首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rap在细胞内控制着许多重要的信号通路,这些通路与细胞极性的形成、细胞增殖、分化和癌变、细胞黏附和运动等重要的生物功能密切相关,并进一步在组织器官水平影响一些重要的生理功能,如神经极性的建立、神经突触生长、突触可塑性和神经元迁移等。Rap属于Ras家族,含有Rap1和Rap2两个亚类。Rap通过结合GTP或GDP,在激活与失活两种状态之间切换,从而发挥分子开关的功能。此外,Rap在癌症的发生和发展过程中也发挥着关键作用,它可抑制癌基因Ras诱导的细胞转化;还可通过与其下游靶分子的相互作用,作为细胞信号通路上的一个开关分子诱导细胞恶性转化。本文对上述Rap的生物学功能做了概括总结,并在此基础之上探究Rap及受其调控的蛋白质对肿瘤和神经系统疾病的药物开发和治疗的重要意义。  相似文献   

2.
R-Ras属于小分子G蛋白Ras超家族,在细胞信号转导通路中起着分子开关的作用,具有调控细胞黏附、促进细胞凋亡、抑制细胞运动、调节细胞形态等多种生物学功能。R-Ras和Ras家族的其他成员一样,结合GTP时处于激活状态,即信号通路开启状态,能够与下游因子相互作用;通过上游信号的调节及其下游效应物,将胞外信号转导到胞内,调节细胞的相关生物学功能。最近的研究提示R-Ras与乳腺癌等肿瘤的发生具有相关性,对其深入研究有可能为肿瘤发生机制的阐明提供分子基础。我们对R-Ras介导的细胞信号转导通路及其生物学功能进行简要综述。  相似文献   

3.
Rap2与Rap1同属于Ras超家族小分子量GTP结合蛋白的Rap亚家族,Rap2的氨基酸序列与Rap1具有60%的同源性,推测二者可能具有相似的信号途径和相近的生物学功能,包括细胞的增殖、分化、粘附和细胞骨架重排。然而,Rap2位于效应因子结构域的第39位的苯丙氨酸不同于Rap1及Ras的丝氨酸,这个关键差异表明其可能通过特异的下游信号分子调控独特的生物学功能。最近,随着Rap2特异效应因子的不断发现,Rap2特异的信号通路及功能受到了更多的关注,Rap2具有多样的生物学功能,除调控细胞粘附及细胞骨架动态组装外、Rap2调节中枢神经突触的可塑性以及非洲爪蟾发育中背腹轴特化。此外,也有报道显示Rap2的表达增强与多种肿瘤的形成具有相关性。本文主要针对Rap2的信号途径和生物学功能研究的最新进展进行介绍。  相似文献   

4.
Rho小G蛋白(Ras homology frowth-related,Rho G)家族作为分子开关(molecular switch)在GTP结合的激活形式和GDP结合的非激活形式之间转换,发挥着重要的生物学功能,细胞内Rho小G蛋白的含量可由泛素–蛋白酶体系统(ubiquitin-proteasome system,UPS)降解途径来调控。Rho A(Ras homolog gene family member A,Rho A)是Rho小G蛋白家族成员,其功能涉及细胞极性、细胞迁移、细胞周期调控、神经系统发育等,通过UPS途径对该蛋白在细胞内的含量进行调控,可保证细胞的相关正常生理功能。在Rho A泛素化降解过程中,不同的泛素连接酶(ubiquintin ligases,E3)发挥了重要的作用。该文将简单介绍UPS的过程和Rho A蛋白质的结构、功能,详细论述Rho A泛素化降解过程的分子机制和生物学功能。  相似文献   

5.
谭理  朱运松 《生命的化学》2003,23(4):247-249
T淋巴瘤侵袭转移诱导因子1(T-lymphoma invasion and metastasis inducing factor 1,Tiam1)是Ras相关的C3肉毒素底物1(Ras-Related C3 botulinum toxin substrate 1,Rac1)的特异性鸟苷酸交换因子(guanine nucleotide ex-change factor,GEF)。在细胞外信号刺激下Tiam1可以促进Rac1从无活性的GDP结合状态向有活性的GTP结合状态转换,有活性的Rac1-GTP与不同的下游效应分子相互作用,从而影响多种细胞事件。  相似文献   

