首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A complete deletion mutant of the Escherichia coli dnaKdnaJ operon   总被引:1,自引:0,他引:1  
Southern hydridization analyses of genomic DNAs from various dnaJ mutants of Escherichia coli showed that mutant K7052, which has well characterized dnaK706 and dnaJ705 double mutantions, is a deletion mutant. The deletion is about 8.0 kb long and encompasses the whole of the dnaKdnaJ operon.  相似文献   

2.
Escherichia coli null dnaJ and dnaKdnaJ mutants were defective in the biosynthesis and secretion of several enzymes. The synthesis of beta-galactosidase induced in delta dnaJ and delta dnaKdnaJ mutants was abolished at 42 degrees C and significantly decreased at 30 and 37 degrees C. The activity of alkaline phosphatase in the periplasm in both mutant strains at high temperature was lower than in the wild-type strain. The synthesis of b-type cytochromes was defective in two deletion mutants while the synthesis of nitrate reductase-A at 42 degrees C was influenced by dnaK mutation only. The lack of DnaK and DnaJ does not impair the activity of catechol 2,3-dioxygenase irrespective of growth temperature.  相似文献   

3.
K I Wolska  J Paciorek  K Kardy? 《Microbios》1999,97(386):55-67
Mutations in the heat shock genes, dnaK and dnaJ, cause severe defects of several cellular functions. Null dnaJ and dnaKdnaJ mutations can be transduced in a restricted range of temperature. The efficiency of transformation with three unrelated plasmids, viz pACYC184, pBR322 and pSC101, is two times lower in dnaK mutants while the dnaJ mutant is characterized by slightly impaired transformation with pSC101 only. The lack of DnaJ function negatively influences the stability of pSC101 at 42 degrees C, and this plasmid cannot be stably maintained at 30 degrees C in the delta dnaKdnaJ mutant. The double deletion mutant, delta dbaKdnaJ, is characterized by impaired osmoadaptation. The galactokinase content is lower in both mutants tested compared with wild-type strains even at 30 degrees C. The efficient complementation of some of these defects by the wild-type alleles present on low-copy number plasmid was achieved.  相似文献   

4.
E. coli defects in response to nutritional starvation caused by DnaK and DnaJ proteins deprivation are examined. The ability of delta dnaKdnaJ mutant to survive carbon, nitrogen and phosphorus starvation is highly impaired while delta dnaJ mutant is characterized by the diminished survival of phosphorus starvation only. delta dnaKdnaJ mutant grows slowly utilizing maltose and glycerol and delta dnaJ mutant utilizes glycerol inefficiently. The growth on alternate nitrogen sources is comparable to wild-type strain.  相似文献   

5.
The dnaJ deletion mutant K7052(lambda dnaK) has a temperature-sensitive defect in the synthesis of beta-galactosidase. We confirmed this operon-specific and temperature-sensitive defect in cell-free extracts prepared from the mutant cells and found that the missing factor was CRP. In the mutant, the cellular concentration of CRP was too low to allow the expression of the lac operon at a nonpermissive temperature. Introduction of a CRP over-producing plasmid into the dnaJ deletion mutant suppressed the defect of beta-galactosidase synthesis. The lower content of CRP in the mutant was found to result from extreme instability of the protein. These results strongly suggested that the heat shock protein dnaJ is involved in the stabilization (or degradation) of CRP.  相似文献   

6.
The genome of the cyanobacterium Synechococcus elongatus PCC 7942 contains four dnaJ homologs, which are classified into three types based on domain structure. Among these, dnaJ1, dnaJ2, and dnaJ3 are essential for normal growth, and hence we analyzed them with a view to characterizing their specificity. Expression analysis indicated that dnaJ2, which encodes type II DnaJ protein, exhibited typical responses to heat and high-light stresses. Their localization and ability to prevent aggregation of luciferase were also diverse, suggesting a possible functional differentiation of these proteins. Since the expression of dnaJ1, which belongs to conserved type I DnaJ, down-regulated under heat stress, the unique structure of DnaJ2 may be involved in stress responses of S. elongatus. Based on phylogenetic analysis, the diverse dnaJ family was assumed to have evolved its own specific functions in each cyanobacterial species.  相似文献   

