首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clan CD cysteine peptidases of parasitic protozoa   总被引:4,自引:0,他引:4  
Parasitic protozoa contain an abundance of cysteine peptidases that are crucial for a range of important biological processes. The most studied cysteine peptidases of parasitic protozoa belong to the group of papain-like enzymes known as clan CA. However, several more recently identified cysteine peptidases differ fundamentally from the clan CA enzymes and have been included together in clan CD. Enzymes of this clan have now been identified in parasitic protozoa. Many have important roles and also differ significantly from known mammalian counterparts. The main characteristics of clan CD enzymes are outlined here, in particular glycosylphosphatidylinositol (GPI):protein transamidase, metacaspase and separase, and their differences from the clan CA enzymes are described.  相似文献   

2.
Electrophoretic and immunological techniques have been used to analyze the cytosolic di- and tripeptidases of guinea pigs. In contrast to previous reports utilizing intestinal mucosa extracts, cavian peptidases were found to be similar to peptidases described in other mammals and in fishes. Earlier papers are in error owing to coelectrophoresis of enzymes and to impure enzyme preparations. Guinea pigs are unusual in that they appear to lack peptidase C.  相似文献   

3.
Type I signal peptidase: an overview   总被引:5,自引:0,他引:5  
The signal hypothesis suggests that proteins contain information within their amino acid sequences for protein targeting to the membrane. These distinct targeting sequences are cleaved by specific enzymes known as signal peptidases. There are various type of signal peptidases known such as type I, type II, and type IV. Type I signal peptidases are indispensable enzymes, which catalyze the cleavage of the amino-terminal signal-peptide sequences from preproteins, which are translocated across biological membranes. These enzymes belong to a novel group of serine proteases, which generally utilize a Ser-Lys or Ser-His catalytic dyad instead of the prototypical Ser-His-Asp triad. Despite having no distinct consensus sequence other than a commonly found 'Ala-X-Ala' motif preceding the cleavage site, signal sequences are recognized by type I signal peptidase with high fidelity. Type I signal peptidases have been found in bacteria, archaea, fungi, plants, and animals. In this review, I present an overview of bacterial type I signal peptidases and describe some of their properties in detail.  相似文献   

4.
The cytosolic di- and tripeptidases of fish were studied in an electrophoretic phylogenetic survey that included elasmobranchs, a holostean, and teleosts. Antisera against four of the peptidases from tuna were raised in rabbits and used to establish homologies between the peptidases of tuna and other fish and between piscine PEP A, B, and S and corresponding enzymes of the higher vertebrates. Substrate specificities, tissue distributions, and electrophoretic mobilities were conserved during the evolution of the fish. The nomenclature for mammalian peptidases was extended to the piscine enzymes, but with reservations in the case of PEP C and E. Using this nomenclature, the six major, genetically independent peptidases are PEP A, B, C, D, E, and S. Within the fish substrate specificity was a reliable indicator of identity. The peptidases of vertebrates thus consist of a widely distributed group of enzymes with constant characteristics. Much of the confusion in the field is probably due to variable and poorly defined species-specific enzymes.  相似文献   

5.
Signal peptidases, the endoproteases that remove the amino-terminal signal sequence from many secretory proteins, have been isolated from various sources. Seven signal peptidases have been purified, two fromE. coli, two from mammalian sources, and three from mitochondrial matrix. The mitochondrial enzymes are soluble and function as a heterogeneous dimer. The mammalian enzymes are isolated as a complex and share a common glycosylated subunit. The bacterial enzymes are isolated as monomers and show no sequence homology with each other or the mammalian enzymes. The membrane-bound enzymes seem to require a substrate containing a consensus sequence following the –3, –1 rule of von Heijne at the cleavage site; however, processing of the substrate is strongly influenced by the hydrophobic region of the signal peptide. The enzymes appear to recognize an unknown three-dimensional motif rather than a specific amino acid sequence around the cleavage site. The matrix mitochondrial enzymes are metallo-endopeptidases; however, the other signal peptidases may belong to a unique class of proteases as they are resistant to chelators and most protease inhibitors. There are no data concerning the substrate binding site of these enzymes. In vivo, the signal peptide is rapidly degraded. Three different enzymes inEscherichia coli that can degrade a signal peptidein vitro have been identified. The intact signal peptide is not accumulated in mutants lacking these enzymes, which suggests that these peptidases individually are not responsible for the degredation of an intact signal peptidein vivo. It is speculated that signal peptidases and signal peptide hydrolases are integral components of the secretory pathway and that inhibition of the terminal steps can block translocation.  相似文献   

