首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
R Schick  V Schusdziarra 《Peptides》1985,6(5):861-864
Somatostatin release in dogs is modulated by exogenous and endogenous opioids. Since postprandial somatostatin secretion is in part due to the stimulatory effect of postprandially activated gastrointestinal hormones as well as endogenous opioids, it was of interest to determine the interaction between motilin, a known stimulus of somatostatin release, and endogenous opioids with regard to activation of D-cell function. In a group of eight conscious dogs the infusion of synthetic porcine motilin at doses of 0.05, 0.25 and 0.5 micrograms/kg X hr elicited a significant increase of peripheral vein plasma somatostatin-like immunoreactivity (SLI), confirming previously reported data. The additional infusion of the opiate receptor antagonist naloxone attenuated this SLI response, suggesting that endogenous opioids participate in motilin-induced SLI release. Since previous studies have shown that the interaction between endogenous opioids and postprandial somatostatin secretion is modified by elevated plasma glucose levels, the experiments were repeated during an IV glucose (0.2 g/min) background infusion increasing circulating glucose levels by 20-30 mg/dl. During IV glucose, the SLI response to motilin was almost abolished. In this group the addition of naloxone restored the SLI response, indicating that the inhibitory effect of elevated glucose on D-cell function is, at least in part, mediated by endogenous opioids. These data suggest that motilin has to be considered as one regulatory factor which participates in the previously observed interaction between glucose and endogenous opioids during postprandial SLI release.  相似文献   

2.
In order to study the regulatory mechanism of motilin release, plasma motilin was measured in healthy dogs during the fasting state and after the ingestion of ordinary nutrient. Fasting plasma motilin levels were found to fluctuate intermittently, but ingestion of a meal completely abolished the intermittent motilin release and resulted in low motilin levels lasting for 6–8 h. To clarify the role of the duodenum in this motilin release, an operation was performed in five dogs by which we excluded from the alimentary tract the upper half of the small intestine not including the duodenum from a point 2 cm below the larger pancreatic duct. After this operation meal ingestion still caused a decrease in plasma motilin levels. However, after a modified version of the operation was performed in 5 other dogs by which the upper half of the small intestine together with the duodenum was transected at the pyloric ring, plasma motilin was not suppressed by meal ingestion. These results suggest that motilin secretion is regulated by nutrient ingestion and that the passage of nutrients through the duodenum plays a important role in its regulation.  相似文献   

3.
The effects of synthetic linear somatostatin on basal circulating levels on several pituitary and pancreatic hormones, and of glucose and free fatty acids (FFA) were studied in 6 normal men after an overnight fast. A priming intravenous infusion of 250 mug of somatostatin in 18 sec was followed by a constant infusion of 500 mug over a period of 60 min. A decrease in plasma values of GH, prolactin, TSH, insulin and glucagon and in blood glucose was observed during somatostatin infusion, while FFA levels increased progressively. Plasma IRI and blood glucose increased rapidly when the somatostatin infusion was stopped, while FFA decreased progressively; GH, prolactin, TSH and glucagon remained low as compared to basal levels for one hour after the end of the infusion, i.e. until the end of the experiment. A slight but significant increase of LH and ACTH was observed after the end of the infusion.  相似文献   

4.
Oxytocin (OT) infusion in normal dogs increases plasma insulin and glucagon levels and increases rates of glucose production and uptake. The purpose of this study was to determine whether the effects of OT on glucose metabolism were direct or indirect. The studies were carried out in normal, unanesthetized dogs in which OT infusion was superimposed on infusion of either somatostatin, which suppresses insulin and glucagon secretion, or clonidine, which suppresses insulin secretion only. Infusion of 0.2 microgram/kg/min of somatostatin suppressed basal levels of plasma insulin and glucagon and inhibited the OT-induced rise of these hormones by about 60-80% of that seen with OT alone. The rates of glucose production and uptake by tissues, measured with [6-3H] glucose, were significantly lower than those seen with OT alone, and the rise in glucose clearance was completely inhibited. Clonidine (30 micrograms/kg, sc), given along with an insulin infusion to replace basal levels of insulin, completely prevented the OT-induced rise in plasma insulin and markedly reduced the glucose uptake seen with OT alone, but did not reduce the usual increase in plasma glucose and glucagon levels or glucose production. To determine whether the OT-induced rise in plasma insulin was in response to the concomitant increase in plasma glucose, similar plasma glucose levels were established in normal dogs by a continuous infusion of glucose and an OT infusion was superimposed. OT did not raise plasma glucose levels further, but plasma insulin levels were increased, indicating that OT can stimulate insulin secretion independently of the plasma glucose changes. Studies by others have shown that the addition of OT to pancreatic islets or intact pancreas can stimulate insulin and glucagon secretion, indicating a direct effect. Our studies agree with that and suggest that in vivo, OT raises plasma insulin levels, at least in part, through a direct action on the pancreas. These studies also show that OT increases glucose production by increasing glucagon secretion and, in addition, a direct effect of OT on glucose production is likely. The OT-induced increase in glucose uptake is mediated largely by increased insulin secretion.  相似文献   

