首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wang JY  Larson LL  Owen FG 《Theriogenology》1982,18(4):461-473
Three trials were conducted to determine the effect of feeding supplemental beta-carotene on reproductive performance of Holstein heifers. In each trial, the animals were randomly assigned to either a control or treatment group. Animals in the treatment groups received 300 mg supplemental beta-carotene daily for the test periods which varied from 6 to 8 weeks in length. To facilitate sample collections and observations, estrus was synchronized with two injections of 25 mg PGF(2alpha) at 11 day intervals. The first injection was after 2 weeks of feeding supplemental beta-carotene. Blood serum beta-carotene concentrations were higher in the heifers fed supplemental beta-carotene as compared to concentrations in control heifers after 1 week of feeding and this difference increased throughout the test periods. The interval from the second injection of PGF(2alpha) to onset of estrus was shorter in the control heifers as compared to that interval in heifers supplemented with beta-carotene (trial 1,44.0 vs 56.0 hr; trial 2, 51.3 vs 70.8 hr; trial 3, 40.7 vs 62.5 hr, respectively). The intervals from PGF(2alpha) administration to the preovulatory LH peak (43.3 vs 61.5 hr) and ovulation (69.3 vs 85.9 hr) were also shorter in the control heifers in trial 3. No significant differences were found among treatments in the number of heifers that expressed estrus, the blood serum progesterone concentrations or the conception rates in any of the three trials.  相似文献   

2.
This study was conducted to determine the efficacy of feeding melengestrol acetate (MGA) for 14 days and administering prostaglandin F(2)alpha (PGF) 17 days after MGA to synchronize or induce estrus in yearling beef heifers. The study involved 56 Angus (n = 19), Hereford (n = 15) and Simmental (n = 22) heifers that were assigned by breed and pubertal status to either MGA+PGF or to control groups. Heifers in the synchronized group were fed 0.5 mg MGA per head per day for 14 days from a grain carrier and were injected with 25 mg, i.m. PGF 17 days after the last daily feeding of MGA. Control heifers were fed from a grain carrier without MGA and were not treated with PGF. Heifers were classified as pubertal when concentrations of progesterono in the serum exceeded 1 ng/ml in 1 of 2 samples collected prior to the initiation of treatments. Blood samples were collected 7 days before and on the day that treatment with MGA or carrier began and 7 days before and on the day that PGF was administered. Progesterone concentrations in the serum were elevated ( > 1 ng/ml) in 61% (17 28 ) of the MGA+PGF-treated heifers and in 61% (17 28 ) of the control heifers prior to feeding MGA. However, concentrations of progesterone in the serum at the time PGF was administered differed (P<0.05) between MGA+PGF and control groups. Concentrations of progesterone in the serum exceeded 1 ng/ml in 100% (28 28 ) of the MGA+PGF-treated heifers and in 71% (20 28 ) of control heifers at the time PGF was administered (P<0.05). All heifers were inseminated 12 hours after the first detected estrus. Twenty-two of 28 (79%) of the MGA+PGF-treated heifers exhibited estrus within 6 days after PGF compared with 9 of 28 (32%) of control heifers (P<0.05). The conception rate at first service did not differ between MGA+PGF and control groups (64% and 67%, respectively). Synchronized pregnancy rates were higher (P<0.05) for MGA+PGF-treated heifers than for control heifers (14 28 , 50% vs 6 28 , 21%). Increased concentrations of progesterone in serum at the time PGF was administered and higher pregnancy rates during the synchronized period among MGA+PGF-treated heifers demonstrate the efficacy of this treatment for use in estrus synchronization. Moreover, this treatment may have a potential effect on inducing puberty in breeding age heifers.  相似文献   

