首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogenicity islands (PAIs) have been identified in several bacterial species. A PAI called high-pathogenicity island (HPI) and carrying genes involved in iron acquisition (yersiniabactin system) has been previously identified in Yersinia enterocolitica and Yersinia pestis . In this study, the HPI of the third species of Yersinia pathogenic for humans, Y. pseudotuberculosis , has been characterized. We demonstrate that the HPI of strain IP32637 has a physical and genetic map identical to that of Y. pestis . A gene homologous to the bacteriophage P4 integrase gene is located downstream of the asn tRNA locus that borders the HPI of strain IP32637. This int gene is at the same position on the HPI of all three pathogenic Yersinia species. However, in contrast to Y. pestis 6/69, the HPI of Y. pseudotuberculosis IP32637 is not invariably adjacent to the pigmentation segment and can be inserted at a distance ≥ 190 kb from this segment. Also, in contrast to Y. pestis and Y. enterocolitica , the HPI of Y. pseudotuberculosis IP32637 can precisely excise from the chromosome, and, strikingly, it can be found inserted in any of the three asn tRNA loci present on the chromosome of this species, one of which is adjacent to the pigmentation segment. The pigmentation segment, which is present in Y. pestis but not in Y. enterocolitica , is also present and well conserved in all strains of Y. pseudotuberculosis studied. In contrast, the presence and size of the HPIs vary depending on the serotype of the strain: an entire HPI is found in strains of serotypes I only, a HPI with a 9 kb truncation in its left-hand part that carries the IS 100 sequence and the psn and ybtE genes characterizes the strains of serotype III, and no HPI is found in strains of serotypes II, IV and V.  相似文献   

2.
The Yersinia high-pathogenicity island.   总被引:7,自引:0,他引:7  
A pathogenicity island present only in highly pathogenic strains of Yersinia (Y. enterocolitica 1B, Y. pseudotuberculosis I and Y. pestis) has been identified on the chromosome of Yersinia spp. and has been designated High-Pathogenicity Island (HPI). The Yersinia HPI carries a cluster of genes involved in the biosynthesis, transport and regulation of the siderophore yersiniabactin. The major function of this island is thus to acquire iron molecules essential for in vivo bacterial growth and dissemination. The presence of an integrase gene and att sites homologous to those of phage P4, together with a G + C content much higher than the chromosomal background, suggests that the HPI is of foreign origin and has been acquired by chromosomal integration of a phage. The HPI can excise from the chromosome of Y. pseudotuberculosis and is found inserted into any of the three copies of the asn tRNA loci present in this species. A unique characteristic of the HPI is its wide distribution in various enterobacteria. Although first identified in Yersinia spp., it has subsequently been detected in other genera such as E. coli, Klebsiella and Citrobacter.  相似文献   

3.
Diversification of bacterial species and pathotypes is largely caused by horizontal transfer of diverse DNA elements such as plasmids, phages and genomic islands (e.g. pathogenicity islands, PAIs). A PAI called high-pathogenicity island (HPI) carrying genes involved in siderophore-mediated iron acquisition (yersiniabactin system) has previously been identified in Yersinia pestis, Y. pseudotuberculosis and Y. enterocolitica IB strains, and has been characterized as an essential virulence factor in these species. Strikingly, an orthologous HPI is a widely distributed virulence determinant among Escherichia coli and other Enterobacteriaceae which cause extraintestinal infections. Here we report on the HPI of E. coli strain ECOR31 which is distinct from all other HPIs described to date because the ECOR31 HPI comprises an additional 35 kb fragment at the right border compared to the HPI of other E. coli and Yersinia species. This part encodes for both a functional mating pair formation system and a DNA-processing region related to plasmid CloDF13 of Enterobacter cloacae. Upon induction of the P4-like integrase, the entire HPI of ECOR31 is precisely excised and circularised. The HPI of ECOR31 presented here resembles integrative and conjugative elements termed ICE. It may represent the progenitor of the HPI found in Y. pestis and E. coli, revealing a missing link in the horizontal transfer of an element that contributes to microbial pathogenicity upon acquisition.  相似文献   