7.
The dnaJ and gyrB nucleotide sequences were determined for members of the genus Streptococcus. The average similarity between the species tested was 76.4% (69.7-100%) for dnaJ and 75.9 (70.1-98.7%) for gyrB. These data indicated that the dnaJ and gyrB genes are more divergent and more discriminatory than the 16S rDNA gene. Furthermore, the variation in the dnaJ nucleotide sequences among the mitis group was greater than that of the gyrB nucleotide sequences, especially between Streptococcus pneumoniae and Streptococcus mitis. Subsequently, the high discrimination power of dnaJ within the mitis group was confirmed. Thus, we conclude that the dnaJ and gyrB genes are efficient alternative targets for the classification of the genus Streptococcus, and that dnaJ is suitable for phylogenetic analysis of closely related Streptococcus strains.  相似文献   

8.
The Escherichia coli dnaJ gene was originally discovered because mutations in it blocked bacteriophage lambda DNA replication. Some of these mutations were subsequently shown to interfere with bacterial growth at high temperature, suggesting that dnaJ is an essential protein for the host as well. The first step in purifying the dnaJ protein was to overproduce it at least 50-fold by subcloning its gene into the pMOB45 runaway plasmid. The second step was the development of an in vitro system to assay for its activity. A Fraction II extract from dnaJ259 mutant bacteria was shown to be unable to replicate lambda dv DNA unless supplemented with an exogenous source of wild-type dnaJ protein. Using this complementation assay we purified the dnaJ protein to homogeneity from the membrane fraction of an overproducing strain of bacteria. The purified dnaJ protein was shown to be a basic (pI 8.5), yet hydrophobic, protein of Mr 37,000 and 76,000 under denaturing and native conditions, respectively, and to exhibit affinity for both single- and double-stranded DNA. Using a partially purified lambda dv replication system dependent on the presence of the lambda O and P initiator proteins and at least the host dnaB, dnaG, dnaJ, dnaK, single-stranded DNA-binding protein, gyrase, RNA polymerase holoenzyme, and DNA polymerase III holoenzyme, we have shown that the dnaJ protein is required at a very early step in the DNA replication process.  相似文献   

9.
The dnaJ and dnaK genes are essential for replication of Escherichia coli DNA, and they constitute an operon, dnaJ being downstream from dnaK. The amount of the dnaJ protein in E. coli is substantially less than that of the dnaK protein, which is produced abundantly. In order to construct a system that over-produces the dnaJ protein, we started our study by determining the DNA sequence of the entire dnaJ gene, and an operon fusion was constructed by inserting the gene downstream of the lambda PL promoter of an expression vector plasmid, pPL-lambda. Cells containing the recombinant plasmid produced dnaJ protein amounting to 2% of the total cellular protein when cells were induced. The overproduced protein was purified, and Edman degradation of the protein indicated that the NH2-terminal methionine was found to be processed. From the DNA sequence of the dnaJ gene, the processed gene product is composed of 375 amino acid residues, and its molecular weight is calculated to be 40,975.  相似文献   

10.
We sequenced about 930 bp of the dnaJ gene from 15 Legionella pneumophila serogroups and some other members of the genus Legionella. As L. pneumophila 16S rDNA sequences could not discriminate between all subspecies and serogroups, we assessed the use of dnaJ gene sequences to differentiate between Legionella subspecies as well as between L. pneumophila serogroups. A phylogenetic analysis revealed that dnaJ gene sequences were more variable between the L. pneumophila serogroups than mip gene and 16S rDNA sequences. By studying 61 strains from 41 species of the genus Legionella, as well as other genera, we established a PCR method that could amplify 285 bp of dnaJ gene from all L. pneumophila serogroups. This primer set was more sensitive than mip gene primers and was able to detect 0.25 ng of purified DNA. We also describe the 16S rDNA primers that were used to detect most Legionella genus members.  相似文献   

