首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   

2.
Conjugative transposons are integrated DNA elements that excise themselves to form a covalently closed circular intermediate. This circular intermediate can either reintegrate in the same cell (intracellular transposition) or transfer by conjugation to a recipient and integrate into the recipient's genome (intercellular transposition). Conjugative transposons were first found in gram-positive cocci but are now known to be present in a variety of gram-positive and gram-negative bacteria also. Conjugative transposons have a surprisingly broad host range, and they probably contribute as much as plasmids to the spread of antibiotic resistance genes in some genera of disease-causing bacteria. Resistance genes need not be carried on the conjugative transposon to be transferred. Many conjugative transposons can mobilize coresident plasmids, and the Bacteroides conjugative transposons can even excise and mobilize unlinked integrated elements. The Bacteroides conjugative transposons are also unusual in that their transfer activities are regulated by tetracycline via a complex regulatory network.  相似文献   

3.
Horizontal gene transfer by conjugative plasmids plays a critical role in the evolution of antibiotic resistance. Interactions between bacteria and other organisms can affect the persistence and spread of conjugative plasmids. Here we show that protozoan predation increased the persistence and spread of the antibiotic resistance plasmid RP4 in populations of the opportunist bacterial pathogen Serratia marcescens. A conjugation-defective mutant plasmid was unable to survive under predation, suggesting that conjugative transfer is required for plasmid persistence under the realistic condition of predation. These results indicate that multi-trophic interactions can affect the maintenance of conjugative plasmids with implications for bacterial evolution and the spread of antibiotic resistance genes.  相似文献   

4.
The plasmid RSF1010 belongs to a class of plasmids (IncQ) that replicate in a range of bacterial hosts. Although non-self-transmissible, it can be mobilized at high frequency between different gram-negative bacterial species if transfer functions are supplied in trans. We report the transfer of RSF1010 by conjugation from Escherichia coli to the gram-positive actinomycetes Streptomyces lividans and Mycobacterium smegmatis. In its new hosts, the plasmid was stable with respect to structure and inheritance and conferred high-level resistance to streptomycin and sulfonamide. This is the first reported case of conjugative transfer of a naturally occurring plasmid between gram-negative and gram-positive bacteria.  相似文献   

5.
Yersinia strains frequently harbor plasmids, of which the virulence plasmid pYV, indigenous in pathogenic strains, has been thoroughly characterized during the last decades. Yet, it has been unknown whether the nonconjugative pYV can be transferred by helper plasmids naturally occurring in this genus. We have isolated the conjugative plasmids pYE854 (95.5 kb) and pYE966 (70 kb) from a nonpathogenic and a pathogenic Yersinia enterocolitica strain, respectively, and demonstrate that both plasmids are able to mobilize pYV. The complete sequence of pYE854 has been determined. The transfer proteins and oriT of the plasmid reveal similarities to the F factor. However, the pYE854 replicon does not belong to the IncF group and is more closely related to a plasmid of gram-positive bacteria. Plasmid pYE966 is very similar to pYE854 but lacks two DNA regions of the larger plasmid that are dispensable for conjugation.  相似文献   

6.
Transfer of antibiotic resistance genes by conjugation is thought to play an important role in the spread of resistance. Yet virtually no information is available about the extent to which such horizontal transfers occur in natural settings. In this paper, we show that conjugal gene transfer has made a major contribution to increased antibiotic resistance in Bacteroides species, a numerically predominant group of human colonic bacteria. Over the past 3 decades, carriage of the tetracycline resistance gene, tetQ, has increased from about 30% to more than 80% of strains. Alleles of tetQ in different Bacteroides species, with one exception, were 96 to 100% identical at the DNA sequence level, as expected if horizontal gene transfer was responsible for their spread. Southern blot analyses showed further that transfer of tetQ was mediated by a conjugative transposon (CTn) of the CTnDOT type. Carriage of two erythromycin resistance genes, ermF and ermG, rose from <2 to 23% and accounted for about 70% of the total erythromycin resistances observed. Carriage of tetQ and the erm genes was the same in isolates taken from healthy people with no recent history of antibiotic use as in isolates obtained from patients with Bacteroides infections. This finding indicates that resistance transfer is occurring in the community and not just in clinical environments. The high percentage of strains that are carrying these resistance genes in people who are not taking antibiotics is consistent with the hypothesis that once acquired, these resistance genes are stably maintained in the absence of antibiotic selection. Six recently isolated strains carried ermB genes. Two were identical to erm(B)-P from Clostridium perfringens, and the other four had only one to three mismatches. The nine strains with ermG genes had DNA sequences that were more than 99% identical to the ermG of Bacillus sphaericus. Evidently, there is a genetic conduit open between gram-positive bacteria, including bacteria that only pass through the human colon, and the gram-negative Bacteroides species. Our results support the hypothesis that extensive gene transfer occurs among bacteria in the human colon, both within the genus Bacteroides and among Bacteroides species and gram-positive bacteria.  相似文献   