6.
A good system for the naming and classification of peptidases can contribute much to the study of these enzymes. Having already described the building of families and clans in the MEROPS system, we here focus on the lowest level in the hierarchy, in which the huge number of individual peptidase proteins are assigned to a lesser number of what we term 'species' of peptidases. Just over 2000 peptidase species are recognised today, but we estimate that 25 000 will one day be known. Each species is built around a peptidase protein that has been adequately characterised. The cluster of peptidase proteins that represent the single species is then assembled primarily by analysis of a sequence 'tree' for the family. Each peptidase species is given a systematic identifier and a summary page of data regarding it is assembled. Because the characterisation of new peptidases lags far behind the sequencing, the majority of peptidase proteins are so far known only as amino acid sequences and cannot yet be assigned to species. We suggest that new forms of analysis of the sequences of the unassigned peptidases may give early indications of how they will cluster into the new species of the future.  相似文献   

7.
Serine peptidases are a large, well-studied, and medically important class of peptidases. Despite the attention these enzymes have received, details concerning the substrate specificity of even some of the best known enzymes in this class are lacking. One approach to rapidly characterizing substrate specificity for peptidases is the use of positional scanning combinatorial substrate libraries. We recently synthesized such a library for enzymes with a preference for arginine at P1 and demonstrated the use of this library with thrombin (Edwards et al. Bioorg. Med. Chem. Lett. 2000, 10, 2291). In the present work, we extend these studies by demonstrating good agreement between the theroretical and measured content of portions of this library and by showing that the library permits rapid characterization of the substrate specificity of additional SA clan serine peptidases including factor Xa, tryptase, and trypsin. These results were consistent both with cleavage sites in natural substrates and cleavage of commercially available synthetic substrates. We also demonstrate that pH or salt concentration have a quantitative effect on the rate of cleavage of the pooled library substrates but that correct prediction of optimal substrates for the enzymes studied appeared to be independent of these parameters. These studies provide new substrate specificity data on an important class of peptidases and are the first to provide physical characterization of a peptidase substrate library.  相似文献   

8.
MEROPS: the peptidase database   总被引:14,自引:1,他引:13       下载免费PDF全文
Important additions have been made to the MEROPS database (http://www.bi.bbsrc.ac.uk/Merops/Merops.htm). These include sequence alignments and cladograms for many of the families of peptidases, and these have proved very helpful in the difficult task of distinguishing the sequences of peptidases that are simply species variants of already known enzymes from those that represent novel enzymes.  相似文献   

9.
《Fungal biology》2020,124(1):65-72
This review deals with characteristics of peptidases of fungi whose life cycles are associated with insects to varying degrees. The review examines the characteristic features of the extracellular peptidases of entomopathogenic fungi, the dependence of the specificity of these peptidases on the ecological characteristics of the fungi, and the role of peptidases in the development of the pathogenesis. Data on the properties and physiological role of hydrolytic enzymes of symbiotic fungi in “fungal gardens” are also considered in detail. For the development of representations about mechanisms of control over populations of insect pests, special attention is given to analysis of possibilities of genetic engineering for the creation of entomopathogens with enhanced virulence. Clarification of the role of fungi and their secreted enzymes and careful environmental studies are still required to explain their significance in the composition of the biota and to ensure widespread adoption of these organisms as effective biological control agents. The systematization and comparative analysis of the existing data on extracellular peptidases of insect-associated fungi will help in the planning of further work and the search for markers of pathogenesis and symbiosis.  相似文献   