5.
We have looked at the plasma concentrations of motilin, pancreatic polypeptide (PP), and somatostatin (STS) during the various phases of the interdigestive motor complex (IDMC) in dogs. As expected, motilin cyclical increase was always associated with the phase III of the IDMC. Statistical analysis of PP variations revealed a significant rise 10 min before duodenal phase III; however, in individual animals, this relationship was inconsistent. Although a dose-related increase in PP blood levels was induced by administration of synthetic canine motilin (0-200 ng kg-1 iv), fasting plasma levels of PP were not correlated with the concentrations of circulating endogenous motilin. After truncal vagotomy, while motilin release and the intestinal motility pattern remained unaltered, the phase III associated cyclical increases of PP disappeared. Infusion of physiological amounts of PP (1 microgram kg-1 h-1 for 3 h) mimicking the postprandial release failed to reproduce a fed pattern type of intestinal motility and of motilin secretion. No statistical correlation could be established between STS plasma levels and the motor activity of the intestine. STS plasma levels were not correlated with circulating concentrations of motilin and the exogenous administration of physiological doses of synthetic canine motilin failed to modify STS plasma levels. Morphine (200 micrograms kg-1 iv) stimulated only the release of motilin. These data suggest that the role played by circulating concentrations of PP and STS in the control of the IDMC in dog is at most minimal.  相似文献   

6.
Do motilin and pancreatic polypeptide regulate duodenal bile acid delivery?   总被引:1,自引:0,他引:1  
The plasma levels of the enteric hormones, motilin and pancreatic polypeptide, cycle in association with fasting intestinal motility and are altered by feeding. Intravenous administration of motilin causes gallbladder contraction and increased sphincter of Oddi phasic motor activity, whereas pancreatic polypeptide causes gallbladder relaxation. To determine if endogenous plasma levels of motilin and pancreatic polypeptide control sphincter of Oddi and gallbladder motility, and regulate duodenal bile acid delivery, we measured during fasting and after feeding the correlation between (a) changes in plasma motilin or pancreatic polypeptide, and (b) the duodenal delivery of a steady-state hepatic output of radiolabelled bile acid. Four dogs were prepared with duodenal cannulas. Duodenal motility was recorded manometrically. Plasma levels of pancreatic polypeptide and motilin were determined during a full cycle of the migrating myoelectric complex for 20 min before and 40 min after ingestion of a standard meal. To assess the effect of the sphincter of Oddi and the gallbladder together, or the gallbladder alone on duodenal bile acid delivery, the dogs received a continuous i.v. infusion of [14C]taurocholic acid (TCA); duodenal delivery of TCA was quantitated with the sphincter of Oddi intact using duodenal marker perfusion, or with the sphincter of Oddi cannulated and zero outflow resistance. In the interdigestive period with the sphincter of Oddi intact, only 0.1 (r2) of the variance of duodenal bile acid delivery can be predicted from the variance of motilin, and the correlation of plasma pancreatic polypeptide with duodenal TCA delivery is opposite that expected if pancreatic polypeptide caused gallbladder relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The present study was designed to determine the effects of physiological increments of plasma glucose levels upon basal and stimulated plasma somatostatin and pancreatic polypeptide levels. In seven conscious dogs the elevation of plasma glucose levels by 30-40 mg/dl did not change basal somatostatin and pancreatic polypeptide levels. During stimulation of these two hormones by acetylcholine and the octapeptide of cholecystokinin intravenous infusion of glucose elicited a significant decrease of somatostatin levels by 30 pg/ml and of pancreatic polypeptide levels by 300 pg/ml. The present data demonstrate that a physiological elevation of plasma glucose levels inhibits stimulated but not basal somatostatin and pancreatic polypeptide levels which may be of importance for nutrient entry and metabolism.  相似文献   

