首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-pathogenicity island (HPI) encodes a highly efficient yersiniabactin system of iron acquisition responsible for mouse lethality in Yersinia. Although the HPI is widely disseminated among Enterobacteriaceae it lacks functions necessary for its replication and transmission. Therefore, the mechanism of its horizontal transfer and circulation is completely obscure. On the other hand, the HPI is a genetically active island in the bacterial cell. It encodes a functional recombinase and is able to transpose to new targets on the chromosome. Here we report on a possible mechanism of the HPI dissemination based on site-specific recombination of the excised HPI with the attB-presenting (asn tRNA gene) RP4 promiscuous conjugative shuttle plasmid. The resulting cointegrate can be transferred by conjugation to a new host, where it dissociates, and the released HPI integrates into any unoccupied asn tRNA gene target in the genome. This mechanism has been proven both with the 'mini' island carrying only the attP recognition site and genes coding for recombination enzymes and with the complete HPI labelled with an antibiotic resistance marker. After acquisition of the mobilized complete form of the HPI, the ability of the HPI-cured Yersinia enterocolitica WA-TH(-) strain to produce yersiniabactin has been restored. Such 'trapping' of pathogenicity islands and subsequent shuffling to new hosts by a conjugative replicon carrying a suitable attB site could be applied to other functional integrative elements and explain wide dissemination of PAIs.  相似文献   

2.
The Yersinia high-pathogenicity island.   总被引:7,自引:0,他引:7  
A pathogenicity island present only in highly pathogenic strains of Yersinia (Y. enterocolitica 1B, Y. pseudotuberculosis I and Y. pestis) has been identified on the chromosome of Yersinia spp. and has been designated High-Pathogenicity Island (HPI). The Yersinia HPI carries a cluster of genes involved in the biosynthesis, transport and regulation of the siderophore yersiniabactin. The major function of this island is thus to acquire iron molecules essential for in vivo bacterial growth and dissemination. The presence of an integrase gene and att sites homologous to those of phage P4, together with a G + C content much higher than the chromosomal background, suggests that the HPI is of foreign origin and has been acquired by chromosomal integration of a phage. The HPI can excise from the chromosome of Y. pseudotuberculosis and is found inserted into any of the three copies of the asn tRNA loci present in this species. A unique characteristic of the HPI is its wide distribution in various enterobacteria. Although first identified in Yersinia spp., it has subsequently been detected in other genera such as E. coli, Klebsiella and Citrobacter.  相似文献   

3.
4.
The Yersinia high-pathogenicity island: an iron-uptake island.   总被引:6,自引:0,他引:6  
Highly pathogenic Yersinia carry a pathogenicity island termed high-pathogenicity island (HPI). The Yersinia HPI comprises genes involved in the synthesis of the siderophore yersiniabactin and can thus be regarded as an iron-uptake island. A unique characteristic of the HPI is its wide distribution among different enterobacteria such as Escherichia coli, Klebsiella, Citrobacter and Salmonella. Other types of iron-uptake systems are also carried by different pathogenicity islands in enterobacteria.  相似文献   

5.
Pathogenicity islands (PAIs) have been identified in several bacterial species. A PAI called high-pathogenicity island (HPI) and carrying genes involved in iron acquisition (yersiniabactin system) has been previously identified in Yersinia enterocolitica and Yersinia pestis . In this study, the HPI of the third species of Yersinia pathogenic for humans, Y. pseudotuberculosis , has been characterized. We demonstrate that the HPI of strain IP32637 has a physical and genetic map identical to that of Y. pestis . A gene homologous to the bacteriophage P4 integrase gene is located downstream of the asn tRNA locus that borders the HPI of strain IP32637. This int gene is at the same position on the HPI of all three pathogenic Yersinia species. However, in contrast to Y. pestis 6/69, the HPI of Y. pseudotuberculosis IP32637 is not invariably adjacent to the pigmentation segment and can be inserted at a distance ≥ 190 kb from this segment. Also, in contrast to Y. pestis and Y. enterocolitica , the HPI of Y. pseudotuberculosis IP32637 can precisely excise from the chromosome, and, strikingly, it can be found inserted in any of the three asn tRNA loci present on the chromosome of this species, one of which is adjacent to the pigmentation segment. The pigmentation segment, which is present in Y. pestis but not in Y. enterocolitica , is also present and well conserved in all strains of Y. pseudotuberculosis studied. In contrast, the presence and size of the HPIs vary depending on the serotype of the strain: an entire HPI is found in strains of serotypes I only, a HPI with a 9 kb truncation in its left-hand part that carries the IS 100 sequence and the psn and ybtE genes characterizes the strains of serotype III, and no HPI is found in strains of serotypes II, IV and V.  相似文献   

