首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feline anterior sartorius is a long strap-like muscle composed of short muscle fibers. Nerve branches that enter this muscle contain the axons of motor units whose constituent muscle fibers are distributed asymmetrically within the muscle. In the present study, twitch and tetanic isometric contractions were evoked by stimulating individual nerve branches while muscle force was recorded and intramuscular length changes were monitored optically by the movement of reflective markers on the muscle. Contractions elicited by stimulating the parent nerve produced little change in the positions of the surface markers. Contractions elicited by stimulating the proximally or distally directed nerve branches caused the muscle to shorten at the end closest to the nerve branch and lengthen at the opposite end. Some muscles were supplied by a centrally directed nerve branch whose stimulation produced variable effects: in some cases a portion of the muscle shortened whereas the rest lengthened, but in other cases, the positions of the surface markers showed little change. The intramuscular length changes produced by stimulating single nerve branches were greater during isometric contractions at short whole-muscle lengths than at long whole-muscle lengths. The twitch and tetanic length-tension relationships obtained by stimulating the individual nerve branches were not congruent with the length-tension relationship produced when the parent nerve was stimulated. At short whole-muscle lengths, stimulation of a single nerve branch generated only a small fraction of the force that could be generated by the muscle when the parent nerve was stimulated. As whole-muscle length increased, an increased fraction of total muscle force could be generated by stimulating a single nerve branch. The results suggest that a complex relationship between passive and active elements contributes to the total muscle force and depends on the distribution of active and passive muscle units throughout the muscle.  相似文献   

2.
Using isolated ventral root filament stimulation and glycogen depletion techniques, 14 motor units from the cat tibialis anterior were studied. Based on their mechanical properties, the units were classified as either slow-fatigue resistant, fast-fatigue resistant, fast-fatigue intermediate, or fast-fatigable. Quantitative histochemical and computer assisted image analysis techniques were used to determine the activity of succinate dehydrogenase in a population of fibres in each unit. In addition, the intrafibre distribution of succinate dehydrogenase activity was measured in those same fibres by calculating the enzymatic activity of circumferential layers every 0.5 microns starting from the fibre edge to its centre. It was established that enzymatic activity and radial distance were linearly related in the fibres. A range in succinate dehydrogenase activity (mean coefficient of variation, 29%) was observed among the fibres of a unit. In contrast, the intrafibre distribution of that activity was rather consistent (mean variation, 4%) across the fibres of a unit. Further, the intrafibre distribution was similar among the fibres of units classified as the same type. However, the intrafibre distribution was disparate among the different unit types. These data suggest that the intrafibre distribution of mitochondrial enzymes may contribute to the mechanical properties of a motor unit. In this regard, a hypothesis is proposed that describes how the absolute activity of a mitochondrial enzyme, and the intrafibre distribution of that activity, may interactively contribute to the fatigue resistance of a unit.  相似文献   

3.
Static flexion of the lumbar spine with constant load applied to the viscoelastic structures for 20 minutes and for 50 minutes resulted in development of spasms and inhibition in the multifidus muscles (e.g., deep erector spinae) and in creep of the supraspinous ligament in the feline model. The development of spasms and inhibition was not dependent on load magnitude. It is suggested that occupational and sports activities which require prolonged static lumbar flexion within the physiological range can cause a "sprain"-like injury to the ligaments, which in turn reflexively induce spasms and inhibition in some erector spinae muscles. Such disorder may take a long time to recover, in the order of days to weeks, depending on the level of creep developed in the tissues.  相似文献   

4.
The feeding motor program(FMP) of the terrestrial slug Limax maximus was examined in vivo and in vitro. The feeding pattern of intact animals shows an initial increase in bite frequency followed by a plateau phase. Recordings obtained from semi-intact preparations of the lips, brain, and buccal mass established the correlation of activity in buccal ganglion nerve roots with the protraction-retraction bite cycle. A preparation of the lips, cerebral ganglia, and buccal ganglia was developed, such that, repetitive chemostimulation of the lips yields reproducible bouts of FMP. Sources of proprioceptive feedback from buccal muscles were demonstrated. The feasibility of computer scoring of the FMP is documented. The results demonstrate that aspects of in vivo feeding behavior are retained and identifiable in highly dissected, in vivo preparations.  相似文献   