3.
This study compared the efficacy of two sources of PGF2alpha on the reproductive performance of virgin beef heifers, after synchronization of estrus using melengestrol acetate (MGA) and PGF2alpha. Angus-based heifers (n = 1002) in five herds were fed 0.5 mg per head per day of MGA for 14 days. Nineteen days after the last day of MGA feeding, heifers were randomly assigned to receive (i.m.) either 0.5 mg cloprostenol (n = 504; Estrumate, E) or 25 mg dinoprost tromethamine (n = 498; Lutalyse, L) as a source of exogenous PGF2alpha. Heifers were observed twice daily for 5 days for signs of estrus and artificially inseminated 8-12 h later, except in herd A, wherein animals not detected in estrus by 80 h after PGF2alpha were mass-mated and no longer monitored for signs of estrus. Estrumate and Lutalyse were equally (P > 0.1) effective among all response variables evaluated, including estrus response (E, 89% and L, 86%), conception rate (E, 67% and L, 67%), and synchronized pregnancy rate (E, 61% and L, 57%). Synchrony of estrus was not affected (P > 0.1) by PGF2alpha source, and peak estrus response occurred 60 h post-PGF for both treatments. Conception rate to timed insemination was not different (P > 0.1) among Estrumate- and Lutalyse-treated heifers within herd A (14%, 4/28 and 7%, 2/29, respectively). Herd had a significant (P < 0.05) effect on all indicators of reproductive performance. Conception rates within herds A and D were influenced by technician (P < 0.05), however, this effect was balanced across treatments and no treatment by technician interaction was detected. In conclusion, when administered 19 days after a 14-day MGA feeding period, cloprostenol and dinoprost tromethamine are equally efficacious for synchronous induction of a fertile estrus in virgin beef heifers.  相似文献   

4.
Yearling beef heifers (n = 193) were used to evaluate reproductive performance attained with 2 MGA-PGF(2)alpha synchronization systems. These treatments were compared with an untreated control group. The 14-d MGA heifers were synchronized by feeding 0.5 mg MGA/h/d for 14 d. At 17 d after the last MGA feeding, these heifers were injected with PGF(2)alpha (25 mg, im). Heifers in the 7-d MGA treatment group were fed 0.5 mg MGA/h/d for 7 d and received a 25-mg, im injection of PGF(2)alpha on the last day of the MGA feeding period. Heifers in all 3 treatment groups were observed for estrus every 12 h for 7 d beginning 24 h after the PGF(2)alpha injection. Heifers observed in estrus during this 7-d period were artificially inseminated approximately 12 h after the onset of estrus. The percentages of heifers in estrus during the 7-d synchronized period were 75.4, 56.3 and 17.2% for the 14-d MGA, 7-d MGA and control groups, respectively. The estrous responses were significantly different in each treatment. The percentage of heifers in estrus during the peak 24-h period was higher (P < 0.05) in heifers synchronized with the 14-d MGA system than in heifers synchronized with the 7-d MGA system (75.5 vs 50.0%). The synchronized conception rate of the 14-d MGA heifers was significantly higher (65.3%) than that of both the 7-d MGA (41.7%) and control (45.4%) heifers. Synchronized conception rates were similar (P = 0.79) in the 7-d MGA and control treatments. Synchronized pregnancy rates were 55.2, 32.4 and 15.2% for the 14-d MGA, 7-d MGA and control groups, respectively. Both synchronization treatments resulted in significantly higher synchronized pregnancy rates compared with that of the controls. The synchronized pregnancy rate was higher (P < 0.05) in the 14-d MGA group than it was in the 7-d MGA group. The mean day of conception within the breeding season was 11.5 and 9.3 d shorter in the 14-d MGA heifers than in the 7-d MGA and control heifers, respectively. Our results indicate that using the 14-d MGA system to synchronize estrus in beef heifers results in better reproductive performance than that attained in heifers synchronized with the 7-d MGA system or in control heifers.  相似文献   