6.
The high-pathogenicity island (HPI) of virulent Yersiniae consists of (i) a functional core encoding for biosynthesis and uptake of the siderophore yersiniabactin and (ii) a 5- to 13-kb AT-rich region of unknown function. This Yersinia HPI has been shown to be widely distributed among different pathotypes of Escherichia coli. In this study, the insertion site of the HPI was defined in three different E. coli strains: The enteroaggregative E. coli (EAggEC) strain 17-2, the uropathogenic (UPEC) E. coli strain 536, and the probiotic E. coli DSM6601. We demonstrated that in all three E. coli isolates the HPI is associated with the asnT tRNA (5'-extremity) and truncated in the AT-rich region (3'-extremity) since the 17-bp direct repeat (DR) of the asn tRNA that flanks the HPI in Yersinia is missing in E. coli. Moreover, in comparison to the HPI-negative E. coli K-12 strain, a uniform deletion must have taken place in the E. coli chromosome adjacent to the 3'-border of the HPI.  相似文献   

7.
A pathogenicity island termed high-pathogenicity island (HPI) is present in pathogenic Yersinia. This 35 to 45 kb island carries genes involved in synthesis, regulation and transport of the siderophore yersiniabactin. Recently, the HPI was also detected in various strains of Escherichia coli. In this study, the distribution of the HPI in the family Enterobacteriaceae was investigated. Among the 67 isolates pertaining to 18 genera and 52 species tested, nine (13.4%) harbored the island. These isolates were three E. coli, one Citrobacter diversus and five Klebsiella of various species (Klebsiella pneumoniae, Klebsiella rhinoscleromatis, Klebsiella ozaenae, Klebsiella planticola, and Klebsiella oxytoca). As in Yersinia sp., all nine isolates synthesized the HPI-encoded iron-repressible proteins HMWP1 and HMWP2. In the K. oxytoca strain, the right-end portion of the HPI was deleted, whereas the entire core region of the island was present in the eight other enterobacteria strains analyzed. In most of these isolates, the HPI was bordered by an asn tRNA locus, as in Yersinia sp. This report thus demonstrates the spread of the HPI among various members of the family Enterobacteriaceae.  相似文献   

8.
The Yersinia high-pathogenicity island (HPI) encodes the siderophore yersiniabactin-mediated iron uptake system. The HPI of Yersinia pseudotuberculosis I has previously been shown to be able to excise precisely from the bacterial chromosome by recombination between the attB-R and attB-L sites flanking the island. However, the nature of the Y. pseudotuberculosis HPI excision machinery remained unknown. We show here that, upon excision, the HPI forms an episomal circular molecule. The island thus has the ability to excise from the chromosome, circularize and reintegrate itself, either in the same location or in another asn tRNA copy. We also demonstrate that the HPI-encoded bacteriophage P4-like integrase (Int) plays a critical role in HPI excision and that, like phage integrases, it acts as a site-specific recombinase that catalyses both excision and integration reactions. However, Int alone cannot efficiently promote recombination between the attB-R and attB-L sites, and we demonstrate that a newly identified HPI-borne factor, designated Hef (for HPI excision factor) is also required for this activity. Hef belongs to a family of recombination directionality factors. Like the other members of this family, Hef probably plays an architectural rather than a catalytic role and promotes HPI excision from the chromosome by driving the function of Int towards an excisionase activity. The fact that the HPI, and probably several other pathogenicity islands, carry a machinery of integration/excision highly similar to those of bacteriophages argues for a phage-mediated acquisition and transfer of these elements.  相似文献   