10.
Starch gel electrophoresis in conjunction with a specific staining method revealed the occurrence of five distinct peptidases in mouse red blood cells. These enzymes can be distinguished on the basis of substrate specificity and electrophoretic mobility. They have been designated peptidases A, B, C, D, and E to correspond with the nomenclature adopted for human peptidases with which the mouse enzymes appear to be homologous. Genetically determined variants of peptidase C are described. The phenotype Pep C1 occurs in C57BL/Gr mice and the phenotype Pep C2 in CBA/Gr and Strong A/Gr mice. These phenotypes and the presumed heterozygote, Pep C2-1, appear to be due to the occurrence of codominant autosomal alleles which have been designated Pep-C 1 and Pep-C 2. F1 and F2 crosses show segregation in the expected Mendelian ratios. F2 embryos and their placentae show the same electrophoretic pattern for peptidase C. The occurrence of a separate locus controlling the structure of each distinct peptidase is postulated.  相似文献   

11.
C Ulrich  L B Hersh 《Peptides》1985,6(3):475-482
Fractionation of Triton-solubilized rat brain membranes on diethylaminoethyl-cellulose resolves two peptidases which hydrolyze beta-neo-endorphin. One of these peptidases was identified as Angiotensin Converting Enzyme by (a) its sensitivity to inhibition by the specific inhibitors MK422 and captopril, (b) by the identification of reaction products, and (c) by comparison to authentic angiotensin converting enzyme. In contrast, alpha-neo-endorphin hydrolysis by angiotensin converting enzyme could not be detected. The second enzyme active on beta-neo-endorphin was identified as an aminopeptidase. This aminopeptidase is identical to the previously described enkephalin-degrading aminopeptidase. The possible involvement of these enzymes in the metabolism of opioid peptides is discussed.  相似文献   

12.
LAS enzymes are a group of metallopeptidases that share an active site architecture and a core folding motif and have been named according to the group members lysostaphin, D-Ala-D-Ala carboxypeptidase and sonic hedgehog. Escherichia coli MepA is a periplasmic, penicillin-insensitive murein endopeptidase that cleaves the D-alanyl-meso-2,6-diamino-pimelyl amide bond in E. coli peptidoglycan. The enzyme lacks sequence similarity with other peptidases, and is currently classified as a peptidase of unknown fold and catalytic class in all major data bases. Here, we build on our observation that two motifs, characteristic of the newly described LAS group of metallopeptidases, are conserved in MepA-type sequences. We demonstrate that recombinant E. coli MepA is sensitive to metal chelators and that mutations in the predicted Zn2+ ligands His-113, Asp-120, and His-211 inactivate the enzyme. Moreover, we present the crystal structure of MepA. The active site of the enzyme is most similar to the active sites of lysostaphin and D-Ala-D-Ala carboxypeptidase, and the fold is most closely related to the N-domain of sonic hedgehog. We conclude that MepA-type peptidases are LAS enzymes.  相似文献   

13.
Evolutionary lines of cysteine peptidases   总被引:2,自引:0,他引:2  
The proteolytic enzymes that depend upon a cysteine residue for activity have come from at least seven different evolutionary origins, each of which has produced a group of cysteine peptidases with distinctive structures and properties. We show here that the characteristic molecular topologies of the peptidases in each evolutionary line can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures. Clan CA contains the families of papain (C1), calpain (C2), streptopain (C10) and the ubiquitin-specific peptidases (C12, C19), as well as many families of viral cysteine endopeptidases. Clan CD contains the families of clostripain (C11), gingipain R (C25), legumain (C13), caspase-1 (C14) and separin (C50). These enzymes have specificities dominated by the interactions of the S1 subsite. Clan CE contains the families of adenain (C5) from adenoviruses, the eukaryotic Ulp1 protease (C48) and the bacterial YopJ proteases (C55). Clan CF contains only pyroglutamyl peptidase I (C15). The picornains (C3) in clan PA have probably evolved from serine peptidases, which still form the majority of enzymes in the clan. The cysteine peptidase activities in clans PB and CH are autolytic only. In conclusion, we suggest that although almost all the cysteine peptidases depend for activity on catalytic dyads of cysteine and histidine, it is worth noting some important differences that they have inherited from their distant ancestral peptidases.  相似文献   