7.
The conjugative tetracycline resistance plasmid pCW3 is the paradigm conjugative plasmid in the anaerobic gram-positive pathogen Clostridium perfringens. Two closely related FtsK/SpoIIIE homologs, TcpA and TcpB, are encoded on pCW3, which is significant since FtsK domains are found in coupling proteins of gram-negative conjugation systems. To develop an understanding of the mechanism of conjugative transfer in C. perfringens, we determined the role of these proteins in the conjugation process. Mutation and complementation analysis was used to show that the tcpA gene was essential for the conjugative transfer of pCW3 and that the tcpB gene was not required for transfer. Furthermore, complementation of a pCW3DeltatcpA mutant with divergent tcpA homologs provided experimental evidence that all of the known conjugative plasmids from C. perfringens use a similar transfer mechanism. Functional genetic analysis of the TcpA protein established the essential role in conjugative transfer of its Walker A and Walker B ATP-binding motifs and its FtsK-like RAAG motif. It is postulated that TcpA is the essential DNA translocase or coupling protein encoded by pCW3 and as such represents a key component of the unique conjugation process in C. perfringens.  相似文献   

8.
Conjugative plasmids encode antibiotic resistance determinants or toxin genes in the anaerobic pathogen Clostridium perfringens. The paradigm conjugative plasmid in this bacterium is pCW3, a 47-kb tetracycline resistance plasmid that encodes the unique tcp transfer locus. The tcp locus consists of 11 genes, intP and tcpA-tcpJ, at least three of which, tcpA, tcpF, and tcpH, are essential for the conjugative transfer of pCW3. In this study we examined protein-protein interactions involving TcpA, the putative coupling protein. Use of a bacterial two-hybrid system identified interactions between TcpA and TcpC, TcpG, and TcpH. This analysis also demonstrated TcpA, TcpC, and TcpG self-interactions, which were confirmed by chemical cross-linking studies. Examination of a series of deletion and site-directed derivatives of TcpA identified the domains and motifs required for these interactions. Based on these results, we have constructed a model for this unique conjugative transfer apparatus.Conjugation systems are important contributors to the dissemination of antibiotic resistance determinants and virulence factors. Extensive analysis of conjugative plasmids from gram-negative bacteria has led to the elucidation of a general mechanism of conjugative transfer (10, 22). In this process, the transferred DNA is processed by components of a relaxosome complex. Specifically, the DNA is nicked at the origin of transfer (oriT) by a relaxase, which remains covalently coupled to the transferred DNA strand. The single-stranded DNA complex then interacts with the coupling protein, a DNA-dependent ATPase that provides the energy to actively pump the DNA through the mating pair formation (Mpf) complex into the recipient cell (36). The coupling protein interacts with both DNA processing proteins and components of the Mpf complex (1, 4, 12, 35, 38). These interactions have been demonstrated using bacterial and yeast two-hybrid approaches as well as gel filtration, pull-down, and coimmunoprecipitation studies.The mechanism of conjugative transfer has yet to be precisely determined for conjugative plasmids from gram-positive bacteria although bioinformatics analysis has identified similar gene arrangements and conservation of gene sequences within the transfer regions encoded on conjugative plasmids identified from strains of streptococcal, staphylococcal, enterococcal, and lactococcal origin (15). It was proposed that gram-positive and gram-negative conjugation systems utilize a similar transfer mechanism (15).In the anaerobic pathogen Clostridium perfringens conjugative plasmids have been shown to encode antibiotic resistance genes or extracellular toxins (3, 8, 9, 18). Although the contribution of conjugation to disease dissemination has not been systematically evaluated, it has been proposed that transfer of the C. perfringens enterotoxin plasmid pCPF4969 to normal flora isolates of C. perfringens may contribute to the severity of disease caused by non-food-borne isolates of C. perfringens (9).The prototype conjugative plasmid in C. perfringens is the 47-kb tetracycline resistance plasmid, pCW3. The complete sequence of pCW3 has been determined, and its unique replication protein and conjugation locus have been identified (8). Bioinformatics analysis of this C. perfringens tcp conjugation locus identified several proteins with limited similarity to proteins encoded within the transfer