8.
We studied the effect of 2 different parenteral regimens upon gastrin, motilin and pancreatic polypeptide (PP) levels in infants. In 15 children, aged 1-25 months, plasma peptide levels were measured by radioimmunoassay in the fasting state and after a 2-h infusion of either a mixture of amino acids, glucose and lipids (A) or a mixture of amino acids and glucose (B) only. Wide interindividual fluctuations were noted, especially for motilin and PP, but, except for PP, intraindividual fluctuations were low. Indeed, a good correlation was found, not only between the 2 pre-infusion levels, but also between pre- and postinfusion levels in both experiments. In fact for all 3 peptides, pre- and postinfusion levels differed only slightly and non-significantly. We conclude that during parenteral feeding levels of motilin, PP and gastrin remain practically unchanged and are not influenced by the addition of lipids. In addition, during the observation period basal levels did not change, indicating that the mechanisms regulating basal secretion were not affected.  相似文献   

9.
The present study was designed to determine the role of carbohydrates during naloxone-induced opiate receptor blockade upon the postprandial rise of plasma somatostatin (SLI), insulin and pancreatic polypeptide (PP) levels in response to protein and fat test meals in conscious dogs. Test meals consisting of 50 g liver extract + 50 g sucrose or 50 g corn oil + 50 g sucrose dissolved in 300 ml water were instilled intragastrically, respectively. Additionally, liver extract and fat meals were given with a concomitant intravenous infusion of glucose. To all test meals either naloxone (4 mg) or saline was added. The addition of sucrose to liver extract or the infusion of i.v. glucose during the liver meal abolished the inhibitory effect of naloxone on the rise of postprandial somatostatin levels which has been described recently. The addition of carbohydrate either orally or intravenously to the fat meal resulted in an even stimulatory effect of naloxone upon the rise of postprandial somatostatin levels. Insulin levels were not changed during liver extract + sucrose or i.v. glucose, respectively. When sucrose or i.v. glucose was administered together with the fat meal the addition of naloxone augmented postprandial insulin secretion. Pancreatic polypeptide (PP) release was augmented during the combination of sucrose or i.v. glucose with the fat and liver meal when naloxone was present in the meals. The present data demonstrate that the addition of carbohydrates either orally or intravenously to fat and protein meals modulates the effect of endogenous opiates in the regulation of postprandial somatostatin, insulin and pancreatic polypeptide release in dogs in a way that carbohydrates induce inhibitory mechanisms that are mediated via endogenous opiate receptors.  相似文献   