11.
12.
The utility of the dnaJ gene for identifying Vibrio species was investigated by analyzing dnaJ sequences of 57 type strains and 22 clinical strains and comparing sequence homologies with those of the 16S rDNA gene and other housekeeping genes (recA, rpoA, hsp60). Among the 57 Vibrio species, the mean sequence similarity of the dnaJ gene (77.9%) was significantly less than that of the 16S rDNA gene (97.2%), indicating a high discriminatory power of the dnaJ gene. Most Vibrio species were, therefore, differentiated well by dnaJ sequence analysis. Compared to other housekeeping genes, the dnaJ gene showed better resolution than recA or rpoA for differentiating Vibrio coralliilyticus from Vibrio neptunius and Vibrio harveyi from Vibrio rotiferianus. Among the clinical strains, all 22 human pathogenic strains, including an atypical strain, were correctly identified by the dnaJ sequence. Our findings suggest that analysis of the dnaJ gene sequence can be used as a new tool for the identification of Vibrio species.  相似文献   

13.
Abstract DNA sequence analysis of chromosomal DNA from the Gram-positive facultative intracellular pathogen, Erysipelothrix rhusiopathiae has identified a dnaJ heat shock gene homolog. A 1109-bp open reading frame encoding dnaJ is located immediately 3' to the E. rhusiopathiae dnaK gene. The deduced DnaJ amino acid sequence exhibits the modular structure of other members of the DnaJ protein class including a glycine-rich region and the repeating consensus sequence CXXCXGXGX. Heterologous expression of the dnaJ sequence in Escherichia coli resulted in accumulation of a unique 38.9-kDa protein with an isoelectric point of 8.0. Deletion analysis of the dnaJ gene was used to confirm that the overproduced protein was encoded by the dnaJ sequence.  相似文献   

14.
Temperature-sensitive dnaJ mutants of Escherichia coli showed a thermosensitive defect in the synthesis of beta-galactosidase. Synthesis of the lac mRNA was greatly reduced at the restrictive temperature. The mutants were also conditionally defective in the synthesis of a subset of membrane proteins such as succinate dehydrogenase, whereas the synthesis of anthranilate synthetase, encoded by trpED, as well as that of most cellular proteins, was unaffected at the restrictive temperature. The defect was specific for the dnaJ mutants among several dna mutants which are known to be involved in the initiation of DNA synthesis: dnaK, dnaA, and dnaB mutants synthesized each of these proteins normally even at the restrictive temperature. At the restrictive temperature, growth of the dnaJ mutants was arrested at a specific stage of the cell cycle.  相似文献   

15.
Lysis of Escherichia coli by the cloned E protein of bacteriophage phi X174 was more rapid than expected when bacteria were shifted from 30 to 42 degrees C at the time of E induction. Since such treatment also induces the heat shock response, we investigated the effect of heat shock proteins on lysis. An rpoH mutant was more sensitive to lysis by E, but a secondary suppressor mutation restored lysis resistance to parental levels, which suggests that the sigma 32 subunit itself did not directly increase lysis resistance. At 30 degrees C, mutants in five heat shock genes (dnaK, dnaJ, groEL, groES, and grpE) were more sensitive to lysis than were their wild-type parents. The magnitude of lysis sensitivity varied with mutation and strain background, with dnaK, dnaJ, and groES mutants consistently exhibiting the greatest sensitivities. Extended protection against lysis occurred when overproduction of heat shock proteins was induced artificially in cells that contained a plasmid with the rpoH+ gene under control of the tac promoter. This protective effect was completely abolished by mutations in dnaK, dnaJ, or groES but not by grpE or groEL mutations. Altered membrane behavior probably explains the contradiction whereby an actual temperature shift sensitized cells to lysis, but production of heat shock proteins exhibited protective effects. The results demonstrate that E-induced lysis can be divided into two distinct operations which may now be studied separately. They also emphasize a role for heat shock proteins under non-heat-shock conditions and suggest cautious interpretation of lysis phenomena in systems where E protein production is under control of a temperature-sensitive repressor.  相似文献   