5.
We used acid digestion and glycogen depletion to determine fascicle organization, fiber morphology, and physiological and anatomical features of individual motor units of an in-series muscle, the pectoralis (pars thoracicus) of the pigeon (Columba livia). Most fascicles are attached at one end to connective tissue. Average fiber length in the four regions examined range from 42% to 66% of average fascicle length. More than 65% of fibers are blunt at one end of a fascicle and taper intrafascicularly. Fibers with blunt–blunt endings range from 13% to 31% of the population in different regions; taper–taper fibers range from 2% to 17%. Pigeon pectoralis fibers are distinguished histochemically into fast-twitch glycolytic (FG) and fast-twitch oxidative-glycolytic (FOG) populations. Three units composed of FG fibers (FG units) contract more quickly than three units composed of FOG fibers (FOG units) (range 31–37 vs 47–62 msec), produce more tetanic force (0.11–0.32 vs 0.02–0.05 N) and are more fatigable (<18% initial force vs >50% after repeated stimulation). Most motor units are confined to one of the four muscle regions. Territory of two FOG units is <30% of parent fascicle length. Territories of other units spanned parent fascicles; most fibers in these units do not extend the full fascicle length. Compared to FG units, FOG units have lower maximum innervation ratios and density indices (ratio of depleted/total FOG fibers in territory 8–14% vs 58–76% for FG units). These differences support the hypothesis that FG units are organized to produce substantial force and power for takeoff, landing and other ballistic movements whereas FOG units are suited for sustained flight when power requirements are reduced. Implications of findings for understanding the control of in-series muscles and the use of connective tissue elastic elements during wing movements are discussed. J.Morphol. 236:179–208, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
7.
In this study we report the complete sequence and genome organization of the serotype I feline coronavirus (FCoV) strain Black. Furthermore, a reverse genetic system was established for this FCoV strain by cloning a full-length cDNA copy into vaccinia virus. This clone served as basis for the generation of recombinant FCoV (recFCoV) that was shown to bear the same features in vitro as the parental FCoV. Using this system, accessory 3abc genes in the FCoV genome were replaced by green fluorescent protein (recFCoV-GFP) and Renilla luciferase genes (recFCoV-RL). In addition, we showed that feline CD14+ blood monocytes and dendritic cells can be easily detected after infection with recFCoV-GFP. Thus, our established reverse genetic system provides a suitable tool to study the molecular biology of serotype I FCoV.  相似文献   

8.
9.
Gardner MK  Odde DJ 《Current biology : CB》2006,16(24):R1021-R1023
A new study shows that an antagonistic force model can explain a number of complex mitotic spindle movements in the first mitosis of the Caenorhabditis elegans embryo by simply assuming that cortical force generators become increasingly persistent in their interaction with microtubules during mitosis.  相似文献   

10.
11.
Repetitive discharges (RDs) are observed in electromyograms recorded from healthy as well as diseased muscles. We have evaluated the prevalence of RDs in some neuromuscular diseases and analysed the time parameters of recordings displaying RDs as well as shapes of the potentials. In our clinical material, RDs have been observed exclusively in lower motor neuron lesions, never in healthy or in myopathic muscles. The prevalence index of RDs in amyotrophic lateral sclerosis (0.06) was found to be different from that in chronic spinal muscle atrophy (0.004). The types of double potential shape have been categorised. The relationships between the amplitude of the second component and the interspike duration and that between the interspike duration and the jitter were calculated. The amplitude of the second component diminished and jitter of the components increased with the shortening of the interval between components. The authors suggest that in lower motor neuron lesions, the RDs of the motorunit (MU) may be one of the first signs of the MU's dysfunction.  相似文献   