9.
The high-pathogenicity island (HPI) present in pathogenic Yersinia and encoding the siderophore yersiniabactin, has recently been identified in the asnT tRNA region of various Escherichia coli pathotypes, especially those responsible for bacteremia and urosepsis. Most E. coli strains causing such extra-intestinal infections belong to phylogenetic groups B2 and D. In this study we investigated (i) the distribution and localization of HPI among the different E. coli phylogenetic groups, using the ECOR reference collection; and (ii) the prevalence of HPI among a set of 124 phylogenetically characterized E. coli strains responsible for neonatal meningitis. Ninety-three percent of the ECOR strains belonging to groups B2 and D harbored HPI. In contrast, the island was present in 32% and 25% of strains belonging to groups A and B1, respectively, which are considered to be non-pathogenic. HPI was found in 100% of the neonatal meningitis strains, 13 of which belonged to groups A and B1, suggesting that HPI might contain virulent factors required for the development of neonatal meningitis. Moreover, we observed for the first time that HPI can be inserted in a site different from the asnT tRNA region.  相似文献   

10.
We examined 12 pairs of strains of Escherichia coli and Klebsiella pneumoniae isolated from mixed infections in human for the presence of the Yersinia high-pathogenicity island (HPI). In one case both isolates carried the HPI, whereas in 11 cases one strain of the pair was HPI-positive. Although there were differences in the organization of the Yersinia HPI, all HPI-positive isolates were able to produce yersiniabactin. The presence of the Yersinia HPI may enhance the capability of strains involved in mixed infections to replicate in iron-deprived conditions in the host.  相似文献   

11.
The High Pathogenicity Island of Yersinia pseudotuberculosis IP32637 was previously shown to be horizontally transferable as part of a large chromosomal segment. We demonstrate here that at low temperature other chromosomal loci, as well as a non-mobilizable plasmid (pUC4K), are also transferable. This transfer, designated GDT4 (Generalized DNA Transfer at 4°C), required the presence of an IP32637 endogenous plasmid (pGDT4) that carries several mobile genetic elements and a conjugation machinery. We established that cure of this plasmid or inactivation of its sex pilus fully abrogates this process. Analysis of the mobilized pUC4K recovered from transconjugants revealed the insertion of one of the pGDT4-borne ISs, designated ISYps1, at different sites on the transferred plasmid molecules. This IS belongs to the IS6 family, which moves by replicative transposition, and thus could drive the formation of cointegrates between pGDT4 and the host chromosome and could mediate the transfer of chromosomal regions in an Hfr-like manner. In support of this model, we show that a suicide plasmid carrying ISYps1 is able to integrate itself, flanked by ISYps1 copies, at multiple locations into the Escherichia coli chromosome. Furthermore, we demonstrate the formation of RecA-independent cointegrates between the ISYps1-harboring plasmid and an ISYps1-free replicon, leading to the passive transfer of the non-conjugative plasmid. We thus demonstrate here a natural mechanism of horizontal gene exchange, which is less constrained and more powerful than the classical Hfr mechanism, as it only requires the presence of an IS6-type element on a conjugative replicon to drive the horizontal transfer of any large block of plasmid or chromosomal DNA. This natural mechanism of chromosome transfer, which occurs under conditions mimicking those found in the environment, may thus play a significant role in bacterial evolution, pathogenesis, and adaptation to new ecological niches.  相似文献   

12.
Enzyme capable of catalyzing the phosphorylation of thymidine and uridine was isolated from Y. pseudotuberculosis cells by fractionation with the use of ammonium sulfate, ion exchange and affinity chromatography. The degree of purification of thymidine- and uridine-kinase was approximately 350 times, and at all stages of isolation the activity of both nucleoside-kinases was detected in the same peaks. The purified enzyme was capable of the phosphorylation of thymidine and uridine at temperatures of 8-10 degrees C to 50 degrees C and exhibited the maximum enzymatic activity at pH 8-8.5 and 45 degrees C in the presence of 0.5-1.0 mM MgCl2 and 2 mM ATP. The enzyme was found to have no strict substrate specificity and transferred the phosphate group from ATP to radiolabeled thymidine, uridine and desoxycytidine with different effectiveness, but did not use thymidine-monophosphate as phosphate acceptor.  相似文献   

13.
The review of publications about protein toxins Y. pseudotuberculosis are presented. It includes the main data obtained by domestic and foreign investigators as well as the results of our own elaboration in the study of Y. pseudotuberculosis protein toxins. The guestions of isolation, purification, characterization of physico-chemical and biological properties, the mechanism action and role of toxins on pathogenesis of infection were discussed.  相似文献   