region of the conjugative transposon, Tn916 (8). The role of the tcp locus in the transfer of pCW3 has been confirmed by isolation of independent tcpA, tcpF, and tcpH mutants and subsequent complementation studies (8, 29). Since the region that encompasses the tcp locus is conserved in all conjugative plasmids from C. perfringens (2, 3, 8, 9, 18, 27) and since divergent tcpA homologues can complement a pCW3tcpA mutant (29), it appears that the conjugative transfer of both antibiotic resistance and toxin plasmids from this bacterium utilizes a common but poorly understood mechanism. Note that the C. perfringens tcp conjugation locus is different from the transfer regions of conjugative plasmids from other gram-positive bacteria.We have recently shown that the essential conjugation protein TcpH, a putative membrane-associated Mpf complex component, is localized to the poles of C. perfringens cells, as is another essential conjugation protein, TcpF (37). TcpH has also been shown to interact with itself and with the pCW3-encoded TcpC protein (37). In this study we have focused on the essential conjugation protein TcpA. Since TcpA encodes an FtsK/SpoIIIE domain found in DNA translocases (8), it is proposed that TcpA is involved in the movement of DNA during conjugative transfer, fulfilling a role equivalent to that of coupling proteins in other conjugation systems. Like such proteins, TcpA encodes two N-terminal transmembrane domains (TMDs) and a C-terminal cytoplasmic region that contains three motifs predicted to be involved in ATP binding and hydrolysis (8). Our previous studies revealed that the conserved motifs, motif I (Walker A box), motif II (Walker B box), and motif III (RAAG box), are essential for the function of TcpA. The C-terminal 61 amino acids (aa), though not essential for TcpA function, were shown to be important for efficient transfer of pCW3, as were the putative TMDs (29).To further investigate pCW3 transfer and the role of TcpA in this process, we have used bacterial two-hybrid analysis to examine protein-protein interactions involving TcpA. Using this system, interactions were observed between TcpA and itself, TcpC, TcpG, and TcpH. In addition, TcpC and TcpG were also found to self-interact. By combining these data with other data generated in this laboratory (37), we have constructed a model for the conjugative transfer of pCW3.  相似文献   

9.
Transfer of antibiotic resistance genes by conjugation is thought to play an important role in the spread of resistance. Yet virtually no information is available about the extent to which such horizontal transfers occur in natural settings. In this paper, we show that conjugal gene transfer has made a major contribution to increased antibiotic resistance in Bacteroides species, a numerically predominant group of human colonic bacteria. Over the past 3 decades, carriage of the tetracycline resistance gene, tetQ, has increased from about 30% to more than 80% of strains. Alleles of tetQ in different Bacteroides species, with one exception, were 96 to 100% identical at the DNA sequence level, as expected if horizontal gene transfer was responsible for their spread. Southern blot analyses showed further that transfer of tetQ was mediated by a conjugative transposon (CTn) of the CTnDOT type. Carriage of two erythromycin resistance genes, ermF and ermG, rose from <2 to 23% and accounted for about 70% of the total erythromycin resistances observed. Carriage of tetQ and the erm genes was the same in isolates taken from healthy people with no recent history of antibiotic use as in isolates obtained from patients with Bacteroides infections. This finding indicates that resistance transfer is occurring in the community and not just in clinical environments. The high percentage of strains that are carrying these resistance genes in people who are not taking antibiotics is consistent with the hypothesis that once acquired, these resistance genes are stably maintained in the absence of antibiotic selection. Six recently isolated strains carried ermB genes. Two were identical to erm(B)-P from Clostridium perfringens, and the other four had only one to three mismatches. The nine strains with ermG genes had DNA sequences that were more than 99% identical to the ermG of Bacillus sphaericus. Evidently, there is a genetic conduit open between gram-positive bacteria, including bacteria that only pass through the human colon, and the gram-negative Bacteroides species. Our results support the hypothesis that extensive gene transfer occurs among bacteria in the human colon, both within the genus Bacteroides and among Bacteroides species and gram-positive bacteria.  相似文献   

