首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Models for the gating of ion channels usually assume that the rate constants for leaving any given kinetic state are independent of previous channel activity. Although such discrete Markov models have been successful in describing channel gating, there is little direct evidence for the Markov assumption of time-invariant rate constants for constant conditions. This paper tests the Markov assumption by determining whether the single-channel kinetics of the large conductance Ca-activated K channel in cultured rat skeletal muscle are independent of previous single-channel activity. The experimental approach is to examine dwell-time distributions conditional on adjacent interval durations. The time constants of the exponential components describing the distributions are found to be independent of adjacent interval duration, and hence, previous channel activity. In contrast, the areas of the different components can change. Since the observed time constants are a function of the underlying rate constants for transitions among the kinetic states, the observation of time constants independent of previous channel activity suggests that the rate constants are also independent of previous channel activity. Thus, the channel kinetics are consistent with Markov gating. An observed dependent (inverse) relationship between durations of adjacent open and shut intervals together with Markov gating indicates that there are two or more independent transition pathways connecting open and shut states. Finally, no evidence is found to suggest that gating is not at thermodynamic equilibrium: the inverse relationship was independent of the time direction of analysis.  相似文献   

2.
Xenopus oocytes express mechanosensitive (MS(XO)) channels that can be studied in excised patches of membrane with the patch-clamp technique. This study examines the steady-state kinetic gating properties of MS(XO) channels using detailed single-channel analysis. The open and closed one-dimensional dwell-time distributions were described by the sums of 2-3 open and 5-7 closed exponential components, respectively, indicating that the channels enter at least 2-3 open and 5-7 closed kinetic states during gating. Dependency plots revealed that the durations of adjacent open and closed intervals were correlated, indicating two or more gateway states in the gating mechanism for MS channels. Maximum likelihood fitting of two-dimensional dwell-time distributions to both generic and specific models was used to examine gating mechanism and rank models. A kinetic scheme with five closed and five open states, in which each closed state could make a direct transition to an open state (two-tiered model) could account for the major features of the single-channel data. Two-tiered models that allowed direct transitions to subconductance open states in addition to the fully open state were also consistent with multiple gateway states. Thus, the gating mechanism of MS(XO) channels differs from the sequential (linear) gating mechanisms considered for MS channels in bacteria, chick skeletal muscle, and Necturus proximal tubule.  相似文献   

3.
Single channel kinetics of a glutamate receptor.   总被引:4,自引:3,他引:1       下载免费PDF全文
The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the precence of 10-4M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating.  相似文献   

4.
The modal gating behavior of single sheep cardiac sarcoplasmic reticulum (SR) Ca2+-release/ryanodine receptor (RyR) channels was assessed. We find that the gating of RyR channels spontaneously shifts between high (H) and low (L) levels of activity and inactive periods where no channel openings are detected (I). Moreover, we find that there is evidence for multiple gating modes within H activity, which we term H1 and H2 mode. Our results demonstrate that the underlying mechanisms regulating gating are similar in native and purified channels. Dwell-time distributions of L activity were best fitted by three open and five closed significant exponential components whereas dwell-time distributions of H1 activity were best fitted by two to three open and four closed significant exponential components. Increases in cytosolic [Ca2+] cause an increase in open probability (Po) within L activity and an increase in the probability of occurrence of H activity. Open lifetime distributions within L activity were Ca2+ independent whereas open lifetime distributions within H activity were Ca2+ dependent. This study is the first attempt to estimate RyR single-channel kinetic parameters from sequences of idealized dwell-times and to develop kinetic models of RyR gating using the criterion of maximum likelihood. We propose distinct kinetic schemes for L, H1, and H2 activity that describe the major features of sheep cardiac RyR channel gating at these levels of activity.  相似文献   

5.
The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the presence of 10-4 M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating.  相似文献   