4.
A strain of Pasteurella pestis, harboring the F'Cm plasmid from Escherichia coli, was able to donate its chromosome to auxotrophic recipient strains of P. pestis. The frequency of gene transfer in P. pestis was approximately 10(-6) per donor cell, 100 times less efficient than gene transfer in Pasteurella pseudotuberculosis, but efficient enough to determine entry times for the markers histidine, threonine, and tryptophan and to show linkage to the markers arginine and pigmentation. An attempt to extend the conjugation system to different serotypes of P. pseudotuberculosis and to Yersinia enterocolitica did not succeed.  相似文献   

5.
The Yersinia high-pathogenicity island (HPI) encodes the siderophore yersiniabactin-mediated iron uptake system. The HPI of Yersinia pseudotuberculosis I has previously been shown to be able to excise precisely from the bacterial chromosome by recombination between the attB-R and attB-L sites flanking the island. However, the nature of the Y. pseudotuberculosis HPI excision machinery remained unknown. We show here that, upon excision, the HPI forms an episomal circular molecule. The island thus has the ability to excise from the chromosome, circularize and reintegrate itself, either in the same location or in another asn tRNA copy. We also demonstrate that the HPI-encoded bacteriophage P4-like integrase (Int) plays a critical role in HPI excision and that, like phage integrases, it acts as a site-specific recombinase that catalyses both excision and integration reactions. However, Int alone cannot efficiently promote recombination between the attB-R and attB-L sites, and we demonstrate that a newly identified HPI-borne factor, designated Hef (for HPI excision factor) is also required for this activity. Hef belongs to a family of recombination directionality factors. Like the other members of this family, Hef probably plays an architectural rather than a catalytic role and promotes HPI excision from the chromosome by driving the function of Int towards an excisionase activity. The fact that the HPI, and probably several other pathogenicity islands, carry a machinery of integration/excision highly similar to those of bacteriophages argues for a phage-mediated acquisition and transfer of these elements.  相似文献   

6.
Genotypic characteristics based three main factors of pathogenicity (presence of resident plasmids [pYV, pVM], gene of toxin-superantigen ypm and nine genes for high pathogenicity island [HPI]) of 212 strains of Y. pseudotuberculosis isolated in Siberia and Far East were studied. It was shown that strains of Y. pseudotuberculosis with one of two variants of plasmids 82:47 MDa and 47 MDa (60.8% and 31.6% respectively) are predominated. Gene ypmA was detected in 96.2% of isolated strains. Eight strains had none of the ymp gene variants. HPI were detected in 96.2% of isolated strains. Obtained characteristics of Y. pseudotuberculosis allowed to determine the dominating genogroup pWYV+, ypmA+, HPI- (95.8% of strains) that cause systemic infection.  相似文献   

7.
Yersinia pseudotuberculosis is an enteric human pathogen but is widespread in the environment. Pathogenicity is determined by a number of virulence factors, including the virulence plasmid pYV, the high-pathogenicity island (HPI), and the Y. pseudotuberculosis-derived mitogen (YPM), a superantigen. The presence of the 3 virulence factors varies among Y. pseudotuberculosis isolates. We developed a multilocus sequence typing (MLST) scheme to address the population structure of Y. pseudotuberculosis and the evolution of its pathogenicity. The seven housekeeping genes selected for MLST were mdh, recA, sucA, fumC, aroC, pgi, and gyrB. An MLST analysis of 83 isolates of Y. pseudotuberculosis, representing 19 different serotypes and six different genetic groups, identified 61 sequence types (STs) and 12 clonal complexes. Out of 26 allelic changes that occurred in the 12 clonal complexes, 13 were mutational events while 13 were recombinational events, indicating that recombination and mutation contributed equally to the diversification of the clonal complexes. The isolates were separated into 2 distinctive clusters, A and B. Cluster A is the major cluster, with 53 STs (including Y. pestis strains), and is distributed worldwide, while cluster B is restricted to the Far East. The YPM gene is widely distributed on the phylogenetic tree, with ypmA in cluster A and ypmB in cluster B. pYV is present in cluster A only but is sporadically absent in some cluster A isolates. In contrast, an HPI is present only in a limited number of lineages and must be gained by lateral transfer. Three STs carry all 3 virulence factors and can be regarded as high-pathogenicity clones. Isolates from the same ST may not carry all 3 virulence factors, indicating frequent gain or loss of these factors. The differences in pathogenicity among Y. pseudotuberculosis strains are likely due to the variable presence and instability of the virulence factors.  相似文献   

