首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Success or failure of EEG feedback training for alpha enhancement can depend on how alpha activity is quantified and fed back. Alpha-enhancement failures usually employ a percent time(%) technique; successes typically use amplitude integration(). To dramatize the differences between percent and integration techniques, we derived both measures simultaneously from left occipital(O 1 ) and left central(C 3 ) sites for 16 male subjects who were given 5.6 hours of integrated alpha feedback from the midline occipital(Oz ) site. At both the O 1 and C 3 sites the integrated and percent measures were not equivalent and not linearly related. Statistically significant differences in the(integrated, percent) correlation coefficients(z-transformed) were observed under the different recording conditions: alpha enhancement, alpha enhancement, alpha suppression, and baselines. Theoretical discussion of integration and percent techniques is given and the adoption of amplitude integration measures and feedback stimuli is strongly advocated.This study was supported by the following grants and contracts: National Institute of Mental Health (NIMH) Predoctoral Fellowship #1 F01 MH51704-01, NIMH General Research Support Grant #LPNI 185, and a Langley Porter Neuropsychiatric Institute Postdoctoral Fellowship (Interdisciplinary Training Program, NIMH #7082) to James V. Hardt, and by NIMH Research Scientist Development Award 2K02 MH38897, NIMH Research Grant #1 R01 MH24820, Office of Naval Research (ARPA) Contract N00014-70-C-0350, and Instruction and Research Funds, Computer Center Accounts (UCSF) #1431 and #1437 to Joe Kamiya.  相似文献   

3.
4.
ABSTRACT: BACKGROUND: Single nucleotide polymorphism (SNP) genotyping assays normally give rise to certain percents of no-calls; the problem becomes severe when the target organisms, such as cattle, do not have a high resolution genomic sequence. Missing SNP genotypes, when related to target traits, would confound downstream data analyses such as genome-wide association studies (GWAS). Existing methods for recovering the missing values are successful to some extent --- either accurate but not fast enough or fast but not accurate enough. RESULTS: To a target missing genotype, we take only the SNP loci within a genetic distance vicinity and only the samples within a similarity vicinity into our local imputation process. For missing genotype imputation, the comparative performance evaluations through extensive simulation studies using real human and cattle genotype datasets demonstrated that our nearest neighbor based local imputation method was one of the most efficient methods, and outperformed existing methods except the time-consuming fastPHASE; for missing haplotype allele imputation, the comparative performance evaluations using real mouse haplotype datasets demonstrated that our method was not only one of the most efficient methods, but also one of the most accurate methods. CONCLUSIONS: Given that fastPHASE requires a long imputation time on medium to high density datasets, and that our nearest neighbor based local imputation method only performed slightly worse, yet better than all other methods, one might want to adopt our method as an alternative missing SNP genotype or missing haplotype allele imputation method.  相似文献   

5.
6.
A genotype calling algorithm for affymetrix SNP arrays   总被引:11,自引:0,他引:11  
MOTIVATION: A classification algorithm, based on a multi-chip, multi-SNP approach is proposed for Affymetrix SNP arrays. Current procedures for calling genotypes on SNP arrays process all the features associated with one chip and one SNP at a time. Using a large training sample where the genotype labels are known, we develop a supervised learning algorithm to obtain more accurate classification results on new data. The method we propose, RLMM, is based on a robustly fitted, linear model and uses the Mahalanobis distance for classification. The chip-to-chip non-biological variance is reduced through normalization. This model-based algorithm captures the similarities across genotype groups and probes, as well as across thousands of SNPs for accurate classification. In this paper, we apply RLMM to Affymetrix 100 K SNP array data, present classification results and compare them with genotype calls obtained from the Affymetrix procedure DM, as well as to the publicly available genotype calls from the HapMap project.  相似文献   

7.
To manage high-throughput single nucleotide polymorphism (SNP) genotyping data efficiently, we developed a dynamic general database management system-SNPP (SNP Processor). It provides several functions, including data importing with comparison, Mendelian inheritance check within pedigrees, data compiling and exporting. Furthermore, SNPP may generate files for repeat genotyping and transform them into files that can be executed by a liquid handling system. AVAILABILITY: http://orclinux.creighton.edu/snpp/ CONTACT: lanjuanzhao@creighton.edu  相似文献   

8.
Current genotype-calling methods such as Robust Linear Model with Mahalanobis Distance Classifier (RLMM) and Corrected Robust Linear Model with Maximum Likelihood Classification (CRLMM) provide accurate calling results for Affymetrix Single Nucleotide Polymorphisms (SNP) chips. However, these methods are computationally expensive as they employ preprocess procedures, including chip data normalization and other sophisticated statistical techniques. In the small sample case the accuracy rate may drop significantly. We develop a new genotype calling method for Affymetrix 100 k and 500 k SNP chips. A two-stage classification scheme is proposed to obtain a fast genotype calling algorithm. The first stage uses unsupervised classification to quickly discriminate genotypes with high accuracy for the majority of the SNPs. And the second stage employs a supervised classification method to incorporate allele frequency information either from the HapMap data or from a self-training scheme. Confidence score is provided for every genotype call. The overall performance is shown to be comparable to that of CRLMM as verified by the known gold standard HapMap data and is superior in small sample cases. The new algorithm is computationally simple and standalone in the sense that a self-training scheme can be used without employing any other training data. A package implementing the calling algorithm is freely available at http://www.sfs.ecnu.edu.cn/teachers/xuj_en.html.  相似文献   