10.
Studies concerning the importance of glucagon secretion in hypoglycemic counterregulation have assumed that peripheral levels of glucagon are representative of rates of pancreatic glucagon secretion. The measurement of peripheral levels of this hormone, however, may be a poor reflection of secretion rates because of glucagon's metabolism by the liver. Therefore, in order to understand the relationship between pancreatic glucagon secretion and levels of glucagon in the peripheral blood during hypoglycemia, we evaluated hepatic glucagon metabolism during insulin induced hypoglycemia. Four dogs received an insulin infusion to produce glucose levels less than 50 mg/dl for 45 minutes. In response to this, the delivery of glucagon to the liver increased from 36.7 +/- 5.9 ng/min in the baseline to 322.6 +/- 6.3 ng/min during hypoglycemia. Hepatic glucagon uptake increased proportionally from 13.6 +/- 7.2 ng/min to 103.1 +/- 28.3 ng/min and the percentage of delivered hormone that was extracted did not change (30.8 +/- 13.8% vs 32.9 +/- 11.6%). The absolute amount of glucagon metabolized by the liver was dependent on the rate of delivery and was not directly affected by plasma glucose level per se. To directly study the effect of hypoglycemia on hepatic glucagon metabolism, five dogs were given an exogenous infusion of somatostatin followed by an infusion of glucagon and then administered insulin to produce hypoglycemia. The percent of glucagon extracted by the liver (19.5 +/- 4.9% and 21.3 +/- 6.4%) was not affected by a fall in the plasma glucose level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
During fasting, gastrointestinal (GI) motility is characterized by cyclical motor contractions. These contractions have been referred to as interdigestive migrating contractions (IMCs). In dogs and humans, IMCs are known to be regulated by motilin. However, in rats and mice, IMCs are regulated by ghrelin. It is not clear how these peptides influence each other in vivo. The aim of the present study was to investigate the relationship between ghrelin and motilin in conscious dogs. Twenty healthy beagles were used in this study. Force transducers were implanted in the stomach, duodenum, and jejunum to monitor GI motility. Subsequent GI motility was recorded and quantified by calculating the motility index. In examination 1, blood samples were collected in the interdigestive state, and levels of plasma ghrelin and motilin were measured. Plasma motilin peaks were observed during every gastric phase III, and plasma ghrelin peaks occurred in nearly every early phase I. Plasma motilin and ghrelin levels increased and decreased cyclically with the interdigestive states. In examination 2, saline or canine ghrelin was administered intravenously during phase II and phase III. After injection of ghrelin, plasma motilin levels were measured. Ghrelin injection during phases II and III inhibited phase III contractions and decreased plasma motilin levels. In examination 3, ghrelin was infused in the presence of the growth hormone secretagogue receptors antagonist [D-Lys3]-GHRP-6. Continuous ghrelin infusion suppressed motilin release, an effect abrogated by the infusion of [D-Lys3]-GHRP-6. Examination 4 was performed to evaluate the plasma ghrelin response to motilin administration. Motilin infusion immediately decreased ghrelin levels. In this study, we demonstrated that motilin and ghrelin cooperatively control the function of gastric IMCs in conscious dogs. Our findings suggest that ghrelin regulates the function and release of motilin and that motilin may also regulate ghrelin.  相似文献   

12.
Glucagon dysregulation is an essential component in the pathophysiology of type 2 diabetes. Studies in vitro and in animal models have shown that zinc co-secreted with insulin suppresses glucagon secretion. Zinc supplementation improves blood glucose control in patients with type 2 diabetes, although there is little information about how zinc supplementation may affect glucagon secretion. The objective of this study was to evaluate the effect of 1-year zinc supplementation on fasting plasma glucagon concentration and in response to intravenous glucose and insulin infusion in patients with type 2 diabetes. A cross-sectional study was performed after 1-year of intervention with 30 mg/day zinc supplementation or a placebo on 28 patients with type 2 diabetes. Demographic, anthropometric, and biochemical parameters were determined. Fasting plasma glucagon and in response to intravenous glucose and insulin infusion were evaluated. Patients of both placebo and supplemented groups presented a well control of diabetes, with mean values of fasting blood glucose and glycated hemoglobin within the therapeutic goals established by ADA. No significant differences were observed in plasma glucagon concentration, glucagon/glucose ratio or glucagon/insulin ratio fasting, after glucose or after insulin infusions between placebo and supplemented groups. No significant effects of glucose or insulin infusions were observed on plasma glucagon concentration. One-year zinc supplementation did not affect fasting plasma glucagon nor response to intravenous glucose or insulin infusion in well-controlled type 2 diabetes patients with an adequate zinc status.  相似文献   

13.
In this work we have investigated the effect of somatostatin on the secretion of human pancreatic polypeptide (HPP). In a group of five gastrectomized patients, somatostatin infusion induced a significant decline of fasting HPP plasma levels and completely abolished HPP response to oral glucose. Upon somatostatin withdrawal, HPP concentrations returned to pre-experimental values. These data add a new hormone to the list of those inhibited by somatostatin.  相似文献   

14.
In a previous study we have found that the plasma pancreatic polypeptide (PP) response to oral glucose loading is exaggerated in diabetic patients compared with normal subjects. We have investigated, therefore, the effects of a protein-rich meal or meat extract ingestion on plasma PP secretion and examined also the effects of intravenous arginine administration on PP levels in normal subjects and in patients with noninsulin-dependent diabetes mellitus (NIDDM). Following a 600 Kcal meal ingestion, plasma PP levels increased immediately and showed biphasic secretion in normal subjects and in NIDDM, but the response was exaggerated in NIDDM. A 50 g meat extract administration also produced an exaggerated PP response in NIDDM compared with normal subjects. In NIDDM and normal subjects, plasma PP levels did not change significantly during an arginine infusion (30 g for 45 min) but after the end of the infusion PP levels increased significantly compared with basal levels. In normal subjects, plasma PP rose abruptly after a bolus arginine injection (4 g for 2 min) and then remained at significantly high levels even 30 min after the injection. In NIDDM, however, plasma PP levels tended to increase, but not significantly, after the bolus arginine injection. Since in NIDDM the protein-rich meal and meat extract ingestion produced an exaggerated rise in plasma PP while the PP responses to the intravenous arginine administration were rather impaired compared with normal subjects, we suggest that the entero-PP axis is overactive in NIDDM.  相似文献   