8.
AIMS: To investigate the role of horizontal gene transfer of mcd (methylcarbamate-degrading) gene in high genetic diversity of carbofuran-degrading bacteria. METHODS AND RESULTS: The actuality of genetic transfer from degraders to an Agrobacterium tumefaciens strain was determined in liquid medium. The mcd gene was chosen for transfer experiments. Transconjugants were obtained irrespective of the type of the donor strain (Gram-positive or Gram-negative), size of the inoculum, or nature and concentration of the pesticide in the medium. Soil microcosms, inoculated with or without the donor and/or recipient strains were used. The size of the initial degrading population (treated or untreated soil) and the nature of the inoculated donor strains were considered. More transconjugants were isolated in the previously treated soil than in the untreated soil. Agrobacterium transconjugants were isolated even when the donor strain was not inoculated, probably as a result of gene transfer from indigenous degrading population to the recipient strain. Moreover, potential transconjugants belonging to the Pseudomonas genus were isolated. CONCLUSIONS: Our results seem to demonstrate that the mcd gene is transferable in soil among bacterial populations. SIGNIFICANCE AND IMPACTS OF THE STUDY: The transfer of the mcd gene is partly responsible for the high genetic diversity of micro-organisms able to catabolize carbofuran.  相似文献   

9.
In the last three decades, several monkeys reared in outdoor/indoor-outdoor breeding colonies and cages of the Primate Research Institute, Kyoto University, died of yersiniosis caused by Yersinia pseudotuberculosis, necessitating introduction of a method to detect the bacteria rapidly and thus allow preventive measures to be undertaken. A rapid nested polymerase chain reaction (PCR) method for identification of Y. pseudotuberculosis in fecal samples and a random amplified polymorphic DNA (RAPD)-PCR approach for distinguishing between bacterial strains were therefore developed. Yersinia pseudotuberculosis isolates from monkey specimens were found to be classifiable into several types. To determine the source of infection, hundreds of fecal samples of wild rats, pigeons, and sparrows were collected from around the breeding colonies and cages, and subjected to PCR analyses. Yersinia pseudotuberculosis was detected in 1.7% of the fecal samples of wild rats. The DNA fingerprints of the bacteria revealed by RAPD-PCR were the same as that of one strain isolated from macaques, suggesting the wild rat to be a possible source of infection.  相似文献   

10.
The influence of culture conditions and plasmids on immunoglobulin (Ig)-binding activity of two isogenic strains of Yersinia pseudotuberculosis (plasmid-free strain 48(-)82(-) and strain 48(+)82(+) bearing plasmids pYV48 and pVM82) was studied. The highest activity was observed in the bacteria grown on glucose-containing liquid medium in the stationary growth phase. The Ig-binding activity of the bacteria cultured on the liquid medium at pH 6.0 was about 1.5-fold higher than that of the bacteria grown at pH 7.2. Expression of the Ig-binding proteins (IBPs) was most influenced by temperature of cultivation. The IBP biosynthesis was activated in the bacteria grown at 4 degrees C and markedly decreased in those grown at 37 degrees C. The Ig-binding activity of lysates from the bacteria was caused by proteins with molecular weights of 7-20 kD. The activities of the plasmid-free and plasmid-bearing Y. pseudotuberculosis strains (48(-)82(-) and 48(+)82(+), respectively) were analyzed, and the plasmids were shown to have no effect on the IBP expression and biosynthesis, which seemed to be determined by chromosomal genes.  相似文献   