12.
Nonproteinogenic amino acids are valuable active compounds from their pharmacological and biochemical effects and also as novel building blocks for peptides. The preparation of furylalanine derivatives by asymmetric hydrogenation is described. Amino-phosphine-phosphinite-rhodium complexes catalyzed the hydrogenation of the prochiral dehydroamino acid precursors in high rate and with enantioselectivities of 70-90% ee. Substrate-catalyst ratios up to 2,000 can be used depending on the catalyst applied. The procedure turns out to be suitable for larger scale preparations.  相似文献   

13.
14.
BACKGROUND: The quadrupled autologous semitendinosus-gracilis graft is the first choice of many orthopaedic surgeons when reconstructing the anterior cruciate ligament. The effect that this procedure has on voluntary muscle control remains unclear. The purpose of this study was to evaluate the effect that anterior cruciate ligament reconstruction with autologous semitendinosus-gracilis graft has on voluntary muscle control by assessing subjects' specificity of muscle action. METHODS: The voluntary muscle control of 10 people (seven males, three females) with acute, isolated ACL ruptures was assessed in the days prior to when they underwent anterior cruciate ligament reconstruction with quadrupled autologous semitendinosus-gracilis grafts and after they had returned to play in sports requiring quick changes of direction and jumping (approximately 6 months later). The experimental protocol included the use of an established target-matching protocol that requires subjects to produce and modulate force with fine control, electromyographic recordings from 11 muscles about the knee, and the use of circular statistics to calculate specificity indices that describe the degree of focus (specificity) associated with the activity pattern of each muscle. Data were analyzed by performing pre-surgery and post-return to sports side-to-side comparisons, as well as, pre-surgery to post-surgery ipsilateral comparisons. RESULTS: Diminished specificity of muscle action was observed in the activity patterns of most of the muscles of the subjects' anterior cruciate ligament deficient knees prior to surgery. The quadriceps muscles were particularly affected. Post-return to sports results indicated that voluntary muscle control had improved in most muscles. There was no significant difference in pre-surgery and post-return to sports semitendinosus and gracilis muscle control. The semimembranosus muscle displayed less specific muscle activity patterns following surgery, which may represent a compensation strategy for minor changes in neuromuscular function. CONCLUSIONS: Voluntary muscle control improved in most muscles following ACL reconstruction with semitendinosus-gracilis autografts. Semitendinosus and gracilis muscle control did not appear to be altered significantly by the procedure.  相似文献   

15.
Pea xyloglucan and cellulose : I. Macromolecular organization   总被引:7,自引:18,他引:7       下载免费PDF全文
A macromolecular complex composed of xyloglucan and cellulose was obtained from elongating regions of etiolated pea (Pisum sativum L. var. Alaska) stems. Xyloglucan could be solubilized by extraction of this complex with 24% KOH-0.1% NaBH4 or by extended treatment with endo-1,4-β-glucanase. The polysaccharide was homogeneous by ultracentrifugal analysis and gel filtration on Sepharose CL-6B, molecular weight 330,000. The structure of pea xyloglucan was examined by fragmentation analysis of enzymic hydrolysates, methylation analysis, and precipitation tests with fucose- or galactose-binding lectins. The polysaccharide was composed of equal amounts of two subunits, a nonasaccharide (glucose/xylose/galactose/fucose, 4:3:1:1) and a heptasaccharide (glucose/xylose, 4:3), which appeared to be distributed at random, but primarily in alternating sequence. The xyloglucan:cellulose complex was examined by light microscopy using iodine staining, by radioautography after labeling with [3H]fucose, by fluorescence microscopy using a fluorescein-lectin (fucose-binding) as probe, and by electron microscopy after shadowing. The techniques all demonstrated that the macromolecule was present in files of cell shapes, referred to here as cell-wall `ghosts,' in which xyloglucan was localized both on and between the cellulose microfibrils. Since the average chain length of pea xyloglucan was many times the diameter of cellulose microfibrils, it could introduce cross-links by binding to adjacent fibrils and thereby contribute rigidity to the wall.  相似文献   

