T-cell clones were weaker to PPD when presented by EBV-LCL than by PBL-APCs, with some clones responding only to PPD presented by PBL-APCs. This suggests that EBV-LCL are not equivalent to PBL monocytes in APC function, and that expression of class II major histocompatibility complex antigen is not sufficient in enabling antigen-presenting capability.  相似文献   

14.
We have examined the relative alloimmunogenicity of monodisperse epidermal Langerhans cells (LC), Thy-1+ dendritic epidermal cells, and keratinocytes prepared from the skins of mice, using appropriate fluorescent-tagged mAb and flow cytometry. Graded doses of each cell type were inoculated i.v. and/or s.c. into allogeneic recipients that were selected on the basis of their degree of immunogenetic disparity with the donors of the epidermal cell (EC) inocula. From 4 to 6 wk later the spleens or draining lymph nodes of recipient mice were assayed for specific priming of cytotoxic T cells. LC proved to be extremely powerful immunogens. As few as 10 MHC-disparate EC primed allospecific T cells of mice that received i.v. or s.c. injected cells. By contrast, at least 10,000 keratinocytes were required to prime appropriate recipients, and then only when these class II MHC-negative cells were injected s.c. Thy-1 dendritic epidermal cells failed to sensitize by any route in the doses employed. With the use of appropriate donor/recipient strain combinations, it was determined that LC can effectively prime cytotoxic T cells specific for diverse types of alloantigens, including determinants encoded by class I and class II MHC genes, as well as minor histocompatibility genes. The results of these in vivo studies confirm that, among EC, the primary alloimmunogenic stimulus resides among LC, and support the hypothesis that LC play a major role in the immunogenicity of skin allografts.  相似文献   

15.
Dendritic cells migrate from the skin to the draining lymph nodes. They transport immunogenic MHC-peptide complexes, present them to Ag-specific T cells in the T areas, and thus generate immunity. Migrating dendritic cells encounter physical obstacles, such as basement membranes and collagen meshwork. Prior work has revealed that matrix metalloproteinase-9 (MMP-9) contributes to mouse Langerhans cell migration. In this study, we use mouse and human skin explant culture models to further study the role of MMPs in the migration and maturation of skin dendritic cells. We found that MMP-2 and MMP-9 are expressed on the surface of dendritic cells from the skin, but not from other sources. They are also expressed in migrating Langerhans cells in situ. The migration of both Langerhans cells and dermal dendritic cells is inhibited by a broad spectrum inhibitor of MMPs (BB-3103), by Abs to MMP-9 and -2, and by the natural tissue inhibitors of metalloproteinases (TIMP), TIMP-1 and TIMP-2. Inhibition by anti-MMP-2 and TIMP-2 define a functional role for MMP-2 in addition to the previously described function of MMP-9. The importance of MMP-9 was emphasized using MMP-9-deficient mice in which Langerhans cell migration from skin explants was strikingly reduced. However, MMP-9 was only required for Langerhans cell migration and not maturation, since nonmigrating Langerhans cells isolated from the epidermis matured normally with regard to morphology, phenotype, and T cell stimulatory function. These data underscore the importance of MMPs, and they may be of relevance for therapeutically regulating dendritic cell migration in clinical vaccination approaches.  相似文献   

16.
T lymphocytes recognize peptide antigens presented by class I and class II molecules encoded by the major histocompatibility complex (MHC). Classical antigen-presentation studies showed that MHC class I molecules present peptides derived from proteins synthesized within the cell, whereas MHC class II molecules present exogenous proteins captured from the environment. Emerging evidence indicates, however, that dendritic cells have a specialized capacity to process exogenous antigens into the MHC class I pathway. This function, known as cross-presentation, provides the immune system with an important mechanism for generating immunity to viruses and tolerance to self.  相似文献   