6.
The cyclic nucleotide-gated (CNG) channel of retinal rod photoreceptor cells is an allosteric protein whose activation is coupled to a conformational change in the ligand-binding site. The bovine rod CNG channel can be activated by a number of different agonists, including cGMP, cIMP, and cAMP. These agonists span three orders of magnitude in their equilibrium constants for the allosteric transition. We recorded single-channel currents at saturating cyclic nucleotide concentrations from the bovine rod CNG channel expressed in Xenopus oocytes as homomultimers of alpha subunits. The median open probability was 0.93 for cGMP, 0.47 for cIMP, and 0.01 for cAMP. The channels opened to a single conductance level of 26-30 pS at +80 mV. Using signal processing methods based on hidden Markov models, we determined that two closed and one open states are required to explain the gating at saturating ligand concentrations. We determined the maximum likelihood rate constants for two gating schemes containing two closed (denoted C) and one open (denoted O) states. For the C left and right arrow C left and right arrow O scheme, all rate constants were dependent on cyclic nucleotide. For the C left and right arrow O left and right arrow C scheme, the rate constants for only one of the transitions were cyclic nucleotide dependent. The opening rate constant was fastest for cGMP, intermediate for cIMP, and slowest for cAMP, while the closing rate constant was fastest for cAMP, intermediate for cIMP, and slowest for cGMP. We propose that interactions between the purine ring of the cyclic nucleotide and the binding domain are partially formed at the time of the transition state for the allosteric transition and serve to reduce the transition state energy and stabilize the activated conformation of the channel. When 1 microM Ni2+ was applied in addition to cyclic nucleotide, the open time increased markedly, and the closed time decreased slightly. The interactions between H420 and Ni2+ occur primarily after the transition state for the allosteric transition.  相似文献   

7.
BACKGROUND: The predictions of the Hodgkin-Huxley model do not accurately fit all the measurements of voltage-clamp currents, gating charge and single-channel currents. There are many quantitative differences between the predicted and measured characteristics of the sodium and potassium channels. For example, the two-state gate model has exponential onset kinetics, whereas the sodium and potassium conductances show S-shaped activation and the sodium conductance shows an exponential inactivation. In this paper we shall examine a more general channel model that can more faithfully represent the measured properties of ionic channels in the membrane of the excitable cell. METHODS: The model is based on the generalisation of the notion of a channel with a discrete set of states. Each state has state attributes such as the state conductance, state ionic current and state gating charge. These variables can have quite different waveforms in time, in contrast with a two-state gate channel model, in which all have the same waveforms. RESULTS: The kinetics of all variables are equivalent: gating and ionic currents give equivalent information about channel kinetics; both the equilibrium values of the current and the time constants are functions of membrane potential. The results are in almost perfect concordance with the experimental data regarding the characteristics of nerve impulse. CONCLUSIONS: The expected values of the gating charge and the ionic conductance are weighted sums of the state occupancy probabilities, but the weights differ: for the expected value of the gating charge the weights are the state gating charges and for the expected value of the ionic conductance the weights are the state conductances. Since these weights are different, the expected values of the gating charge and the ionic conductance will differ.  相似文献   

8.
Clonal pheochromocytoma (PC-12) cells have four different types of voltage-dependent K+ channels whose activation does not require high concentrations of Ca++ on the cytoplasmic side of the membrane (Hoshi, T., and R. W. Aldrich, 1988, Journal of General Physiology, 91:73-106). The durations of open and closed events of these four different types of voltage-dependent K+ channels were measured using the excised configuration of the patch-clamp method. The open durations of a class of K+ channels termed the Kz channel, which activates rapidly and inactivates slowly in response to depolarizing pulses, had two exponential components. The closed durations of the Kz channel had at least four exponential components. The time constants of the fastest of the two exponential components in the closed durations were very similar to those of the two exponential components present in the first-latency distribution. The first latencies of the Kz channel decreased steeply with depolarization, contributing to the increased probability of the channel being open with depolarization. The Kz channel also had a very slow gating process that resulted in a clustering of blank sweeps. A gating scheme containing two open states and five closed states is consistent with the observations. The Ky channel had one exponential component in the open durations and three exponential components in the closed durations. The first latencies varied greatly depending on the prepulse voltage and duration. The results were consistent with a sequential model with a large number of closed states and one open state. The Kx channel, which required large hyperpolarizing prepulses to remove steady state inactivation and did not show inactivation with maintained depolarization, had two exponential components in the open durations and three exponential components in the closed durations. The burst behavior of the Kx channel involved many more than two states. The transient Kw channel had one exponential component in the open durations and the mean open time increased with depolarization. The first latencies of the Kw channel were steeply dependent on the voltage, decreasing with depolarization.  相似文献   