10.
Integrative and conjugative elements (ICEs, also known as conjugative transposons) are mobile elements that are found integrated in a host genome and can excise and transfer to recipient cells via conjugation. ICEs and conjugative plasmids are found in many bacteria and are important agents of horizontal gene transfer and microbial evolution. Conjugative elements are capable of self-transfer and also capable of mobilizing other DNA elements that are not able to self-transfer. Plasmids that can be mobilized by conjugative elements are generally thought to contain an origin of transfer (oriT), from which mobilization initiates, and to encode a mobilization protein (Mob, a relaxase) that nicks a site in oriT and covalently attaches to the DNA to be transferred. Plasmids that do not have both an oriT and a cognate mob are thought to be nonmobilizable. We found that Bacillus subtilis carrying the integrative and conjugative element ICEBs1 can transfer three different plasmids to recipient bacteria at high frequencies. Strikingly, these plasmids do not have dedicated mobilization-oriT functions. Plasmid mobilization required conjugation proteins of ICEBs1, including the putative coupling protein. In contrast, plasmid mobilization did not require the ICEBs1 conjugative relaxase or cotransfer of ICEBs1, indicating that the putative coupling protein likely interacts with the plasmid replicative relaxase and directly targets the plasmid DNA to the ICEBs1 conjugation apparatus. These results blur the current categorization of mobilizable and nonmobilizable plasmids and indicate that conjugative elements play a role in horizontal gene transfer even more significant than previously recognized.  相似文献   

11.
12.
Clostridium perfringens causes fatal human infections, such as gas gangrene, as well as gastrointestinal diseases in both humans and animals. Detailed molecular analysis of the tetracycline resistance plasmid pCW3 from C. perfringens has shown that it represents the prototype of a unique family of conjugative antibiotic resistance and virulence plasmids. We have identified the pCW3 replication region by deletion and transposon mutagenesis and showed that the essential rep gene encoded a basic protein with no similarity to any known plasmid replication proteins. An 11-gene conjugation locus containing 5 genes that encoded putative proteins with similarity to proteins from the conjugative transposon Tn916 was identified, although the genes' genetic arrangements were different. Functional genetic studies demonstrated that two of the genes in this transfer clostridial plasmid (tcp) locus, tcpF and tcpH, were essential for the conjugative transfer of pCW3, and comparative analysis confirmed that the tcp locus was not confined to pCW3. The conjugation region was present on all known conjugative plasmids from C. perfringens, including an enterotoxin plasmid and other toxin plasmids. These results have significant implications for plasmid evolution, as they provide evidence that a nonreplicating Tn916-like element can evolve to become the conjugation locus of replicating plasmids that carry major virulence genes or antibiotic resistance determinants.  相似文献   

13.
Bacterial conjugation implies a trans-membrane passage of DNA, mediated by proteins encoded in conjugative plasmids. This results in a spread of genetic information, including antibiotic resistance acquisition by pathogens. Special cases of conjugation are trans-kingdom gene transfer from bacteria to plants or fungi, and even bacterial sporulation and cell division. One of the main actors in this process is an integral inner membrane DNA-binding protein, called TrwB in the E. coli R388 conjugative system. It is responsible for coupling the single-strand DNA to be transferred from the donor to the acceptor cell in its complex with other proteins, with a type IV secretion system making up the mating apparatus. The TrwB protomer consists of two domains: a nucleotide-binding domain of alpha/beta topology, similar to RecA and DNA ring helicases, and an all-alpha domain. The quaternary structure reveals an almost spherical homohexamer, strikingly similar to F(1)-ATPase. A central 20 A wide channel traverses the hexamer, thus connecting cytoplasm with periplasm.  相似文献   