5.
Ten, normally cycling, Holstein heifers were assigned to one of two environmental treatment groups (21.3 C, 59% RH or 32.0 C, 67% RH). PGF(2)alpha was used to induce luteal regression and synchronize estrus in order to evaluate temperature effects on various hormonal and physiological responses during the proestrous through metestrous periods. Environmental temperature (32.0 C) evoked a 1.4 C increase in rectal temperature and a 3.6 C increase in skin temperatures. Length of estrus was shorter (P<.10) for heifers at 32.0 C (16 vs 21 hr.). Average plasma progestin concentration between treatments was not different (P>.10). Mean estradiol concentrations were significantly (P<.10) lower in heifers at 32.0 C. No differences (P>.10) were detected in mean concentrations of LH between heifers at 21.3 C and 32.0 C. Preovulatory peak LH concentrations were 32.2 and 33.2 ng/ml plasma, respectively. All animals had a preovulatory surge of LH, suggesting that hyperthermia did not alter factors which regulate hypothalamic control of LH release. Mean basal concentrations of prolactin and corticoids were not different between temperature treatments (P>.10). However, mean corticoid response following ACTH was of lower magnitude, earlier to peak, and of shorter duration in heat stressed heifers. Heat stress did not appear to affect the hormonal milieu in peripheral plasma associated with corpus luteum regression (decrease in progestin) and ovulation (LH surge). However, duration of estrus, concentrations of estradiol at proestrus and corticoid response to injection of ACTH were reduced.  相似文献   

6.
Ninety-five normal cyclic crossbred beef heifers were used to determine if the proportions of heifers showing estrus, intervals to estrus and corpus luteum (CL) function were influenced by PGF(2alpha) dosage and (or) the stage of luteal phase when PGF(2alpha) was administered. Heifers were assigned randomly to treatments in a 4 x 3 factorial arrangement. Treatments were 5, 10, 25 or 30 mg PGF(2alpha) injected either in early (5 to 9 d), mid (10 to 14 d) or late (15 to 19 d) stages of the luteal phase. Jugular samples were taken at 0 h and at 8 h-intervals for 48 h and again at 60 h after PGF(2alpha) treatment for progesterone assay. Heifers were observed for estrus continuously for 120 h PGF(2alpha) treatment. The proportion of heifers showing estrus was dependent upon (P<0.05) both dosage of PGF(2alpha) and stage of luteal phase. Heifers given 5 mg of PGF(2alpha) showed estrus only if treated during the late stage, while those given 10 mg of PGF(2alpha) showed a progressive increase of heifers in estrus as stage of luteal phase advanced. The proportion of heifers showing estrus after 25 and 30 mg of PGF(2alpha) increased from 56% for the early stage to 100% for the mid and late stages. Interval to estrus in heifers showing estrus within 120 h after PGF(2alpha) treatment did not differ (P>0.05) among dosages but tended (P=0.10) to be longer in heifers treated during the mid luteal stage (67 h) than in heifers treated in the two other stages (56 h). A greater proportion of heifers (P<0.05) showed estrus by 60 h after PGF(2alpha) when treated during the early and late luteal stages (75.5%) than for heifers treated during the mid luteal stage (30.4%). Patterns of progesterone concentrations were influenced (P=0.08) by the three way interaction of dosage, stage and time. In heifers that showed estrus, rate of decline in progesterone tended (P=0.07) to be slower during the mid luteal stage than during the early and late stages. Progesterone did not drop below 1 ng/ml until 32 h in heifers treated during the mid luteal stage; whereas progesterone dropped below 1 ng/ml by 24 h in heifers treated during the early and late stages. These data may be useful in designing more efficient systems for using PGF(2alpha) or its analogues in estrus synchronization of beef cattle.  相似文献   

7.
This study was conducted to determine whether acute fasting in Holstein heifers enhances the suppressive effect of an intravenous injection of ethanol on pulsatile LH release (LH pulse) and, additionally, to establish whether or not the mechanism is estrogen-dependent. After estrus synchronization (Day 0 = estrus), 29 heifers were either fasted (fasting group; n = 14) or fully fed as a control (control group; n = 15) from Days 1 to 4. On Day 4, blood samples were taken at 10-min intervals for 4 h before (pre-injection period) and after (post-injection period) an intravenous injection of 1.5 mL of saline, 1.5 mL of ethanol , or 35 mg of tamoxifen dissolved in 1.5 mL of ethanol . We analyzed the mean LH level, the number of LH peaks per 4 h, and the amplitude of LH peaks. No differences were observed in the LH pulse in the pre-injection period between the control and the fasting group. However, in the post-injection period, compared with the saline injected control heifers, ethanol suppression of the LH pulse was observed in the number of LH peaks of the ethanol injected control heifers and in all pulse parameters of the ethanol injected fasting heifers. Furthermore, tamoxifen inhibited suppression of ethanol on LH pulse was observed in the control and fasting heifers injected with tamoxifen dissolved in ethanol. It was concluded that acute fasting in Holstein heifers has an enhancing effect on ethanol inhibition of the LH pulse and that the mechanism may be estrogen-dependent.  相似文献   