11.
The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has made exploration of questions surrounding the evolution of pathogenesis tractable. Here we present the results of a detailed comparison of the genomes of Yersinia pseudotuberculosis IP32593 and three strains of Yersinia pestis (CO92, KIM10, and 91001). There appear to be between 241 and 275 multigene families in these organisms. There are 2,568 genes that are identical in the three Y. pestis strains, but differ from the Y. pseudotuberculosis strain. The changes found in some of these families, such as the kinases, proteases, and transporters, are illustrative of how the evolutionary jump from the free-living enteropathogen Y. pseudotuberculosis to the obligate host-borne blood pathogen Y. pestis was achieved. We discuss the composition of some of the most important families and discuss the observed divergence between Y. pseudotuberculosis and Y. pestis homologs.  相似文献   

12.
The fatty acid composition of lipopolysaccharides of the strains of Y. enterocolitica, Y. intermedia, Y. frederiksenii and Y. ruckeri studied during cultivation on meat-peptone agar is characterized by the predominance of 3-hydroxytetradecanoic and dodecanoic acids. Closely related to the mentioned bacteria is the strain of Y. kristensenii which is distinguished only by its higher level of hexadecanoic acid. The strains of Y. pseudotuberculosis and the vaccine strain of Y. pestis have a uniform fatty acid composition of lipopolysaccharides with predominance of 3-hydroxytetradecanoic acid. Their relatively low level of dodecanoic acid conditions the characteristic fatty acid spectrum of lipopolysaccharides which differs from that of the above mentioned group of Yersinia. The peculiarities of the fatty acid composition of lipopolysaccharides of both groups of Yersinia are preserved during growth on meat-peptone broth, but the increase in the level of hexadecanoic acid balances the differences between Y. kristensenii, the other Y. enterocolitica-like bacteria and Y. ruckeri. The obtained results confirm close relationship of Y. pseudotuberculosis and Y. pestis, and also of Y. enterocolitica and Y. enterocolitica-like bacteria, showing propinquity of Y. ruckeri to the latter.  相似文献   

13.
A few Yersinia pseudotuberculosis strains form biofilms on the head of the nematode Caenorhabditis elegans , but numerous others do not. We show that a widely used Y. pseudotuberculosis strain, YPIII, is biofilm positive because of a mutation in phoP , which encodes the response regulator of a two-component system. For two wild-type Y. pseudotuberculosis that do not make biofilms on C. elegans , deletion of phoP was sufficient to produce robust biofilms. In Yersinia pestis , a phoP mutant made more extensive biofilms in vitro than did the wild type. Expression of HmsT, a diguanylate cyclase that positively regulates biofilms, is diminished in Y. pseudotuberculosis strains with functional PhoP.  相似文献   

14.
We examined 12 pairs of strains of Escherichia coli and Klebsiella pneumoniae isolated from mixed infections in human for the presence of the Yersinia high-pathogenicity island (HPI). In one case both isolates carried the HPI, whereas in 11 cases one strain of the pair was HPI-positive. Although there were differences in the organization of the Yersinia HPI, all HPI-positive isolates were able to produce yersiniabactin. The presence of the Yersinia HPI may enhance the capability of strains involved in mixed infections to replicate in iron-deprived conditions in the host.  相似文献   