15.
Although the capacity of food components to cause more insulin secretion when given orally than when given intravenously is related significantly to increased plasma concentration of gastric inhibitory polypeptide (GIP), stimulated only by the oral route, questions arise as to what extent other gastrointestinal hormones modify insulin secretion either directly or by influencing the secretion of GIP. The triacontatriapeptide form of cholecystokinin (CCK33), infused in dose gradients intravenously in dogs increases insulin secretion, and comparably to equimolar doses of the carboxy-terminal octapeptide of cholecystokin (CCK8); neither compound changes fasting plasma levels of GIP or glucose. Glucagon was increased only by the largest dose of CCK8 (0.27 ug/kg). Unlike the situation with GIP, it is not necessary to increase the plasma glucose above fasting level to obtain the insulin-releasing action of CCK. When glucose is infused intravenously (2 g in 0.5 min) at the beginning of a 15-minute infusion of CCK8 (10 ng/kg/min), the amount of insulin release is greater than is produced by CCK8 or glucose alone. In the same type of experiment, the infusion of GIP, in equimolar amounts as CCK8, plus glucose causes no more insulin secretion than is stimulated by glucose alone. Secretin has only a small stimulating action on insulin release, and pancreatic polypeptide (PP) has no effect. Neither secretin nor PP affects GIP secretion, whether either is given alone, or together, or with CCK8. Either secretin or CCK8 inhibits oral glucose-stimulated increase in plasma GIP. These inhibitory effects are probably very much related to the hormone-induced decrease in gastric emptying, but changes in somatostatin secretion and other hormones possibly exert contributory actions. In conclusion, GIP in certain dose ranges has been reported to cause major increase in insulin secretion, but we showed that the insulin-releasing action of a small dose of glucose (2 g) infused intravenously was not augmented by GIP (44.5 ng/kg/min), although it was significantly increased by an equimolar dose of CCK8. When plasma glucose was maintained at a fasting level, gradient equimolar dosages of CCK8 and CCK33 had comparable insulin-releasing action; GIP had no effect.  相似文献   

16.
The time course of pancreatic effects of somatostatin was studied over a period of 2 h in unanesthetized unrestrained rats after administration of the peptide by intravenous infusion and by single and multiple subcutaneous injections. During infusion of 10 and 30 micrograms/kg per min, somatostatin continuously suppressed plasma insulin and plasma glucagon. Plasma glucose was significantly increased at the lower dose, but not affected at the higher dose. Single subcutaneous injections of 0.3 and 3 mg/kg decreased plasma insulin and glucagon dose-dependently for 20-60 min without affecting plasma glucose. Multiple subcutaneous injections of somatostatin (one to four doses of 3 mg/kg, administered at intervals of 30 min) caused an initial decrease of plasma insulin (at 30 min), a rebound-increase at 60 and 90 min, and a final return to control values by 120 min. Plasma glucagon remained continuously suppressed. Plasma glucose increased significantly at 60 and 90 min and tended to return towards control values thereafter. In conclusion, pancreatic B cells - but not A cells - of the rat develop tachyphylaxis to somatostatin within 2 h after multiple subcutaneous injections of the peptide. By this mode of administration, 'selective' suppression of plasma glucagon can be achieved with somatostatin in the rat.  相似文献   

17.
The effect of cyclic somatostatin on circulating insulin levels was studied in eight patients with insulin-dependent diabetes mellitus (IDDM). The study was performed after an overnight fast when their subcutaneous depots of insulin had been depleted during i.v. insulin substitution for 18 hours. A constant rate i.v. insulin infusion (0.4 mU/kg/min) was given for 240 min and somatostatin was co-infused between 60-120 min (100 micrograms/h) and 180-240 min (250 micrograms/h) respectively. Plasma insulin, blood glucose and hematocrit were measured at 15 min intervals. Hematocrit fell from 41.7 to 38.3% during the study period. Somatostatin increased the plasma insulin levels, corrected for the changes of hematocrit, by approximately 8% in the low dose (P less than 0.05) as well as in the high dose (P less than 0.05) period. It is concluded that somatostatin interferes with the clearance of insulin thereby increasing the circulating plasma insulin levels in IDDM patients without residual insulin secretion.  相似文献   

