首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isoenzymes of hypoxanthine-guanine-phosphoribosyl transferase (HGPRT; E. C. 2.4.2.8) were studied by polyacrylamide gel disc electrophoresis in the erythrocytes of a family in which there was a partial deficiency of this X-linked enzyme. Hyperuricemic males, in whom HGPRT activity was 4% of normal, were found to have a variant enzyme which had altered kinetic and electrophoretic properties. In acrylamide gel, this variant migrated about 15% faster than the normal enzyme, and its K m for hypoxanthine was twice that of the normal. The sister of two patients had 34% of normal activity in her erythrocytes and was thought to be a heterozygote. Electrophoresis of her hemolysate yielded profiles in which there were two zones of HGPRT activity. The more slowly migrating isoenzyme behaved electrophoretically like the normal isoenzyme. The faster-migrating isoenzyme had a mobility identical to that of the variant enzyme found in hemolysates from her hyperuricemic siblings. However, in her profile the activity of the variant enzyme was three times greater than that of the HGPRT found in the boys. This increased activity appears to be due to an interaction of the variant enzyme with the normal enzyme. Electrophoresis of a mixture of normal enzyme and the variant from a hyperuricemic male yielded a profile similar to that observed in this girl and a dramatic increase in the amount of activity in the variant zone.Aided by U.S. Public Health Service Grants No. HD04608 and GM 17702 from the National Institute of Child Health and Human Development and from the National Institute of General Medical Sciences, respectively, National Institutes of Health. Presented in part at the 1971 Annual Meeting of the Western Society for Pediatric Research, Carmel, California.  相似文献   

2.
Peripheral T cells from 3 Lesch-Nyhan patients, 3 normal subjects, and 3 brothers with hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency but without Lesch-Nyhan syndrome (so-called partial deficiency) have been analyzed. Although these brothers contained HGPRT activities neither in the hemolysates nor in the T cell extracts at levels detectable by the regular radioenzyme assay, the enzyme deficiency had not caused any typical neurological symptoms of the Lesch-Nyhan syndrome. Although the T cells from these brothers were at least 10-fold more resistant to 6-thioguanine than normal T cells, they were more than 30-fold less resistant than the T cells from 3 Lesch-Nyhan patients indicating that there is a clear difference in the severity of the enzyme deficiency between the brothers and the Lesch-Nyhan patients. These data indicate that the long-term T cell culture in the medium containing a purine analog whose toxicity depends on a salvaging enzyme is useful for evaluating the severity of the enzyme deficiency in viable cells.  相似文献   

3.
Hypoxanthine-guanine (HGPRT; E.C. 2.4.2.8) and adenine (APRT; E.C. 2.4.2.7) phosphoribosyl transferases were studied by disc electrophoresis on polyacrylamide gel. The positions of the isoenzymes were detected by radiochemical enzyme assay. The nucleotide products of the reactions were precipitated in the gel with lanthanum chloride. APRT was found to migrate slightly less rapidly than albumin and produced a single narrow symmetrical peak of activity. HGPRT migrated 25–50% more slowly than albumin and produced a broad zone of activity consisting of four unequal peaks. The APRT enzyme of Rhesus monkey liver and the HGPRT enzyme of sheep erythrocytes migrated notably slower than the corresponding human enzymes. An isoenzyme of APRT was detected in human erythrocytes which migrated more rapidly than that of most individuals. In all instances, the adenine was utilized by one electrophoretic component and hypoxanthine and guanine by another. Furthermore, the components which utilized hypoxanthine and guanine were inseparable. The sensitivity of the assay made it possible to assess the electrophoretic and enzymatic characteristics of HGPRT isoenzymes on aliquots of hemolysates capable of producing 0.5 picomoles of IMP per minute. In human erythrocytes with normal enzyme content, this amount of activity is present in approximately 50 nanoliters of cells.Aided by U.S. Public Health Service grants Nos. HD 04608 and HD 03015 from the National Institute of Child Health and Human Development, National Institutes of Health.  相似文献   

4.
Summary For three patients with the Lesch-Nyhan syndrome the existence of normal amounts of catalytically inactive hypoxanthine-guanine phosphoribosyltransferase (HGPRT) protein was demonstrated by using antibodies against the normal enzyme subunits. The lack of enzyme activity is reverted in virus transformed cells. Individual revertant cell clones contain different HGPRT enzymes as demonstrated here by isoelectric focusing. The data strongly support the idea of a structural gene mutation as the cause of enzyme deficiency in the Lesch-Nyhan syndrome.  相似文献   