14.
James MN 《Biological chemistry》2006,387(8):1023-1029
Fungi and viruses encode a variety of peptidases having a plethora of functions. Many fungal peptidases are extracellular and are likely used to degrade proteins in their environment. Viral peptidases are processing enzymes, intimately involved in the virus infectious cycle. The viral RNA genome is translated by the host-cell machinery into a large polyprotein that is cleaved by the viral peptidases into mature capsid proteins, non-structural proteins and enzymes. I review the structure and catalytic mechanism of scytalidoglutamic peptidase isolated from the wood-destroying fungus Scytalidium lignicolum. This enzyme has a unique beta-sandwich fold and a novel catalytic mechanism based on a glutamate, a glutamine and a nucleophilic water molecule. Hepatitis A virus (HAV) 3C peptidase was the first structure identified for a viral 3C enzyme that exhibited the three-dimensional fold of the chymotrypsin family of serine peptidases but had a cysteine sulfur atom instead of the serine oxygen as the nucleophile. The structure of HAV 3C was unusual in that the Asp residue expected as the third member of the catalytic triad did not interact with the general base His. The present structure is of a beta-lactone-inhibited version of HAV 3C that has a restored catalytic triad.  相似文献   

15.
Information on the structural characteristics and inhibitory activity of the pacifastin family is restricted to a handful of locust pacifastin-related inhibitors. In this report the optimization of a bacterial recombinant expression system is described, resulting in the high yield production of pacifastin-like inhibitors of the desert locust. Subsequently, the relative inhibitory activity of these peptides towards mammalian, locust and caterpillar digestive peptidases has been compared. In general, the enzyme specificity of locust pacifastin-like inhibitors towards trypsin- or chymotrypsin-like peptidases corresponds to the nature of the P1-residue at the reactive site. In addition, other structural characteristics, including specific core interactions, have been reported to result in a different affinity of pacifastin members towards digestive trypsin-like enzymes from mammals and arthropods. One remarkable observation in this study is a specifically designed pacifastin-like peptidase inhibitor, which, unlike other inhibitors of the same family, does not display this specificity and selectivity towards digestive enzymes from different animals.  相似文献   

16.
The enzymes that hydrolyse peptide bonds, called peptidases or proteases, are very important to mankind and are also very numerous. The many scientists working on these enzymes are rapidly acquiring new data, and they need good methods to store it and retrieve it. The storage and retrieval require effective systems of classification and nomenclature, and it is the design and implementation of these that we mean by 'managing' peptidases. Ten years ago Rawlings and Barrett proposed the first comprehensive system for the classification of peptidases, which included a set of simple names for the families. In the present article we describe how the system has developed since then. The peptidase classification has now been adopted for use by many other databases, and provides the structure around which the MEROPS protease database (http://merops.sanger.ac.uk) is built.  相似文献   

17.
The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major pest of potato plants, and its digestive system is a promising target for development of pest control strategies. This work focuses on functional proteomic analysis of the digestive proteolytic enzymes expressed in the CPB gut. We identified a set of peptidases using imaging with specific activity-based probes and activity profiling with selective substrates and inhibitors. The secreted luminal peptidases were classified as: (i) endopeptidases of cathepsin D, cathepsin L, and trypsin types and (ii) exopeptidases with aminopeptidase (cathepsin H), carboxypeptidase (serine carboxypeptidase, prolyl carboxypeptidase), and carboxydipeptidase (cathepsin B) activities. The proteolytic arsenal also includes non-luminal peptidases with prolyl oligopeptidase and metalloaminopeptidase activities. Our results indicate that the CPB gut employs a multienzyme network of peptidases with complementary specificities to efficiently degrade ingested proteins. This proteolytic system functions in both CPB larvae and adults and is controlled mainly by cysteine and aspartic peptidases and supported by serine and metallopeptidases. The component enzymes identified here are potential targets for inhibitors with tailored specificities that could be engineered into potato plants to confer resistance to CPB.  相似文献   