8.
At present, there is a renewed interest in thymic function and its secretions in relation to endocrine control and reproductive function. In an initial experiment, 60 crossbred heifers (18-20 mo) were detected in estrus and assigned to control or FSH superovulatory groups. On Days 7-14 of the subsequent estrous cycle, FSH was administered for 5 days and prostaglandin F2 alpha (PGF2 alpha) was administered at 48 and 60 h after the initial FSH injection. Control animals received only PGF2 alpha injections between Days 9 and 15 of the cycle. Blood samples were collected from all animals at the time of PGF2 alpha injection and every 12 h thereafter to 72 h post PGF2 alpha injection. In a subsequent experiment, 103 crossbred heifers (16-18 mo) were superovulated with FSH and synchronized to estrus with PGF2 alpha administered 60 h after the initial FSH injection. Twenty-eight of the heifers received Norgestomet implants 12 h prior to the initial PGF2 alpha injection to inhibit the LH surge. Blood samples were collected from animals at 12-h intervals until the PGF2 alpha injection and every 6 h thereafter until 108 h post PGF2 alpha treatment. Although thymosin beta 4 concentrations did change over the estrual period, no differences were noted between control and superovulatory animals in the initial experiment even though estradiol concentrations were increased tenfold from the FSH stimulated ovary. In the second experiment, thymosin beta 4 and alpha 1 increased as the estrual period progressed and decreased (p less than 0.05) subsequent to the LH surge. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Following observation of estrus, 134 Holstein heifers were given injections of Prostaglandin F(2)alpha (PGF(2)alpha) between Days 5 and 10 of their cycle (estrus = Day 0). They were then randomly assigned to either a group receiving 400 mug of estradiol benzoate (E(2)B) 40 h or maintained as controls. Heifers observed in estrus within 120 h of PGF(2)alpha administration were inseminated (approximately 12 h after initial observation of estrus). Blood samples for progesterone determination were drawn from the coccygeal vein on Days 15 and 21 after insemination. Pregnancy was confirmed by palpation per rectum between Days 5.0 and 60 post insemination. When control and treated heifers were compared it was found that a higher percentage of heifers treated with E(2)B exhibited estrus after PGF(2)alpha, but there had been no effect on subsequent progesterone concentrations or pregnancy rates.  相似文献   

10.
To determine whether progesterone facilitates PGF(2)alpha-induced luteolysis prior to day 5 of the estrous cycle, 48 Holstein-Friestian heifers were assigned at random to four treatments: 1) 4 ml corn oil/day + 5 ml Tris-HCl buffer (control); 2) 25 mg prostaglandin F(2)alpha (PGF(2)alpha); 3) 100 mg progesterone/day (progesterone); 4) 100 mg progesterone/day + 25 mg PGF(2)alpha (combined treatment). Progesterone was injected subcutaneously daily from estrus (day 0) through day 3. The PGF(2)alpha was injected intramuscularly on day 3. Estrous cycle lengths were decreased by progesterone: 20.2 +/- 0.56, 19.2 +/- 0.31 (control and PGF(2)alpha); 13.2 +/- 1.40, and 11.7 +/- 1.27 (progesterone and combined). The combination of progesterone and PGF(2)alpha did not shorten the cycle any more than did progesterone alone (interaction, P>0.05). PGF(2)alpha treatment reduced progesterone concentrations on day 6 (P<0.05) and both progesterone and PGF(2)alpha reduced plasma progesterone on day 8 (P<0.01 and P<0.05, respectively). LH was measured in blood samples collected at 10- min intervals for 4 hr on day 4 from three heifers selected at random from each of the four treatment groups. Mean LH concentration for control heifers ranged from 0.35 to 0.63 ng/ml (overall mean, 0.49 ng/ml) and for progesterone-treated heifers ranged from 0.12 to 0.30 ng/ml (overall mean, 0.23 ng/ml). LH concentrations were greater in control heifers (P<0.01). The mean LH pulse rate for control heifers was 2.7 pulses/heifers/4 hr, while that for the progesterone-treated heifers was 1.7 pulses/heifer/4 hr. The mean pulse amplitude for control and progesterone treatments was 0.47 ng/ml and 0.36 ng/ml, respectively. Neither pulse amplitude nor frequency were different between treatment groups.  相似文献   