18.
In healthy subjects, basal endogenous glucose production is partly regulated by paracrine intrahepatic factors. It is currently unknown whether paracrine intrahepatic factors also influence the increased basal endogenous glucose production in patients with type 2 diabetes mellitus. Administration of indomethacin to patients with type 2 diabetes mellitus stimulates endogenous glucose production and inhibits insulin secretion. Our aim was to evaluate whether this stimulatory effect on glucose production is solely attributable to inhibition of insulin secretion. In order to do this, we administered indomethacin to 5 patients with type 2 diabetes during continuous infusion of somatostatin to block endogenous insulin and glucagon secretion and infusion of basal concentrations of insulin and glucagon in a placebo-controlled study. Endogenous glucose production was measured 3 hours after the start of the somatostatin, insulin and glucagon infusion, for 4 hours after administration of placebo/indomethacin, by primed, continuous infusion of [6,6-(2)H(2)] glucose. At the time of administration of placebo or indomethacin, there were no significant differences in plasma glucose concentrations and endogenous glucose production rates between the two experiments (16.4 +/- 2.09 mmol/l vs. 16.6 +/- 1.34 mmol/l and 17.7 +/- 1.05 micromol/kg/min and 17.0 +/- 1.06 micromol/kg/min), control vs. indomethacin). Plasma glucose concentration did not change significantly in the four hours after indomethacin or placebo administration. Endogenous glucose production in both experiments was similar after both placebo and indomethacin. Mean plasma C-peptide concentrations were all below the detection limit of the assay, reflecting adequate suppression of endogenous insulin secretion by somatostatin. There were no differences in plasma concentrations of insulin (76 +/- 5 vs. 74 +/- 4 pmol/l) and glucagon (69 +/- 8 vs. 71 +/- 6 ng/l) between the studies with levels remaining unchanged in both experiments. Plasma concentrations of cortisol, epinephrine, and norepinephrine were similar in the two studies and did not change significantly. We conclude that indomethacin stimulates endogenous glucose production in patients with type 2 diabetes mellitus by inhibition of insulin secretion.  相似文献   

19.
Pharmacological doses of oxytocin administered in basal conditions evoked a rapid surge in plasma glucose and glucagon levels followed by a later increase in plasma insulin and adrenaline levels. The effects of oxytocin on plasma glucagon and adrenaline levels were potentiated by hypoglycemia. When the endogenous pancreas secretion was suppressed by cyclic somatostatin (150 micrograms/h) and exogenous glucagon (3.5 micrograms/h) and insulin (0.2 mU/kg.min) were both replaced, oxytocin (0.2 U/min) evoked a transient but significant increase in plasma glucose levels suppressing the glucose infusion rate (GIR) in the first 60 min. On the contrary at higher insulin infusion rate (0.6 mU/kg.min) plasma glucose levels and GIR remained unaffected throughout the study. Oxytocin seems also to potentiate glucose-induced insulin secretion as evidenced by hyperglycemic glucose clamp. In conclusion, pharmacological doses of oxytocin seem to exert a prevalent hyperglycemic effect by a combined action at the liver site (as glycogenolytic agent) and at the endocrine pancreas (as a stimulatory agent of A cell secretion).  相似文献   

20.
Tolbutamide significantly decreased fasting plasma gastrin after 5 min of intravenous infusion in patients with atrophic gastritis, duodenal ulcer, or insulin-dependent diabetes mellitus (IDDM) as well as in healthy volunteers. Increased plasma insulin and decreased blood glucose were observed in patients with atrophic gastritis, duodenal ulcer and healthy volunteers, but not in patients with IDDM. Suppression of plasma gastrin in healthy volunteers was also observed following oral administration of tolbutamide. Despite the observed decrease in plasma gastrin, neither basal nor tetragastrin-stimulated acid output was changed for 30 min following tolbutamide infusion in healthy volunteers. Thus, our data suggest that tolbutamide inhibits gastrin release in man via mechanisms independent of changes in plasma insulin, blood glucose or acid secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号