14.
Staddon JH  Bryan EM  Manias DA  Chen Y  Dunny GM 《Plasmid》2006,56(2):102-111
Conjugation is a major contributor to lateral gene transfer in bacteria, and pheromone-inducible conjugation systems in Enterococcus faecalis play an important role in the dissemination of antibiotic resistance and virulence in enterococci and related bacteria. We have genetically dissected the determinants of DNA processing of the enterococcal conjugative plasmid pCF10. Insertional inactivation of a predicted relaxase gene pcfG, via insertion of a splicing-deficient group II intron, severely reduced pCF10 transfer. Restoration of intron splicing ability by genetic complementation restored conjugation. The pCF10 origin of transfer (oriT) was localized to a 40-nucleotide sequence within a non-coding region with sequence similarity to origins of transfer of several other plasmids in gram positive bacteria. Deletion of the oriT reduced pCF10 transfer by more than five orders of magnitude without affecting pCF10-dependent mobilization of co-resident oriT-containing plasmids. Although the host range for pCF10 replication is limited to enterococci, we found that the pCF10 conjugation system promotes mobilization of oriT-containing plasmids to multiple bacterial genera. Therefore, this transfer system may have applications for gene delivery to a variety of poorly-transformed bacteria.  相似文献   

15.
Horizontal gene flow is a driving force for bacterial adaptation. Among the three distinct mechanisms of gene transfer in bacteria, conjugation, transduction, and transformation, the latter, which includes competence induction, DNA binding, and DNA uptake, is perhaps the most versatile mechanism and allows the incorporation of free DNA from diverse bacterial species. Here we review DNA transport machineries mediating uptake of naked DNA in gram-positive and gram-negative bacteria. Different putative models of transformation machineries comprising components similar to proteins of type IV pili are presented. Emphasis is placed on a comparative discussion of the underlying mechanisms of DNA transfer in mesophilic and extremely thermophilic bacteria, highlighting conserved and distinctive features of these transformation machineries.  相似文献   

16.
Biofilms cause much of all human microbial infections. Attempts to eradicate biofilm-based infections rely on disinfectants and antibiotics. Unfortunately, biofilm bacteria are significantly less responsive to antibiotic stressors than their planktonic counterparts. Sublethal doses of antibiotics can actually enhance biofilm formation. Here, we have developed a non-invasive microscopic image analyses to quantify plasmid conjugation within a developing biofilm. Corroborating destructive samples were analyzed by a cultivation-independent flow cytometry analysis and a selective plate count method to cultivate transconjugants. Increases in substrate loading altered biofilm 3-D architecture and subsequently affected the frequency of plasmid conjugation (decreases at least two times) in the absence of any antibiotic selective pressure. More importantly, donor populations in biofilms exposed to a sublethal dose of kanamycin exhibited enhanced transfer efficiency of plasmids containing the kanamycin resistance gene, up to tenfold. However, when stressed with a different antibiotic, imipenem, transfer of plasmids containing the kanR+ gene was not enhanced. These preliminary results suggest biofilm bacteria “sense” antibiotics to which they are resistant, which enhances the spread of that resistance. Confocal scanning microscopy coupled with our non-invasive image analysis was able to estimate plasmid conjugative transfer efficiency either averaged over the entire biofilm landscape or locally with individual biofilm clusters.  相似文献   

17.
The nucleotide sequences of three DNA fragments (total size 30574 bp) of the plasmid p19 from the Bacillus subtilis 19 soil strain have been determined. Thirty open reading frames (ORFs) have been identified in these fragments. oriT of the plasmid has also been identified. As shown by the search for homologs of hypothetical protein products of these ORFs in databases, such homology exists for 18 ORFs. The protein products of nine ORFs can be assumed to have specific functions. Several ORFs were inactivated via insertional mutagenesis, and the conjugation capacity of the mutant plasmids was estimated. According to the data on homology of protein products and the results of ORF inactivation, regions of a total size of about 20 kb from the DNA fragments sequenced by us were inferred to belong to the tra region of p19. As follows from the analysis of the identified ORFs of the p19 tra region, it differs from the earlier described tra regions of other plasmids, irrespective of a certain similarity with the corresponding regions of plasmids of gram-positive bacteria from the genera Bacillus, Clostridium, and Listeria.  相似文献   