11.
Fertility of Holstein cows has been decreasing for years and, to a lesser extent, the fertility of heifers too but more recently. A hypothesis to explain this phenomenon may be that the chronology of events leading to ovulation is different for those animals bred nowadays when compared to what was reported previously; this would result in an inappropriate time of insemination. Therefore, two experiments were designed to investigate the relationships among estrus behavior, follicular growth, hormonal events and time of ovulation in Holstein cows and heifers. In the first experiment, the onset of estrus, follicular growth, patterns of estradiol-17beta, progesterone and LH, and the time of ovulation were studied in 12 cyclic Holstein heifers that had their estrus synchronized using the Crestar method; this was done twice, 3 weeks apart. The intervals between estrus and ovulation, estrus and the LH peak, and between the LH peak and ovulation were, respectively, 38.5 h +/-3.0, 9.1 +/- 2.0 and 29.4 h +/-1.5 (mean+/- S.E.M). The variation in the interval between estrus and the LH peak explained 80.6% of the variation in the interval between estrus and ovulation. The intervals between estrus and the LH peak, and estrus and ovulation were correlated with estradiol-17beta peak value (r=-0.423, P <0.04 and r=-0.467, P<0.02, respectively). Positive correlation coefficients for the number of follicle larger than 5 mm, and negative correlation coefficients for the size of the preovulatory follicle with the intervals between estrus and LH peak, LH peak and ovulation, and estrus and ovulation suggest an ovarian control of these intervals. In respect to its role to explain the variation in the interval between estrus and ovulation, the variation in the interval between estrus and the LH peak was evaluated further in a second set of experiments utilizing 12 pubertal Holstein heifers and 35 Holstein cows. The duration of the interval between the beginning of estrus and the LH peak was longer in heifers than in cows (4.15 h versus -1.0 h; P <0.002); the variation for this interval was higher in cows than in heifers (S.E.M.= 1.2 h versus 0.8 h; P=0.01). According to the results of these studies it can be proposed that estradiol and other product(s) of ovarian origin regulate not only the duration of intervals between the onset of estrus and the LH surge but also between the LH surge and ovulation. From the results obtained in the first experiment, it may be postulated that differences observed between cows and heifers for the duration of the interval between onset of estrus and the LH surge as well as for the variation of this interval would be observed also for the interval between the onset of estrus and ovulation. Therefore, on a practical point of view, the long interval between the onset of estrus and ovulation and the high variation of this interval, especially in cows, may be a source of low fertility and should be considered when analysing reproductive disorders.  相似文献   

12.
Sixteen lactating, normally cycling Holstein cows were used to study 1) the effects of sometribove (recombinant methionyl bST) administration on basal LH concentrations and 2) the pituitary response to a GnRH challenge during the breeding period. The cows received a 3-injection regimen of PGF2a for estrus synchronization between 40 and 50 d post partum, and were assigned to a control group or to sometribove treatment (25 mg/d), which began 54 to 59 d post partum. Duration of the bST treatment was 24 d. On Day 10 of the estrous cycle following the third PGF2a injection, blood samples were collected to determine basal concentrations of LH. Immediately following this collection period, a GnRH challenge (100 mug) was used to measure the responsiveness of the pituitary based on the subsequent LH peak. Milk production of sometribove-treated cows increased 7% (2.1 kg/d) above that of the controls. Sometribove did not affect basal or GnRH-induced LH concentrations. Plasma progesterone concentrations during the luteal phase were similar between treatments. Sometribove increased milk yield with no apparent effects on basal or GnRH-induced LH concentrations during the breeding period.  相似文献   