5.
Hybridization of mutant cell lines deficient in hypoxanthine-guanine phosphoribosyl transferase (HGPRT; E.C.: 2.4.2.8) from a variety of established rodent sources with HGPRT plus human cells yielded progeny cells which grew in selective medium containing hypoxanthine, aminopterin and thymidine (HAT). The same result was obtained when the human cell used was an HGPRT minus transformed line derived from a patient with the Lesch-Nyhan syndrome. Electrophoretic analysis indicated that all HAT-resistant progeny clones contained an active HGPRT enzyme which was indistinguishable from the wild type enzyme of the corresponding normal rodent cells. In contrast, no HAT-resistant cells have been obtained when the same HGPRT minus rodent cells were subjected to fusion processes in the absence of human cells or when they fused with similarly derived HGPRT minus mutant cells of other rodents. Reversion in expression of the rodent gene for HGPRT was detected in clones which retained one or more human chromosomes and in clones which contained no detectable human chromosomal material. The observed re-expression of rodent HGPRT in HAT-resistant clones suggests that HGPRT plus as well as HGPRT minus human cells contributed a factor which determined the expression of respective rodent structural genes for HGPRT. In contrast, HGPRT minus rodent cells were unable to induce the synthesis or normal HGPRT in the cells derived from the patient with the Lesch-Nyhan syndrome.  相似文献   

6.
Summary A patient with the full clinical expression of the classical Lesch-Nyhan syndrome is presented with a residual hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity of 5–10% in erythrocyte lysate and about 30% in fibroblast lysate. The activities of other erythrocyte enzymes of purine metabolism were typical for a classical Lesch-Nyhan patient. The effects of allopurinol therapy on the excretion of urinary purine metabolites were studied by a newly developed isotachophoretic technique.The unusually high residual activity of HGPRT in erythrodytes and fibroblasts of the patient enabled the enzymologic characterization of the mutant enzyme: in fibroblasts the affinities for the substrates hypoxanthine and guanine were normal. However, there was an increased apparent K m for phosphoribosylpyrophosphate (PRPP), a complete absence of product inhibition by IMP and GMP, and a decreased heat stability. Addition of PRPP did not stabilize the mutant enzyme. In addition to the altered properties of the fibroblast enzyme, the K m of the erythrocyte enzyme for hypoxanthine was also increased.Immunoprecipitation experiments revealed the presence of an approximately normal amount of material cross-reacting with anti-human HGPRT antiserum. However, it appeared that this cross-reacting material had a decreased stability. When intact erythrocytes were incubated with radiolabeled purine bases, no formation of IMP or GMP could be detected, despite the relatively high residual activity of HGPRT in the hemolysate. The results fit the following hypothesis: as a consequence of a structural mutation affecting the PRPP-site of the enzyme and a decreased heat stability, the activity of the mutant enzyme under in vivo conditions is virtually zero.In the erythrocytes of the patient's mother a normal HGPRT-activity was found. However, the activity in her fibroblasts was lower than normal, while a decreased heat stability and an intermediate behavior towards IMP could be shown.Hair root analysis of several members of the patient's family confirmed the heterozygosity of the mother, whereas no other heterozygotes could be detected. The family anamnesis did not show other cases of Lesch-Nyhan syndrome. These findings were taken as evidence that the patient described in this paper might represent a mutation orginating from the gametes in either of the maternal grandparents.  相似文献   

7.
A method for the quantitation of metabolic cooperation between cells is described. The method depends upon measuring the increase in HGPRTase activity that occurs between HGPRT+ cells and the HGPRT-LN (Lesch-Nyhan) cells. The variables upon which this method depends and their effect on the final determination are discussed.  相似文献   

8.
Hypoxanthine--guanine phosphoribosyltransferase (HPRT) is a purine salvage enzyme that catalyzes the conversion of hypoxanthine to inosine monophosphate and guanine to guanosine monophosphate. Previous studies of mutant HPRT proteins analyzed at the molecular level have shown a significant heterogeneity. This investigation further verifies this heterogeneity and identifies insertions, deletions, and point mutations. The direct sequencing of the polymerase chain reaction-amplified product of reverse-transcribed HPRT mRNA enabled the rapid identification of the mutations found in 17 previously uncharacterized cell lines derived from patients with the Lesch-Nyhan syndrome.  相似文献   

9.
G Mitchell  R R McInnes 《CMAJ》1984,130(10):1323-1324
Athetotic cerebral palsy was diagnosed in a 6-month-old boy with no history of perinatal trauma. Lesch-Nyhan syndrome (i.e., complete deficiency of hypoxanthine-guanine phosphoribosyltransferase [HGPRT] ) was diagnosed only when the boy began biting his lower lip at the age of 10 years. It is suggested, on the basis of this case and others like it in the literature, that the delayed onset or absence of self-mutilation in patients with Lesch-Nyhan syndrome may be more common than has been previously suspected. In all males said to have cerebral palsy, HGPRT deficiency must be ruled out, preferably by measuring the ratio of uric acid to creatinine in a random urine specimen.  相似文献   

10.
The hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in a group of man-mouse somatic cell hybrids, produced by Sendai virus-mediated cell fusion and HAT selection, has been analyzed by a new electrophoretic technique. Evidence is presented which shows that the hybrid lines derived from fusion of a mouse fibroblast deficient in HGPRT with various human cell strains have an HGPRT activity that is characteristic of the human enzyme, whereas a hybrid line derived from a mouse fibroblast which is deficient in thymidine kinase has an HGPRT activity characteristic of the mouse. This new technique involves electrophoresis of cell extracts on cellulose acetate gel, followed by the localization of the enzyme activity by autoradiography.This research was supported in part by a research grant from the U.S. National Institutes of Health (No. GM-13415).  相似文献   