15.
A pathogenicity island termed high-pathogenicity island (HPI) is present in pathogenic Yersinia. This 35 to 45 kb island carries genes involved in synthesis, regulation and transport of the siderophore yersiniabactin. Recently, the HPI was also detected in various strains of Escherichia coli. In this study, the distribution of the HPI in the family Enterobacteriaceae was investigated. Among the 67 isolates pertaining to 18 genera and 52 species tested, nine (13.4%) harbored the island. These isolates were three E. coli, one Citrobacter diversus and five Klebsiella of various species (Klebsiella pneumoniae, Klebsiella rhinoscleromatis, Klebsiella ozaenae, Klebsiella planticola, and Klebsiella oxytoca). As in Yersinia sp., all nine isolates synthesized the HPI-encoded iron-repressible proteins HMWP1 and HMWP2. In the K. oxytoca strain, the right-end portion of the HPI was deleted, whereas the entire core region of the island was present in the eight other enterobacteria strains analyzed. In most of these isolates, the HPI was bordered by an asn tRNA locus, as in Yersinia sp. This report thus demonstrates the spread of the HPI among various members of the family Enterobacteriaceae.  相似文献   

16.
Sensitivity to Yersinia pestis bacteriocin pesticin correlates with the existence of two groups of human pathogenic yersiniae, mouse lethal and mouse nonlethal. The presence of the outer membrane pesticin receptor (FyuA) in mouse-lethal yersiniae is a prerequisite for pesticin sensitivity. Genes that code for FyuA (fyuA) were identified and sequenced from pesticin-sensitive bacteria, including Y. enterocolitica biotype 1B (serotypes O8; O13, O20, and O21), Y. pseudotuberculosis serotype O1, Y. pestis, two known pesticin-sensitive Escherichia coli isolates (E. coli Phi and E. coli CA42), and two newly discovered pesticin-sensitive isolates, E. coli K49 and K235. A 2,318-bp fyuA sequence was shown to be highly conserved in all pesticin-sensitive bacteria, including E. coli strains (DNA sequence homology was 98.5 to 99.9%). The same degree of DNA homology (97.8 to 100%) was established for the sequenced 276-bp fragment of the irp2 gene that encodes high-molecular-weight protein 2, which is also thought to be involved in the expression of virulence by Yersinia species. Highly conserved irp2 was also found in all pesticin-sensitive E. coli strains. On the basis of the fyuA and irp2 sequence homologies, two evolutionary groups of highly pathogenic Yersinia species can be established. One group includes Y. enterocolitica biotype 1B strains, while the second includes Y. pestis, Y. pseudotuberculosis serotype O1, and irp2-positive Y. pseudotuberculosis serotype O3 strains. E. coli Phi, CA42, K49, and K235 belong to the second group. The possible proximity of these two iron-regulated genes (fyuA and irp2), as well as their high levels of sequence conservation and similar G+C contents (56.2 and 59.8 mol%), leads to the assumption that these two genes may represent part of an unstable pathogenicity island that has been acquired by pesticin-sensitive bacteria as a result of a horizontal transfer.  相似文献   

17.
The first reported Far East scarlet-like fever (FESLF) epidemic swept the Pacific coastal region of Russia in the late 1950s. Symptoms of the severe infection included erythematous skin rash and desquamation, exanthema, hyperhemic tongue, and a toxic shock syndrome. The term FESLF was coined for the infection because it shares clinical presentations with scarlet fever caused by group A streptococci. The causative agent was later identified as Yersinia pseudotuberculosis, although the range of morbidities was vastly different from classical pseudotuberculosis symptoms. To understand the origin and emergence of the peculiar clinical features of FESLF, we have sequenced the genome of the FESLF-causing strain Y. pseudotuberculosis IP31758 and compared it with that of another Y. pseudotuberculosis strain, IP32953, which causes classical gastrointestinal symptoms. The unique gene pool of Y pseudotuberculosis IP31758 accounts for more than 260 strain-specific genes and introduces individual physiological capabilities and virulence determinants, with a significant proportion horizontally acquired that likely originated from Enterobacteriaceae and other soil-dwelling bacteria that persist in the same ecological niche. The mobile genome pool includes two novel plasmids phylogenetically unrelated to all currently reported Yersinia plasmids. An icm/dot type IVB secretion system, shared only with the intracellular persisting pathogens of the order Legionellales, was found on the larger plasmid and could contribute to scarlatinoid fever symptoms in patients due to the introduction of immunomodulatory and immunosuppressive capabilities. We determined the common and unique traits resulting from genome evolution and speciation within the genus Yersinia and drew a more accurate species border between Y. pseudotuberculosis and Y. pestis. In contrast to the lack of genetic diversity observed in the evolutionary young descending Y. pestis lineage, the population genetics of Y. pseudotuberculosis is more heterogenous. Both Y. pseudotuberculosis strains IP31758 and the previously sequenced Y. pseudotuberculosis strain IP32953 have evolved by the acquisition of specific plasmids and by the horizontal acquisition and incorporation of different genetic information into the chromosome, which all together or independently seems to potentially impact the phenotypic adaptation of these two strains.  相似文献   