9.
The blocking effect of 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) was investigated on single Cl- channels of the cultured human colon carcinoma cells, HT29. In the absence of NPPB, the open-time histogram yielded two time constants, with 0.9 ms and 33 ms, whereas the closed-time distribution could be fitted by a single exponential with a time constant of 0.7 ms. Addition of NPPB in the range 1-50 microM induced brief closing events of the single-channel current. This resulted in a decrease of the long open-time constant to 2.1 ms and in an increase of the closed-time constant to 1.8 ms at 50 microM NPPB concentration. The short open-time constant did not change at low blocker concentration (1 microM), but could no longer be resolved at higher concentrations. The open-state probability decreased from 0.9 (control conditions) to 0.5 at 50 microM NPPB. The Hill plot yielded a Hill coefficient of about 0.7, compatible with one NPPB molecule inhibiting one channel molecule. The kinetics of channel gating are described by a sequential model with one closed and two open states. Since in the presence of NPPB no additional time constant appeared in the time histograms, we assumed the same kinetic scheme as under control conditions, and hypothesize that NPPB has an influence on rate constants.  相似文献   

10.
An assumption usually made when developing kinetic models for the gating of ion channels is that the transitions among the various states involved in the gating obey microscopic reversibility. If this assumption is incorrect, then the models and estimated rate constants made with the assumption would be in error. This paper examines whether the gating of a large conductance Ca-activated K+ channel in skeletal muscle is consistent with microscopic reversibility. If microscopic reversibility is obeyed, then the number of forward and backward transitions per unit time for each individual reaction step will, on average, be identical and, consequently, the gating must show time reversibility. To look for time reversibility, two-dimensional dwell-time distributions of the durations of open and closed intervals were obtained from single-channel current records analyzed in the forward and in the backward directions. Two-dimensional dwell-time distributions of pairs of open intervals and of pairs of closed intervals were also analyzed to extend the resolution of the method to special circumstances in which intervals from different closed (or open) states might have similar durations. No significant differences were observed between the forward and backward analysis of the two-dimensional dwell-time distributions, suggesting time reversibility. Thus, we find no evidence to indicate that the gating of the maxi K+ channel violates microscopic reversibility.  相似文献   

11.
12.
Discrete state Markov models have proven useful for describing the gating of single ion channels. Such models predict that the dwell-time distributions of open and closed interval durations are described by mixtures of exponential components, with the number of exponential components equal to the number of states in the kinetic gating mechanism. Although the exponential components are readily calculated (Colquhoun and Hawkes, 1982, Phil. Trans. R. Soc. Lond. B. 300:1-59), there is little practical understanding of the relationship between components and states, as every rate constant in the gating mechanism contributes to each exponential component. We now resolve this problem for simple models. As a tutorial we first illustrate how the dwell-time distribution of all closed intervals arises from the sum of constituent distributions, each arising from a specific gating sequence. The contribution of constituent distributions to the exponential components is then determined, giving the relationship between components and states. Finally, the relationship between components and states is quantified by defining and calculating the linkage of components to states. The relationship between components and states is found to be both intuitive and paradoxical, depending on the ratios of the state lifetimes. Nevertheless, both the intuitive and paradoxical observations can be described within a consistent framework. The approach used here allows the exponential components to be interpreted in terms of underlying states for all possible values of the rate constants, something not previously possible.  相似文献   