18.
Various deletion mutants of the identical broad-host-range plasmids RP4 and RK2, obtained after conjugative transfer of these plasmids from Escherichia coli to Alcaligenes eutrophus H16, were tested with respect to their segregation behaviour. Although the parent plasmids and some of the deletion mutants were completely stable in both A. eutrophus and E. coli, other derivatives were lost under non-selective conditions. The analysis of these deletion mutants allowed the identification and mapping of a region encoding a partitioning system (par) between the tra2 region and the kanamycin resistance gene of RP4 (RK2). This area corresponds to the PstI-C restriction fragment of RP4 (RK2). Cloning of this fragment into several unstable vector plasmids including pBR322 and pACYC177 resulted in all cases in an increase of segregational stability. By insertion of the par-region into an unstable broad-host-range mobilizable plasmid and transfer to a series of gram-negative bacteria, it could be shown that the cloned par-region of RP4 is functional in a broad-host-range.  相似文献   

19.
The nucleotide sequence of the transfer (tra) region of the multiresistance broad-host-range Inc18 plasmid pIP501 was completed. The 8629-bp DNA sequence encodes 10 open reading frames (orf), 9 of them are possibly involved in pIP501 conjugative transfer. The putative pIP501 tra gene products show highest similarity to the respective ORFs of the conjugative Enterococcus faecalis plasmids pRE25 and pAMbeta1, and the Streptococcus pyogenes plasmid pSM19035, respectively. ORF7 and ORF10 encode putative homologues of type IV secretion systems involved in transport of effector molecules from pathogens to host cells and in conjugative plasmid transfer in Gram-negative (G-) bacteria. pIP501 mobilized non-selftransmissible plasmids such as pMV158 between different E. faecalis strains and from E. faecalis to Bacillus subtilis. Evidence for the very broad-host-range of pIP501 was obtained by intergeneric conjugative transfer of pIP501 to a multicellular Gram-positive (G+) bacterium, Streptomyces lividans, and to G- Escherichia coli. We proved for the first time pIP501 replication, expression of its antibiotic resistance genes as well as functionality of the pIP501 tra genes in S. lividans and E. coli.  相似文献   

20.
Gentamicin-resistant Staphylococcus aureus and Staphylococcus epidermidis strains which were isolated from infants with staphylococcal bacteremia were analyzed for the presence of self-transmissible gentamicin-resistance (Gmr) plasmids. Conjugative GMr plasmids of approximately 43.8-63 kilobases (kb) were found in all S. aureus strains. Inter- and intra-species transfer of Gmr plasmids by conjugation was observed from S. aureus to S. aureus and to S. epidermidis recipient strains. However, neither inter- nor intra-species transfer of gentamicin resistance by conjugation was observed with nine out of nine S. epidermidis donor strains which were mated with either S. epidermidis or S. aureus recipient strains. These conjugative Gmr plasmids were unable to comobilize a smaller (15-kb) plasmid present in all but two S. aureus clinical isolates. Many of the conjugative Gmr plasmids also carried genetic determinants for kanamycin, tobramycin, neomycin, and ethidium bromide resistance, and for beta-lactamase synthesis. EcoRI restriction endonuclease digests of the S. aureus Gmr conjugative plasmids revealed three different digestion patterns. Four EcoRI restriction endonuclease digestion fragments of 15, 11.4, 6.3, and 4.6 kb in size were common to all plasmids. These plasmids and conjugative Gmr staphylococcal plasmids from other geographical regions shared restriction digestion fragments of similar molecular weights. DNA hybridization with biotinylated S. aureus plasmid pIZ7814 DNA revealed a high degree of homology among these plasmids. A 50.9-kb plasmid from one of the nonconjugative S. epidermidis clinical isolates showed homology with the probe DNA but lacked a portion of a 6.3-kb fragment which was present in all conjugative plasmids and believed to carry much genetic information for conjugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号