16.
Nature and distribution of feline sarcoma virus nucleotide sequences.   总被引:15,自引:19,他引:15       下载免费PDF全文
The genomes of three independent isolates of feline sarcoma virus (FeSV) were compared by molecular hybridization techniques. Using complementary DNAs prepared from two strains, SM- and ST-FeSV, common complementary DNA'S were selected by sequential hybridization to FeSV and feline leukemia virus RNAs. These DNAs were shown to be highly related among the three independent sarcoma virus isolates. FeSV-specific complementary DNAs were prepared by selection for hybridization by the homologous FeSV RNA and against hybridization by fline leukemia virus RNA. Sarcoma virus-specific sequences of SM-FeSV were shown to differ from those of either ST- or GA-FeSV strains, whereas ST-FeSV-specific DNA shared extensive sequence homology with GA-FeSV. By molecular hybridization, each set of FeSV-specific sequences was demonstrated to be present in normal cat cellular DNA in approximately one copy per haploid genome and was conserved throughout Felidae. In contrast, FeSV-common sequences were present in multiple DNA copies and were found only in Mediterranean cats. The present results are consistent with the concept that each FeSV strain has arisen by a mechanism involving recombination between feline leukemia virus and cat cellular DNA sequences, the latter represented within the cat genome in a manner analogous to that of a cellular gene.  相似文献   

17.
Protein turbines. I: The bacterial flagellar motor.   总被引:2,自引:0,他引:2  
The bacterial flagellar motor is driven by a flux of ions between the cytoplasm and the periplasmic lumen. Here we show how an electrostatic mechanism can convert this ion flux into a rotary torque. We demonstrate that, with reasonable parameters, the model can reproduce many of the experimental measurements.  相似文献   

18.
Measurements of the variance in rotation period of tethered cells as a function of mean rotation rate have shown that the flagellar motor of Escherichia coli is a stepping motor. Here, by measurement of the variance in rotation period as a function of the number of active torque-generating units, it is shown that each unit steps independently.  相似文献   

19.
The purpose of this brief review is to examine the neural adaptations associated with training, by focusing on the behavior of single motor units. The review synthesizes current understanding on motor unit recruitment and rate coding during voluntary contractions, briefly describes the techniques used to record motor unit activity, and then evaluates the adaptations that have been observed in motor unit activity during maximal and submaximal contractions. Relatively few studies have directly compared motor unit behavior before and after training. Although some studies suggest that the voluntary activation of muscle can increase slightly with strength training, it is not known how the discharge of motor units changes to produce this increase in activation. The evidence indicates that the increase is not attributable to changes in motor unit synchronization. It has been demonstrated, however, that training can increase both the rate of torque development and the discharge rate of motor units. Furthermore, both strength training and practice of a force-matching task can evoke adaptations in the discharge characteristics of motor units. Because the variability in discharge rate has a significant influence on the fluctuations in force during submaximal contractions, the changes produced with training can influence motor performance during activities of daily living. Little is known, however, about the relative contributions of the descending drive, afferent feedback, spinal circuitry, and motor neuron properties to the observed adaptations in motor unit activity.  相似文献   

20.
The composition of skin, muscle, and bone and their distribution throughout the body are compared for "advanced" or "specialized" species (Alouatta, Macaca, Canis, Felis, Lepus); smaller, more closely related species (Tupaia and the Lorisidae); and several species within the same ecosystem (Barro Colorado Island, Panama). Among the most significant variables, the skin of sloths, howlers and macaques constitutes more than 12% of body weight, whereas greyhound skin is 5% of weight; sloth and howler muscle are 25% of weight, macaque muscle about 40% of weight, greyhound and agouti muscle over 50% of weight. In tree shrews and galagos muscle is heavier (35%) than in pottos and slow lorises (below 28%), but bone and skin are lighter. All species differ in the segmental distribution of weight. Cats have light tails, light feet and heavy thighs, whereas howlers have heavy tails, heavy feet, and light thighs. The galagos have heavy hindlimbs and tails, the pottos and lorises have reduced tails and approximately equal fore- and hindlimbs. Convergences in segment pattern (sloths with pottos and lorises, marmosets with tree shrews, owl monkeys with galagos, cebus with macaques) as well as divergences are documented. All weight-of tissue and weight-of-segment variables are correlated directly with locomotor adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号