9.
High-throughput SNP genotyping platforms use automated genotype calling algorithms to assign genotypes. While these algorithms work efficiently for individual platforms, they are not compatible with other platforms, and have individual biases that result in missed genotype calls. Here we present data on the use of a second complementary SNP genotype clustering algorithm. The algorithm was originally designed for individual fluorescent SNP genotyping assays, and has been optimized to permit the clustering of large datasets generated from custom-designed Affymetrix SNP panels. In an analysis of data from a 3K array genotyped on 1,560 samples, the additional analysis increased the overall number of genotypes by over 45,000, significantly improving the completeness of the experimental data. This analysis suggests that the use of multiple genotype calling algorithms may be advisable in high-throughput SNP genotyping experiments. The software is written in Perl and is available from the corresponding author.  相似文献   

10.

Background  

Single nucleotide polymorphisms (SNPs) are DNA sequence variations, occurring when a single nucleotide – adenine (A), thymine (T), cytosine (C) or guanine (G) – is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX). This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart) is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias.  相似文献   

11.
MOTIVATION: With the knowledge of large number of SNPs in human genome and the fast development in high-throughput genotyping technologies, identification of linked regions in linkage analysis through allele sharing status determination will play an ever important role, while consideration of recombination fractions becomes unnecessary. RESULTS: In this study, we have developed a rule-based program that identifies linked regions for underlined diseases using allele sharing information among family members. Our program uses high-density SNP genotype data and works in the face of genotyping errors. It works on nuclear family structures with two or more siblings. The program graphically displays allele sharing status for all members in a pedigree and identifies regions that are potentially linked to the underlined diseases according to user-specified inheritance mode and penetrance. Extensive simulations based on the chi(2) model for recombination show that our program identifies linked regions with high sensitivity and accuracy. Graphical display of allele sharing status helps to detect misspecification of inheritance mode and penetrance, as well as mislabeling or misdiagnosis. Allele sharing determination may represent the future direction of linkage analysis due to its better adaptation to high-density SNP genotyping data. AVAILABILITY: http://paed.hku.hk/uploadarea/yangwl/html/index.html  相似文献   

12.

Background

The main goal of selection is to achieve genetic gain for a population by choosing the best breeders among a set of selection candidates. Since 2013, the use of a high density genotyping chip (600K Affymetrix® Axiom® HD genotyping array) for chicken has enabled the implementation of genomic selection in layer and broiler breeding, but the genotyping costs remain high for a routine use on a large number of selection candidates. It has thus been deemed interesting to develop a low density genotyping chip that would induce lower costs. In this perspective, various simulation studies have been conducted to find the best way to select a set of SNPs for low density genotyping of two laying hen lines.

Results

To design low density SNP chips, two methodologies, based on equidistance (EQ) or on linkage disequilibrium (LD) were compared. Imputation accuracy was assessed as the mean correlation between true and imputed genotypes. The results showed correlations more sensitive to false imputation of SNPs having low Minor Allele Frequency (MAF) when the EQ methodology was used. An increase in imputation accuracy was obtained when SNP density was increased, either through an increase in the number of selected windows on a chromosome or through the rise of the LD threshold. Moreover, the results varied depending on the type of chromosome (macro or micro-chromosome). The LD methodology enabled to optimize the number of SNPs, by reducing the SNP density on macro-chromosomes and by increasing it on micro-chromosomes. Imputation accuracy also increased when the size of the reference population was increased. Conversely, imputation accuracy decreased when the degree of kinship between reference and candidate populations was reduced. Finally, adding selection candidates’ dams in the reference population, in addition to their sire, enabled to get better imputation results.

Conclusions

Whichever the SNP chip, the methodology, and the scenario studied, highly accurate imputations were obtained, with mean correlations higher than 0.83. The key point to achieve good imputation results is to take into account chicken lines’ LD when designing a low density SNP chip, and to include the candidates’ direct parents in the reference population.
  相似文献   

13.
A nonsense mutation in the mouse leptin gene causes genetic obesity. As a result of extensive research in the field of obesity, the use of leptinob mice is widespread. This mutation renders mice sterile, creating the need to breed heterozygous mice. For this reason, leptinob genotyping is necessary. To date, gel-based assays have been used for genotyping. Using the Invader Plus assay for single nucleotide polymorphism (SNP) detection, we have developed a gel-free microplate SNP assay for genotyping leptinwt and leptinob alleles.  相似文献   