14.
We show that Yersinia pestis and pesticin-sensitive isolates of Y. pseudotuberculosis possess a common 34 kbp DNA region that has all the hallmarks of a pathogenicity island and is inserted into different asparaginyl tRNA genes at different chromosomal locations in each species. This pathogenicity island (YP-HPI) is marked by IS 100 , has a G + C content different from its host, is flanked by 24 bp direct repeats, encodes a putative, P4-like integrase and contains the iron uptake virulence genes from the pgm locus of Y. pestis . These findings indicate independent horizontal acquisition of this island by Y. pestis and Y. pseudotuberculosis . The two YP-HPI locations and their possession of an integrase gene support a model of site-specific integration of the YP-HPI into these bacteria.  相似文献   

15.
Plasmids with the sizes of 5.7; 51; 70-77; and 120-130 kb were found in six strains among the ten strains collection of Yersinia pseudotuberculosis. The restriction endonucleases analysis. Southern-blot hybridization and physical maps construction were performed for the plasmids. The 70-77 kb plasmids were found to be analogous to the Ca2(+)-dependence plasmid pYVO19 from Yersinia pestis EV76. The difference between the plasmids of this type is in the insertions or deletions located on the similar fragments of the restriction maps. The 51 kb plasmid has no common fragments with the Ca2(+)-dependence plasmids and does not code for virulence properties of the strain harbouring it. No homology is shared by the 5.7 kb plasmid and the 10 kb plasmid from Yersinia pestis EV76. Replicon of the 5.7 kb plasmid has been used to construct the pVS11 vector plasmid.  相似文献   

16.
Thirty strains of Yersinia pseudotuberculosis were isolated from rabbits (17 strains), wild rats (9 strains) and house rats (4 strains) in China between 1990 and 1993. The biochemical properties of these isolates were identical with those of Y. pseudotuberculosis and no special characteristics were found in these strains. Serologically, serogroups 4b and 5b were identical to isolates found in Japan, and a new serogroup 1c and unclassified strains have also been detected. The existence of virulence-associated properties were different among strains. The pYV plasmid was detected from 6 strains of 30 isolates. This report documents the presence of Y. pseudotuberculosis in China, providing important epidemiological information.  相似文献   

17.
18.
Diversification of bacterial species and pathotypes is largely caused by horizontal transfer of diverse DNA elements such as plasmids, phages and genomic islands (e.g. pathogenicity islands, PAIs). A PAI called high-pathogenicity island (HPI) carrying genes involved in siderophore-mediated iron acquisition (yersiniabactin system) has previously been identified in Yersinia pestis, Y. pseudotuberculosis and Y. enterocolitica IB strains, and has been characterized as an essential virulence factor in these species. Strikingly, an orthologous HPI is a widely distributed virulence determinant among Escherichia coli and other Enterobacteriaceae which cause extraintestinal infections. Here we report on the HPI of E. coli strain ECOR31 which is distinct from all other HPIs described to date because the ECOR31 HPI comprises an additional 35 kb fragment at the right border compared to the HPI of other E. coli and Yersinia species. This part encodes for both a functional mating pair formation system and a DNA-processing region related to plasmid CloDF13 of Enterobacter cloacae. Upon induction of the P4-like integrase, the entire HPI of ECOR31 is precisely excised and circularised. The HPI of ECOR31 presented here resembles integrative and conjugative elements termed ICE. It may represent the progenitor of the HPI found in Y. pestis and E. coli, revealing a missing link in the horizontal transfer of an element that contributes to microbial pathogenicity upon acquisition.  相似文献   

19.
Community outbreak of Yersinia pseudotuberculosis   总被引:4,自引:0,他引:4  
An outbreak of Yersinia pseudotuberculosis in Kurashiki, Japan is described. This is the first conclusive report of a community outbreak of this microorganism. A total of 535 pupils, five teachers, and one food attendant contracted the organism. Causative organisms were detected in 19 out of 30 patients. All isolated strains belonged to serotype VA. Out of 653 sera of the pupils, 488 showed elevated agglutinin titers ranging from 1:80 to 1:1,280 or more within a period of 3 months.  相似文献   

20.
Two patients with acute gastroenteritis in whom polyarthritis subsequently developed were found to have positive serologic results for Yersinia pseudotuberculosis. With resolution of the arthropathy the antibody titres decreased. While the patient without the histocompatibility antigen HLA-B27 had an acute, self-limited arthritis, the patient with this antigen had a more chronic arthritis. Serologic typing and stool culture for Y. pseudotuberculosis should be done in cases of postdysenteric arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号