13.
A study was conducted to evaluate the effect of feeding a bypass fat on luteinizing hormone (LH) response to gonadotrophin releasing hormone (GnRH) in noncyclic Holstein heifers. Twelve cyclic Holstein heifers were fed a complete diet at 40% net energy for maintenance (NE(m)) until cessation of ovarian activity. Based on weights and condition scores, heifers were assigned to either a control or treatment diet containing 0.45 kg bypass fat and fed at an energy level of 85% NE(m). Diet adjustments were made following weekly weighings. GnRH challenges were conducted at four periods: prior to initial energy deprivation, at termination of 40% NE(m) feeding, and twice more at 21-d intervals after 85% NE(m) feeding began. Blood was sampled via a jugular catheter every 15 min for 5 h, and GnRH was injected after the fourth sample. None of the heifers exhibited estrous activity after the initial energy deprivation. Heifers on the bypass fat diet continued to lose weight during the treatment period, while the control heifers gained a slight amount of weight. Baseline and peak concentrations of LH were not significantly affected by time or diet. Time to GnRH-induced LH peak was longer (53 vs 130 min, P < 0.01) after 40% NE(m) and remained greater at all times thereafter. Serum lipid levels increased 82.5% among heifers being fed the bypass fat. Energy restriction had no effect on the magnitude of LH response to GnRH but did delay response time.  相似文献   

14.
Effect of stage of the estrous cycle at the time of prostaglandin F(2alpha) (PGF(2alpha)) injection on subsequent reproductive events in beef females was studied in four trials involving 194 animals. Cycling animals were given two injections of 25 mg PGF(2alpha) 11 days apart or, in some cases, the interval was altered to allow the second injection to fall on a specific day of the cycle. Day of estrous cycle at time of the second injection was determined by estrous detection. Interval from the second PGF(2alpha) injection to the onset of estrus (interval to estrus) was shorter (P<.01) in heifers than in cows. Both cows and heifers injected on days 5 to 9 (early cycle) had a shorter (P<.01) interval to estrus (estrus = day 0) than did those injected on days 10 to 15 (late cycle). Conception rate was lower (P<.05) for early-cycle heifers than for late-cycle heifers inseminated by appointment at 80 hours. There was no significant difference in conception rate of early-or late-cycle heifers or cows inseminated according to estrous detection or early- or late-cycle cows inseminated at 80 hours. Progesterone concentrations in blood samples collected in heifers at 4-hour intervals after the second PGF(2alpha) injection on either day 7 or day 14 declined linearly (P<.05) through 36 hours. Day of the estrous cycle at PGF(2alpha) injection had no effect on rate of progesterone decline, even though heifers injected on day 7 had a shorter (P<.05) interval to estrus. All animals whose cycle length was not affected by the second PGF(2alpha) injection were treated on days 5 through 8 of the cycle, indicating that PGF(2alpha) was less effective in regressing the corpus luteum between days 4 and 9 of the cycle than later in the cycle.  相似文献   