6.
Ras蛋白是一个分子质量为21 kD左右的单体GTP酶,具有两种构象:GTP结合构象(Ras.GTP)及GDP结合构象(Ras.GDP),这两种构象在一定条件下可发生互变.由生长因子介导的Ras信号传导途径是诸多信号途径中与细胞增殖、分化密切相关的重要信号途径.受体型TPK/Ras/MAPK信号转导途径是是目前研究的最为清楚的受Ras蛋白调节的信号传导途径,该途径包括受体型酪氨酸蛋白激酶(RTK)、接头蛋白、鸟苷酸释放因子(GNEF)、Ras蛋白以及MAPK级联反应体系.目前,TPK/Ras/MAPK信号转导途径在秀丽杆线虫(Caenorhabolitis elegans中研究的最为清楚:Ras信号途径对于许多发育进程是必需的,包括阴门、子宫、交合刺、P12以及排泄管细胞的诱导分化;控制着性肌原细胞迁移、轴突导向;对细胞减数分裂粗线期具有促进作用.对C.elegans的研究加深了对TPK/Ras/MAPK信号途径结构、突变体表型以及与其他信号途径的互作的了解,将会促进Ras信号途径对植物寄生线虫调控作用的研究.  相似文献   

7.
Ras类蛋白家族是普遍存在于动物及低等真核生物细胞中的一类单亚基GTP结合蛋白(20—29kDa),它们在一系列细胞过程中起重要作用。它们有GTP结合蛋白共有的作用机制。在刺激物诱导下,结合GTP成为活化状态,与效应子作用产生一定效应;GTP水解成GDP后恢复GDP结合状态,即非活化状态。它们通过GTPase驱动的构象变化的循环,作为“分子开关”起调控作用。目前已有40多种Ras类蛋白被发现,按结构可分为Ras、  相似文献   

8.
一直以来,乳酸在脑中被视作代谢废物,对其功能认识严重滞后。近年来,越来越多的证据表明,乳酸在多种生理与病理过程中扮演重要角色。在神经细胞中,星形胶质细胞是产生和释放乳酸的主要细胞源,该细胞通过有氧糖酵解过程生成乳酸,随后经跨膜通道释放至胞外进入神经元为其供能。在中枢神经系统中,乳酸对稳态调节发挥着十分重要的作用。乳酸主要通过两种途径,即代谢途径(作为能量底物)与信号途径(作为信号分子)调控神经元的功能活动,广泛参与神经元能量代谢、兴奋性、可塑性、学习记忆及神经系统发育等生理过程调节,亦参与抑郁行为、阿尔兹海默病(AD)和脑损伤等病理过程的调节。在脑组织中,存在着乳酸特异性受体(GPR81),乳酸与其结合后调控胞内的第二信使。此外,还发现乳酸可通过未知受体调节神经元的兴奋性以及作为信号分子的其他作用。本文就乳酸作为能量底物和信号分子及其参与相关神经疾病的研究进展进行阐述,旨在为相关中枢神经系统疾病防治提供新思路。  相似文献   

9.
磷脂酶D1(PLD1)在细胞生长、存活、分化、膜转运和细胞骨架组织等多种功能的调控中发挥重要作用。近年来研究发现,PLD1在神经干细胞(NSCs)向神经元的分化中也起关键作用。PLD1参与多种信号通路如Rho家族GTP酶和Ca2+信号通路的调节,影响轴突生长、突触发育及其可塑性。因此,PLD1作为神经系统中一种重要的信号分子引起了广泛的关注。本文综述了PLD1的结构、功能、作用机制及其在NSCs向神经分化中的调控作用,对深入研究NSCs的分化和神经元的再生有重要的指导意义。  相似文献   

10.
神经元迁移的细胞和分子机制   总被引:1,自引:0,他引:1  
在脑的发育过程中,神经元的正确迁移是正常脑组织发生的一个必不可少的环节。在过去的几十年中,通过不同的学科方法,对于神经元迁移的机制有了较好的理解。在细胞水平上,神经元迁移需要3个重复事件的精确调控;在分子水平,与神经元迁移相关的胞外信号分子已经被鉴定,而且大量的胞内信号通路也已经被阐明。  相似文献   

11.
12.
13.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

14.
15.
16.
17.
18.
19.
通过对6种藓类植物,即褶叶青藓(Brachythecium salebrosum(Web.et Mohr.)B.S.G.)、湿地匐灯藓(Plagiomnium acutum(Lindb.)Kop.)、侧枝匐灯藓(Plagiomnium maximoviczii(Lindb.)Kop.)、大凤尾藓(Fissidensnobilis Griff.)、大羽藓(Thuidium cymbifolium(Doz.et Molk.)B.S.G.)和大灰藓(Hypnum plumaeforme Wils.)嫩茎和老茎的石蜡切片和显微观察发现,同一藓类植株的嫩茎和老茎,茎结构稳定,不同种藓类植物茎横切面具有不同特征.植物体茎横切面形状、表层细胞的层数、细胞大小和细胞壁厚薄、皮层细胞大小和形状、中轴的有无以及比例等特征可以作为藓类植物的分科分类依据之一.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号