13.
Sodium channel gating behavior was modeled with Markovian models fitted to currents from the cut-open squid giant axon in the absence of divalent cations. Optimum models were selected with maximum likelihood criteria using single-channel data, then models were refined and extended by simultaneous fitting of macroscopic ionic currents, ON and OFF gating currents, and single-channel first latency densities over a wide voltage range. Best models have five closed states before channel opening, with inactivation from at least one closed state as well as the open state. Forward activation rate constants increase with depolarization, and deactivation rate constants increase with hyperpolarization. Rates of inactivation from the open or closed states are generally slower than activation or deactivation rates and show little or no voltage dependence. Channels tend to reopen several times before inactivating. Macroscopic rates of activation and inactivation result from a combination of closed, open and inactivated state transitions. At negative potentials the time to first opening dominates the macroscopic current due to slow activation rates compared with deactivation rates: channels tend to reopen rarely, and often inactivate from closed states before they reopen. At more positive potentials, the time to first opening and burst duration together produce the macroscopic current.  相似文献   

14.
Correlations between the durations of adjacent open and shut intervals recorded from ion channels contain information about the underlying gating mechanism. This study presents an additional approach to extracting the correlation information. Detailed correlation information is obtained directly from single-channel data and quantified in a manner that can provide insight into the connections among the states underlying the gating. The information is obtained independently of any specific kinetic scheme, except for the general assumption of Markov gating. The durations of adjacent open and shut intervals are binned into two-dimensional (2-D) dwell-time distributions. The 2-D (joint) distributions are fitted with sums of 2-D exponential components to determine the number of 2-D components, their volumes, and their open and closed time constants. The dependency of each 2-D component is calculated by comparing its observed volume to the volume that would be expected if open and shut intervals paired independently. The estimated component dependencies are then used to suggest gating mechanisms and to provide a powerful means of examining whether proposed gating mechanisms have the correct connections among states. The sensitivity of the 2-D method can identify hidden components and dependencies that can go undetected by previous correlation methods.  相似文献   

15.
Integrated allosteric model of voltage gating of HCN channels   总被引:8,自引:0,他引:8  
Hyperpolarization-activated (pacemaker) channels are dually gated by negative voltage and intracellular cAMP. Kinetics of native cardiac f-channels are not compatible with HH gating, and require closed/open multistate models. We verified that members of the HCN channel family (mHCN1, hHCN2, hHCN4) also have properties not complying with HH gating, such as sigmoidal activation and deactivation, activation deviating from fixed power of an exponential, removal of activation "delay" by preconditioning hyperpolarization. Previous work on native channels has indicated that the shifting action of cAMP on the open probability (Po) curve can be accounted for by an allosteric model, whereby cAMP binds more favorably to open than closed channels. We therefore asked whether not only cAMP-dependent, but also voltage-dependent gating of hyperpolarization-activated channels could be explained by an allosteric model. We hypothesized that HCN channels are tetramers and that each subunit comprises a voltage sensor moving between "reluctant" and "willing" states, whereas voltage sensors are independently gated by voltage, channel closed/open transitions occur allosterically. These hypotheses led to a multistate scheme comprising five open and five closed channel states. We estimated model rate constants by fitting first activation delay curves and single exponential time constant curves, and then individual activation/deactivation traces. By simply using different sets of rate constants, the model accounts for qualitative and quantitative aspects of voltage gating of all three HCN isoforms investigated, and allows an interpretation of the different kinetic properties of different isoforms. For example, faster kinetics of HCN1 relative to HCN2/HCN4 are attributable to higher HCN1 voltage sensors' rates and looser voltage-independent interactions between subunits in closed/open transitions. It also accounts for experimental evidence that reduction of sensors' positive charge leads to negative voltage shifts of Po curve, with little change of curve slope. HCN voltage gating thus involves two processes: voltage sensor gating and allosteric opening/closing.  相似文献   