18.
Cystatins   总被引:1,自引:0,他引:1  
Chicken egg white cystatin was first described in the late 1960s. Since then, our knowledge about a superfamily of similar proteins present in mammals, birds, fish, insects, plants and some protozoa has expanded, and their properties as potent peptidase inhibitors have been firmly established. Today, 12 functional chicken cystatin relatives are known in humans, but a few evolutionarily related gene products still remain to be characterized. The type 1 cystatins (A and B) are mainly intracellular, the type 2 cystatins (C, D, E/M, F, G, S, SN and SA) are extracellular, and the type 3 cystatins (L- and H-kininogens) are intravascular proteins. All true cystatins inhibit cysteine peptidases of the papain (C1) family, and some also inhibit legumain (C13) family enzymes. These peptidases play key roles in physiological processes, such as intracellular protein degradation (cathepsins B, H and L), are pivotal in the remodelling of bone (cathepsin K), and may be important in the control of antigen presentation (cathepsin S, mammalian legumain). Moreover, the activities of such peptidases are increased in pathophysiological conditions, such as cancer metastasis and inflammation. Additionally, such peptidases are essential for several pathogenic parasites and bacteria. Thus cystatins not only have capacity to regulate normal body processes and perhaps cause disease when down-regulated, but may also participate in the defence against microbial infections. In this chapter, we have aimed to summarize our present knowledge about the human cystatins.  相似文献   

19.
A collagen-degrading thermophile, Geobacillus collagenovorans MO-1, was found to produce two metallopeptidases that hydrolyze the synthetic substrate 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-D-Arg (Pz-PLGPR), containing the collagen-specific sequence -Gly-Pro-X-. The peptidases, named Pz peptidases A and B, were purified to homogeneity and confirmed to hydrolyze collagen-derived oligopeptides but not collagen itself, indicating that Pz peptidases A and B contribute to collagen degradation in collaboration with a collagenolytic protease in G. collagenovorans MO-1. There were many similarities between Pz peptidases A and B in their catalytic properties; however, they had different molecular masses and shared no antigenic groups against the respective antibodies. Their primary structures clarified from the cloned genes showed lower identity (22%). From homology analysis for proteolytic enzymes in the database, the two Pz peptidases belong to the M3B family. In addition, Pz peptidases A and B shared high identities of over 70% with unassigned peptidases and oligopeptidase F-like peptidases of the M3B family, respectively. Those homologue proteins are putative in the genome database but form two distinct segments, including Pz peptidases A and B, in the phylogenic tree. Mammalian thimet oligopeptidases, which were previously thought to participate in collagen degradation and share catalytic identities with Pz peptidases, were found to have lower identities in the overall primary sequence with Pz peptidases A and B but a significant resemblance in the vicinity of the catalytic site.  相似文献   

20.
Intestinal dipeptidyl peptidase IV and gamma-glutamyltransferase were compared to the corresponding kidney enzymes with respect to immunological and electrophoretic properties. The influences of selected effectors on the two enzymes were also studied. The two kidney peptidases exhibited the reaction of total identity with the corresponding intestinal enzymes in immunodiffusion. Furthermore, the intestinal dipeptidyl peptidase IV and gamma-glutamyl transferase showed the same inhibition patterns as the corresponding kidney enzymes and the acceptor specificity of the intestinal gamma-glutamyl-transferase was found to be identical to that of the kidney enzyme. The electrophoretic mobilities of dipeptidyl peptidase IV from the two organs differed greatly. The difference was almost abolished by treatment with neuraminidase, suggesting that the variation in mobility was due to different contents of sialic acid. It is suggested that the intestinal brush border peptidases, dipeptidyl peptidase IV and gamma-glutamyltransferase, are closely related to the corresponding enzymes obtained from the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号