14.
Copy number variations (CNVs) are abundant in the human genome. They have been associated with complex traits in genome-wide association studies (GWAS) and expected to continue playing an important role in identifying the etiology of disease phenotypes. As a result of current high throughput whole-genome single-nucleotide polymorphism (SNP) arrays, we currently have datasets that simultaneously have integer copy numbers in CNV regions as well as SNP genotypes. At the same time, haplotypes that have been shown to offer advantages over genotypes in identifying disease traits even though available for SNP genotypes are largely not available for CNV/SNP data due to insufficient computational tools. We introduce a new framework for inferring haplotypes in CNV/SNP data using a sequential Monte Carlo sampling scheme ‘Tree-Based Deterministic Sampling CNV’ (TDSCNV). We compare our method with polyHap(v2.0), the only currently available software able to perform inference in CNV/SNP genotypes, on datasets of varying number of markers. We have found that both algorithms show similar accuracy but TDSCNV is an order of magnitude faster while scaling linearly with the number of markers and number of individuals and thus could be the method of choice for haplotype inference in such datasets. Our method is implemented in the TDSCNV package which is available for download at http://www.ee.columbia.edu/~anastas/tdscnv.  相似文献   

15.

Background  

Microarray measurements are susceptible to a variety of experimental artifacts, some of which give rise to systematic biases that are spatially dependent in a unique way on each chip. It is likely that such artifacts affect many SNP arrays, but the normalization methods used in currently available genotyping algorithms make no attempt at spatial bias correction. Here, we propose an effective single-chip spatial bias removal procedure for Affymetrix 6.0 SNP arrays or platforms with similar design features. This procedure deals with both extreme and subtle biases and is intended to be applied before standard genotype calling algorithms.  相似文献   

16.
The results from the genetic-population analysis of the testing of the black-white breed bulls used in reproduction centers located in Ukrainian Polesje are presented. The methods of the compositions of the parent pairs with the aim to obtain the advantageous animals are analysed.  相似文献   

17.
We propose a statistical framework, named genoCN, to simultaneously dissect copy number states and genotypes using high-density SNP (single nucleotide polymorphism) arrays. There are at least two types of genomic DNA copy number differences: copy number variations (CNVs) and copy number aberrations (CNAs). While CNVs are naturally occurring and inheritable, CNAs are acquired somatic alterations most often observed in tumor tissues only. CNVs tend to be short and more sparsely located in the genome compared with CNAs. GenoCN consists of two components, genoCNV and genoCNA, designed for CNV and CNA studies, respectively. In contrast to most existing methods, genoCN is more flexible in that the model parameters are estimated from the data instead of being decided a priori. GenoCNA also incorporates two important strategies for CNA studies. First, the effects of tissue contamination are explicitly modeled. Second, if SNP arrays are performed for both tumor and normal tissues of one individual, the genotype calls from normal tissue are used to study CNAs in tumor tissue. We evaluated genoCN by applications to 162 HapMap individuals and a brain tumor (glioblastoma) dataset and showed that our method can successfully identify both types of copy number differences and produce high-quality genotype calls.  相似文献   

18.
In most microarray technologies, a number of critical stepsare required to convert raw intensity measurements into thedata relied upon by data analysts, biologists, and clinicians.These data manipulations, referred to as preprocessing, caninfluence the quality of the ultimate measurements. In the lastfew years, the high-throughput measurement of gene expressionis the most popular application of microarray technology. Forthis application, various groups have demonstrated that theuse of modern statistical methodology can substantially improveaccuracy and precision of the gene expression measurements,relative to ad hoc procedures introduced by designers and manufacturersof the technology. Currently, other applications of microarraysare becoming more and more popular. In this paper, we describea preprocessing methodology for a technology designed for theidentification of DNA sequence variants in specific genes orregions of the human genome that are associated with phenotypesof interest such as disease. In particular, we describe a methodologyuseful for preprocessing Affymetrix single-nucleotide polymorphismchips and obtaining genotype calls with the preprocessed data.We demonstrate how our procedure improves existing approachesusing data from 3 relatively large studies including the onein which large numbers of independent calls are available. Theproposed methods are implemented in the package oligo availablefrom Bioconductor.  相似文献   

19.
Glucocorticoids are one of the most widely used therapeutics in the treatment of a variety of inflammatory disorders. However, it is known that there are variable patient responses to glucocorticoid treatment; there are responders and non-responders, or those that need higher dosages. Polymorphisms in the glucocorticoid receptor (GR) have been implicated in this variability. In this study, ninety-seven volunteers were surveyed for polymorphisms in the human GR-alpha (hGRα), the accepted biologically active reference isoform. One isoform identified in our survey, named hGR DL-2, had four single nucleotide polymorphisms (SNPs), one synonymous and three non-synonymous, and a four base pair deletion resulting in a frame shift and early termination to produce a 743 amino acid putative protein. hGR DL-2 had a decrease in transactivation potential of more than 90%. Upon further analysis of the individual SNPs and deletion, one SNP, A829G, which results in a lysine to glutamic acid amino acid change at position 277, was found to increase the transactivation potential of hGR more than eight times the full-length reference. Furthermore, the hGRα-A829G isoform had a differential hyperactive response to various exogenous steroids. Increasing our knowledge as to how various SNPs affect hGR activity may help in understanding the unpredictable patient response to steroid treatment, and is a step towards personalizing patient care.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号