16.
The gating kinetics of batrachotoxin-modified Na+ channels were studied in outside-out patches of axolemma from the squid giant axon by means of the cut-open axon technique. Single channel kinetics were characterized at different membrane voltages and temperatures. The probability of channel opening (Po) as a function of voltage was well described by a Boltzmann distribution with an equivalent number of gating particles of 3.58. The voltage at which the channel was open 50% of the time was a function of [Na+] and temperature. A decrease in the internal [Na+] induced a shift to the right of the Po vs. V curve, suggesting the presence of an integral negative fixed charge near the activation gate. An increase in temperature decreased Po, indicating a stabilization of the closed configuration of the channel and also a decrease in entropy upon channel opening. Probability density analysis of dwell times in the closed and open states of the channel at 0 degrees C revealed the presence of three closed and three open states. The slowest open kinetic component constituted only a small fraction of the total number of transitions and became negligible at voltages greater than -65 mV. Adjacent interval analysis showed that there is no correlation in the duration of successive open and closed events. Consistent with this analysis, maximum likelihood estimation of the rate constants for nine different single-channel models produced a preferred model (model 1) having a linear sequence of closed states and two open states emerging from the last closed state. The effect of temperature on the rate constants of model 1 was studied. An increase in temperature increased all rate constants; the shift in Po would be the result of an increase in the closing rates predominant over the change in the opening rates. The temperature study also provided the basis for building an energy diagram for the transitions between channel states.  相似文献   

17.
18.
The derivation of cross-correlation functions from single-channel dwell (open and closed) times is described. Simulation of single-channel data for simple gating models, alongside theoretical treatment, is used to demonstrate the relationship of cross-correlation functions to underlying gating mechanisms. It is shown that time irreversibility of gating kinetics may be revealed in cross-correlation functions. Application of cross-correlation function analysis to data derived from the locust muscle glutamate receptor-channel provides evidence for multiple gateway states and time reversibility of gating. A model for the gating of this channel is used to show the effect of omission of brief channel events on cross-correlation functions.  相似文献   

19.
Statistical properties of single sodium channels   总被引:16,自引:5,他引:11       下载免费PDF全文
Single channel currents were obtained from voltage-activated sodium channels in outside-out patches of tissue-cultured GH3 cells, a clonal line from rat pituitary gland. In membrane patches where the probability of overlapping openings was low, the open time histograms were well fit by a single exponential. Most analysis was done on a patch with exactly one channel. We found no evidence for multiple open states at -25 and -40 mV, since open times, burst durations, and autocorrelation functions were time independent. Amplitude histograms showed no evidence of multiple conductance levels. We fit the gating with 25 different time-homogeneous Markov chain models having up to five states, using a maximum likelihood procedure to estimate the rate constants. For selected models, this procedure yielded excellent predictions for open time, closed time, and first latency density functions, as well as the probability of the channel being open after a step depolarization, the burst duration distribution, autocorrelation, and the distribution of number of openings per record. The models were compared statistically using likelihood ratio tests and Akaike's information criterion. Acceptable models allowed inactivation from closed states, as well as from the open state. Among the models eliminated as unacceptable by this survey were the Hodgkin-Huxley model and any model requiring a channel to open before inactivating.  相似文献   

20.
By defining functional defects in a congenital myasthenic syndrome (CMS), we show that two mutant residues, located in a binding site region of the acetylcholine receptor (AChR) epsilon subunit, exert opposite effects on ACh binding and suppress channel gating. Single channel kinetic analysis reveals that the first mutation, epsilon N182Y, increases ACh affinity for receptors in the resting closed state, which promotes sequential occupancy of the binding sites and discloses rate constants for ACh occupancy of the nonmutant alphadelta site. Studies of the analogous mutation in the delta subunit, deltaN187Y, disclose rate constants for ACh occupancy of the nonmutant alpha epsilon site. The second CMS mutation, epsilon D175N, reduces ACh affinity for receptors in the resting closed state; occupancy of the mutant site still promotes gating because a large difference in affinity is maintained between closed and open states. epsilon D175N impairs overall gating, however, through an effect independent of ACh occupancy. When mapped on a structural model of the AChR binding site, epsilon N182Y localizes to the interface with the alpha subunit, and epsilon D175 to the entrance of the ACh binding cavity. Both epsilon N182Y and epsilon D175 show state specificity in affecting closed relative to desensitized state affinities, suggesting that the protein chain harboring epsilon N182 and epsilon D175 rearranges in the course of receptor desensitization. The overall results show that key residues at the ACh binding site differentially stabilize the agonist bound to closed, open and desensitized states, and provide a set point for gating of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号