18.
Positive isolations of Yersinia obtained in repeated bacteriological examinations of porcine tongues at three slaughter-houses in Prague and a single examination at the slaughter-house at Kladno were compared with notified yersiniosis morbidity. The incidence of illnesses caused by Y. enterocolitica 03 does not exceed values of 4.5/100,000 and 3.5/100,000 population in the Czech and Slovak Socialist Republics, respectively, and is equal to a sixtieth part of the notified shigellosis and salmonellosis morbidity. Cultivation of 334 pooled samples consisting of 1142 porcine tongues yielded 12 strains (1.05%) of Y. enterocolitica 03, five strains (0.44%) of Y. pseudotuberculosis and 55 strains (4.82%) of other Yersinia organisms (indole-positive serotypes). Because of the low isolation rates obtained for the individual Yersinia species, Y. enterocolitica 03 in particular, the isolation efficiency of different cultivation techniques and culture media was statistically evaluated for all Yersinia organisms jointly. Primary cultivation on deoxycholate-citrate medium yielded five of the 12 Y. enterocolitica 03 strains isolated. The other Yersinia strains grew only after preliminary propagation. Yersinia pseudotuberculosis grew almost exclusively (4 out of 5 strains) on McConkey's agar.  相似文献   

19.
The interaction between human neutrophils and the Gram negative gastrointestinal pathogen Yersinia pseudotuberculosis was investigated in vitro. Despite the wealth of data describing how Yersinia can affect the function of neutrophils, there are no published studies describing if neutrophil cells can affect the viability of Y. pseudotuberculosis. The wild-type IP32953 strain of Y. pseudotuberculosis was found to be resistant to killing by human neutrophils. Confocal examination and flow-cytometric analysis of this interaction revealed that bacteria were taken up.  相似文献   

20.
Abstract Yersinia enterocolitica and Y. pseudotuberculosis are enteropathogenic for humans. Essential virulence functions of these pathogens are determined by a 40-mDa plasmid. Plasmid-bearing Y. pseudotuberculosis strains and Y. enterocolitica strains of serotypes 0 : 8, 0 : 13, 0 : 20 and 0 : 40 are lethal for mice. In contrast, human pathogenic Y. enterocolitica strains of serotype 0 : 3, 0 : 9 and 0 : 5.27 are not mouse-lethal. Using a sensitive siderophore-indicator CAS-agar, we were able to detect siderophore production in all mouse-lethal Y. enterocolitica and Y. pseudotuberculosis strains mentioned above. By Tn5-transposon insertions into the chromosome of a serotype 0 : 8 strain we obtained two siderophore-deficient mutants. Introduction of the virulence plasmid did not render these mutants mouse-lethal, indicating that siderophore production is an essential virulence factor. The human nonpathogenic, aerobactin-producing strains of Y. intermedia, Y. kristensenii and Y. frederiksenii remained avirulent for mice after receiving the virulence plasmid of Y. enterocolitica . Obviously the siderophore aerobactin does not contribute to virulence in the genus Yersinia .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号