16.
The Escherichia coli dnaJ gene product is required for bacteriophage lambda DNA replication at all temperatures. It is also essential for bacterial viability in at least some conditions, since mutations in it result in temperature-sensitive bacterial growth. We have previously cloned the dnaJ gene and shown that its product migrates as a Mr 37,000 polypeptide under denaturing conditions. Here we present the primary DNA sequence of the dnaJ gene. It codes for a processed basic protein (63 basic and 51 acidic amino acids) composed of 375 amino acids totaling Mr 40,973. The predicted NH2-terminal amino acid sequence, overall amino acid composition, and isoelectric point agree well with those of the purified protein. We present evidence that the rate of expression of the dnaJ protein is increased by heat shock under the control of the htpR (rpoH) gene product.  相似文献   

17.
Abstract The complete dnaJ gene of Clostridium acetobutylicum was isolated by chromosome walking using the previously cloned 5' end of the gene as a probe. Nucleotide sequencing of a positively reacting 2.2-kb Hin cII fragment, contained in the recombinant plasmid pKG4, revealed that the reading frame of the dnaJ gene of C. acetobutylicum consists of 1125 bp, encoding a protein of 374 amino acids with a calculated M r of 40376 and an isoelectric points of 9.54. The deduced amino acid sequence showed high similarity to the DnaJ proteins of other bacteria (e.g. Escherichia coli, Bacillus subtilis ) as well as of an archaeon ( Methanosarcina mazei ) and to the corresponding proteins of eukaryotes ( Saccharomyces cerevisiae, Homo sapiens ). The areas of similarity included a conserved N-terminal domain of about 70 amino acids, a glycine-rich region of about 30 residues, and a central domain containing four repeats of a CXXCXGXG motif, whereas the C-terminal domain was less conserved. Northern (RNA) blot analysis indicated that dnaJ is induced by heat shock and that it is part of the dnaK operon of C. acetobutylicum . The 5' end (901 bp) of another gene ( orfB ), downstream of dnaJ and not heat-inducible, showed no significant similarity to other sequences available in EMBL and GenBank databases.  相似文献   

18.
19.
The CbpA protein is an analog of the DnaJ molecular chaperone of Escherichia coli. To gain insight into the function of CbpA, we examined the nature of a cbpA null mutation with special reference to those of dnaK and dnaJ null mutations. In particular, the cbpA dnaJ double-null mutant was found to exhibit severe defects in cell growth, namely, a very narrow temperature range for growth, a defect in cell division, and susceptibility to killing by carbon starvation. These phenotypes are very similar to those reported for dnaK null mutants but not to those of dnaJ null mutants. Our results are best interpreted by assuming that CbpA is capable of compensating for DnaJ for cell growth and thus that the function(s) of CbpA is closely related to that of DnaJ.  相似文献   

20.
Initiation of replication of lambda DNA requires assembly of the proper nucleoprotein complex consisting of the lambda origin of replication-lambda O-lambda P-dnaB proteins. The dnaJ, dnaK and grpE heat shock proteins destabilize the lambda P-dnaB interaction in this complex permitting dnaB helicase to unwind lambda DNA near ori lambda sequence. First step of this disassembling reaction is the binding of dnaK protein to lambda P protein. In this report we examined the influence of dnaJ and grpE proteins on stability of the lambda P-dnaK complex. Our results show that grpE alone dissociates this complex, but both grpE and dnaJ together do not. These results suggest that, in the presence of grpE protein, dnaK protein has a higher affinity for lambda P protein complexed with dnaJ protein than in the situation where grpE protein is not used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号