15.
Our objective was to determine whether extending the interval from 17 to 19 d between removal of melengestrol acetate (MGA) feed and administration of PGF2 alpha would alter conception rates, pregnancy rates and the degree of synchrony in replacement beef heifers. A commercial heifer operation in north-central Kansas purchased 591 Angus x Hereford heifers from 12 sources. Prior to the spring breeding season, 14% of the heifers were culled. The remaining heifers were assigned randomly to 2 MGA-PGF2 alpha synchronization systems. All heifers were fed MGA (0.5 mg/head/d) for 14 d, and PGF2 alpha was administered either 17 or 19 d after the completion of MGA feeding. Heifers were inseminated artificially for 30 d followed by 30 d of natural mating. Based on each source, first-service conception rates ranged from 66 to 90%, whereas overall pregnancy rates ranged from 91 to 100%. Heifers given PGF2 alpha on Day 17 after MGA had first-service conception rates of 75.9% compared with 81.4% for heifers receiving PGF2 alpha on Day 19. In response to the PGF2 alpha injection, 99% of the Day 19 heifers that were detected in estrus were inseminated artificially by 72 h after the PGF2 alpha injection, whereas 74% of the heifers in the Day 17 treatment were inseminated by that time. Average interval to artificial insemination (AI) after PGF2 alpha was greater (P < 0.01) for the Day 17 heifers (73.1 +/- 1.1 h) than for the Day 19 heifers (56.2 +/- 1.1 h). No differences in conception rates or overall pregnancy rates occurred; however, heifers receiving PGF2 alpha on Day 19 after MGA had shorter intervals to estrus, and a greater proportion was inseminated within 72 h after PGF2 alpha, thus possibly facilitating successful timed insemination of the remaining heifers not yet inseminated by that time.  相似文献   

16.
The effects on estrus and fertility of 3 estrus synchronization protocols were studied in Brahman beef heifers. In Treatment 1 (PGF protocol; n=234), heifers received 7.5 mg, i.m. prostianol on Day 0 and were inseminated after observed estrus until Day 5. Treatment 2 (10-d NOR protocol; n = 220) consisted of norgestomet (NOR; 3 mg, s.c. implant and 3 mg, i.m.) and estradiol valerate (5 mg, i.m.) treatment on Day -10, NOR implant removal and 400 IU, i.m. PMSG on Day 0, and AI after observed estrus through to Day 5. Treatment 3 (14-d NOR+PGF protocol; n = 168) constituted a NOR implant (3 mg, sc) on Day -14, NOR implant removal on Day 0, PGF on Day 16, and AI after observed estrus through to Day 21. All heifers were examined for return to estrus at the next cycle and inseminated after observed estrus. The heifers were then exposed to bulls for at least 21 d. During the period of estrus observation (5 d) after treatment, those heifers treated with the PGF protocol had a lower (P<0.01) rate of estrual response (58%) than heifers treated with the 10-d NOR (87%) or 14-d NOR+PGF (88%) protocol. Heifers treated with the 10-d NOR protocol displayed estrus earlier and had a closer synchrony of estrus than heifers treated with either the PGF or the 14-d NOR+PGF protocol. Heifers treated with the 14-d NOR+PGF protocol had higher (P<0.05) conception and calving rates (51 and 46%) to AI at the induced estrus than heifers treated with the PGF (45 and 27%) or the 10-d NOR (38 and 33%) protocol. Calving rate to 2 rounds of AI was greater (P<0.05) for heifers treated with the 14-d NOR-PGF (50%) protocol than heifers treated with the 10-d NOR (38%) but not the PGF (43%) protocol. Breeding season calving rates were similar among the 3 protocols. The results show that the 14-d NOR+PGF estrus synchronization protocol induced a high incidence of estrus with comparatively high fertility in Brahman heifers.  相似文献   

17.
Roth Z  Inbar G  Arav A 《Theriogenology》2008,69(8):932-939
Reduced reproductive performance and lower conception rates of lactating cows are closely associated with genetic progress for high milk production. In contrast, the fertility of nulliparous Holstein heifers has remained fairly stable over the years and appears to be markedly higher than that of mature lactating cows. Possible differences in oocyte quality and follicular steroid levels, which could be associated with the low fertility of high-lactating cows, were examined in 13-month-old heifers, cows around the time of first AI (60-95 d post-partum, yielding 49+/-2.4 kg/d) and cows at mid-lactation (120-225 d post-partum, yielding 37+/-2.1 kg/d). Estrus was synchronized by two doses of PGF2alpha and follicles (5-8 mm) were aspirated on days 4, 8, 11 and 15 of the cycle by an ultrasound-guided procedure. Oocytes were morphologically examined, matured in vitro, chemically activated and cultured for 8d. Cleavage rate and the proportion of developing parthenogenetic blastocysts were determined on days 3 and 8 post-activation, respectively. On day 17, heifers and cows received additional PGF2alpha and follicular fluids from preovulatory follicles were collected on day 19 perior to the expected estrus. Follicular-fluid volumes were similar in cows and heifers, as were estradiol, progesterone and androstenedione concentrations in the follicular fluid. Percentages of high-grade oocytes, proportions of cleaved oocytes and developed blastocysts did not differ between the groups. Results suggest that the fertility gap between nulliparous heifers and high-lactating cows is not directly related to steroid content in the preovulatory follicular fluid or oocyte developmental competence.  相似文献   