17.
Prospective skin prior to invasion by neural crest cells was dissected from 10.5-day mouse embryos and cultivated in chick embryo hosts. The graft tissue was prepared for the demonstration of both mouse and chick cells, pigment cells, and Langerhans cells. Chick cells were not found in the graft mouse epidermis; however, ATPase-positive and osmium iodide-positive cells were present. Electron microscopic examination revealed that, in younger grafts, only indeterminate cells could be found among the keratinocytes. In older grafts, both indeterminate cells and Langerhans cells with granules were seen. The evidence affirms that epidermal Langerhans cells are not related to pigment cells.Based on the developmental nature of Birbeck (Langerhans) granules from the cytomembrane, it is proposed that the granule no longer be considered as specific to and characteristic of epidermal Langerhans cells. Rather, Langerhans cells should be defined as ATPase-positive, desmosome-free cells within stratified squamous, potentially keratinizing, epithelia. Thus epidermal, ATPase-positive indeterminate cells and such cells with Birbeck granules both should be considered as components of the Langerhans cell series.Normal chick skin does not show ATPase-positive cells. However, when 10.5-day mouse embryo ectoderm was inserted under the ectoderm of chick embryos, the resulting chimeric epidermis possessed ATPase-positive cells. It is proposed that epidermal Langerhans cells are of ectodermal origin.  相似文献   

18.
Skin is the most commonly affected organ in graft-versus-host disease (GVHD). To explore the role of Langerhans cells in GVHD, the principal dendritic cells of the skin, we studied the fate of these cells in mice transplanted with allogeneic bone marrow. In contrast to other dendritic cells, host Langerhans cells were replaced by donor Langerhans cells only when donor T cells were administered along with bone marrow, and the extent of Langerhans cell chimerism correlated with the dose of donor T cells injected. Donor T cells depleted host Langerhans cells through a Fas-dependent pathway and induced the production in skin of CCL20, which was required for the recruitment of donor Langerhans cells. Administration of donor T cells to bone marrow-chimeric mice with persistent host Langerhans cells, but not to mice whose Langerhans cells had been replaced, resulted in marked skin GVHD. These findings indicate a crucial role for donor T cells in host Langerhans cell replacement, and show that host dendritic cells can persist in nonlymphoid tissue for the duration of an animal's life and can trigger GVHD despite complete blood chimerism.  相似文献   

19.
Mongolian gerbils (Meriones unguiculatus) serve as an valuable model animal for several infectious diseases of medical and veterinary importance. Reagents available for characterization of the immune response of Mongolian gerbils are strictly limited. We describe three novel murine monoclonal antibodies (mAbs) to dendritic cells of Mongolian gerbils. These include HUSM-M.g.11 of IgG2b isotype, HUSM-M.g. 20 of IgG2a isotype, and HUSM-M.g.30 of IgG1 isotype. All of these mAbs had an identical profile of immunohistochemical reactions with various tissues taken from immune-naive Mongolian gerbils, and were intensively expressed on dendritic cells, including epidermal Langerhans cells, B-cell follicles, and the thymic reticulum. Positive reactions of the epidermis and intestinal mucosa with these mAbs were induced by cutaneous or intestinal infections with parasites. Competitive enzyme-linked immunosorbent assay and immunoblot analysis (western blotting) indicated that all of these mAbs recognize an identical peptide epitope on a molecule with approximate molecular mass of 29 kDa. These data suggest that the mAbs recognize major histocompatibility complex class-II molecules of gerbils. Use of described mAbs would facilitate characterization of immune responses as well as investigations on host responses to infections of medical and veterinary importance, using the gerbil model.  相似文献   

20.
Langerhans cells provide the epidermis with a surveillance network that samples the external environment influencing the decision between immunity and tolerance. Langerhans cells are immature dendritic cells acquiring antigens from foreign invaders as well as damaged native tissue for display to the immune response. The current paradigm suggests that the state of maturity of Langerhans cells, defined by the display of molecules that provoke immune responses (histocompatibility, co-stimulators, adhesion and homing receptors), determines whether emigration of the Langerhans cell to lymph nodes signals immunity or tolerance. Other factors such as type of immunogen ingested, environmental danger signals and the level of cell death may also play a role in tipping the balance towards immunity or immunosuppression. As modulators of the immune response, Langerhans cells play a role in cutaneous autoimmunity in lupus and in cancers that have an affinity for the epidermis such as cutaneous T cell lymphoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号