18.
Three hundred and ten yearling heifers of various breeds were used in five trials to compare two estrus synchronization treatments. Treatment 1 consisted of Melengestrol Acetate-Prostaglandin F(2)alpha (MGA-PGF(2)alpha). Heifers were fed 0.5 mg MGA/head/d for 14 to 16 d. Sixteen or 17 d after the final MGA feeding, heifers were injected i.m. with 25 mg PGF(2)alpha. Treatment 2 consisted of Syncro-Mate B (SMB). Heifers were given a 9-d norgestomet implant plus an injection containing 3 mg norgestomet and 5 mg estradiol valerate i.m. at implant insertion. Heifers were observed for estrus at 6-h intervals for 120 h after the end of treatments and were artificially inseminated 12 to 18 h after observed estrus. Heifers synchronized with MGA-PGF(2)alpha and SMB had a similar (P > 0.10) estrous response (83.4 vs 90.2%) and a similar (P > 0.10) degree of synchrony (71.8 vs 79.0%) following treatment. However, the synchronized conception rate (68.7 vs 40.6%) and the synchronized pregnancy rate (57.3 vs 36.6%) were higher (P < 0.01) in MGA-PGF(2)alpha than SMB heifers. Breeding season pregnancy rates were similar in both treatment groups. Heifers in both groups that were classified as cycling prior to initiation of treatment had improved reproductive performance following synchronization compared with those classified as noncycling. Based on higher synchronized conception and pregnancy rates and lower labor requirements and drug costs, the MGA-PGF(2)alpha system appears to be a better method to synchronize estrus in beef heifers than the SMB system.  相似文献   

19.
An effective, reduced dosage (1 10 to 1 20 the systemic dose) method for administering prostaglandin F(2alpha) in heifers to induce estrus is presented in this study. The PGF(2alpha) was injected intraovarially in five heifers at a dose of 2 mg and in another five heifers at a dose of 1 mg. Five additional heifers were injected intraovarially with 0.5 ml of distilled water and served as the controls. Regression of the corpus luteum (CL) occurred in all PGF(2alpha)-treated heifers resulting in marked decline of the peripheral levels of progesterone 24 h after treatment. Estrus was expressed 1 to 3 d later. Regression of the CL, estrus, and decline in the peripheral levels of progesterone were not observed in the control heifers. Conception rates in the heifers given either 2 mg and 1 mg PGF(2alpha) were 60 and 100%, respectively. Seven calves were born at the end of the normal gestation period while one calf was aborted.  相似文献   

20.
选用12头18月龄,体况良好,体重380 kg的西门塔尔牛育成母牛,采用完全随机区组设计分为4组,研究亚硒酸钠(0、0.3、0.6和0.9 mg Se/kg DM)对发情周期外周血清促黄体素、促卵泡素、孕酮和雌二醇分泌的影响。结果表明:日粮添加亚硒酸钠后发情周期促黄体素、促卵泡素、孕酮和雌二醇分泌水平提高,0.3 mg/kg组和0.6 mg/kg组显著高于对照组(P<0.05),0.3 mg/kg组较0.6 mg/kg组高(P>0.05)。根据试验结果推断以亚硒酸钠为硒源,添加0.3 mg Se/kg DM对发情周期生殖激素分泌有显著促进作用,兼顾基础日粮的含硒量,建议日粮硒水平为0.37 mg Se/kg DM。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号