11.
Subjects heterozygous for the Lesch-Nyhan syndrome with a deficiency of the X-linked gene for the enzyme hypoxanthine-guanine phosphoribosyl transferase (PRT) would be expected to have two populations of erythrocytes in roughly equal proportions—one type with the normal enzyme and the other type exhibiting the mutant form of the enzyme. In contrast to this prediction, previous studies utilizing an X-linked gene for another enzyme as a marker for the PRT locus have suggested that erythrocytes from heterozygotes consist largely of cells with the normal form of the enzyme. We have recently described a mutant form of hypoxanthine-guanine phosphoribosyl tranferase with altered kinetic properties which allow it to be measured in artificial mixtures with the normal enzyme. The mutant enzyme could not be detected in erythrocyte lysates from a proven heterozygote for both the normal and this mutant form of the enzyme. This provides additional evidence that either inactivation of the X-chromosome in erythropoietic tissue from the heterozygote for PRT deficiency is not random or that random X-chromosome inactivation is followed by selection against erythrocyte precursors with the mutant enzyme.This study was supported in part by USPHS Research Grant No. AM14362, USPHS Training Grant No. AM05620, and a grant (RR-30) from the General Clinical Research Centers Program of the Division of Research Resources, National Institutes of Health.  相似文献   

12.
Skin fibroblasts (LNSV) derived from a hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient patient with the Lesch-Nyhan syndrome, who has glucose-6-phosphate dehydrogenase (G6PD) type A, were transformed with SV40 and hybridized with WI38 human diploid fibroblasts derived from a female embryo which have normal HGPRT and G6PD type B activities. The hybrid clones selected in hypoxanthine, aminopterin and thymidine (HAT) medium, were essentially tetraploid and contained three X and one Y chromosomes. These hybrids contained HGPRT, types A and B and the AB heteropolymeric form of G6PD enzymes which were indicative that in these cells X linked genes of both parental cells were fully active. Hybrids back-selected in medium containing 8-azaguanine (8-AG) contained only two X chromosomes. They had no HGPRT activity and they contained only G6PD type A enzyme. It is concluded that the hybrid cells which grew in the presence of 8-AG retained the X chromosome of the LNSV parental cell and apparently the inactive X of the WI 38 cell.  相似文献   

13.
Three 6-thioguanine-resistant mutants of the human diploid lymphoblast line MGL-8 were studied. The inactivation by heat of both HGPRT activity and antigenicity of the HGPRT immunologically cross-reacting material of the A30 mutant cells were not protected by PRPP, indicating that the HGPRT in A30 cells has an altered PRPP binding site, leading to lack of stabilization and rapid degradation of the enzyme. Two dimensional separations of the immunoprecipitates from extracts of the parental and mutant cell lines showed that the A35 mutant CRM has a more acidic isoelectric pH, while the A30 CRM has a more basic isoelectric pH and that the A30 protein has a faster rate of degradation than the wild-type HGPRT. The A30 CRM also has a smaller molecular size than the wild-type enzyme.  相似文献   

14.
Summary Rabbit antibodies to purified human placental galactose-l-phosphate uridyltransferase (EC 2.7.7.12) were used to establish immunologic cross-reactivity patterns for the enzyme in hemolysates, prepared from red cells of a normal individual, a homozygous Duarte variant, and a heterozygous Los Angeles variant. The antibody immunoprecipitated all three forms of the enzyme. The amount of antibody absorbed by each hemolysate was related to the different levels of activity, and examination of hemolysate/antibody reaction mixtures by starch gel electrophoresis revealed that the antibody quantitatively precipitated all of the isoenzyme forms that characterize these three genetic variants.This research was supported in part by a United States Public Health Service Grant, HD 06576, from the National Institute of Child Health and Human Development.  相似文献   

15.
Spontaneous and mutagen-induced 2,6-diaminopurine-resistant mutants of Chinese hamster ovary (CHO-K1) cells were isolated. Such mutants fell into two classes: spontaneous and ethylmethane-sulfonate-induced mutants had approximately 5% wild-type adenine phosphoribosyl transferase (APRT) activity, whereas ICR-170G-induced mutants had barely detectable APRT activity. Since it has been reported that human hypoxanthine-guanine phosphoribosyl transferase (HGPRT) (Lesch-Nyhan syndrome) and APRT mutants over-produce purines, we examined the control and rate of purine biosynthesis in the Chinese hamster mutants. End product inhibition by adenine could not be demonstrated in such mutants, indicating that the active feedback inhibitor is a nucleotide rather than the free purine base, HGPRT activity was normal in all mutants examined except in one isolate. Purine biosynthesis as measured by the accumulation of the purine biosynthetic intermediate phosphoribosyl formylglycineamide was not elevated in the mutants as might have been predicted from work with Lesch-Nyhan cells. The data also suggest that our strain of CHO-K1 is physically or functionally haploid for the APRT locus.  相似文献   

16.
Lesch-Nyhan syndrome is a pediatric metabolic-neurological syndrome caused by the X-linked deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The cause of the metabolic consequences of HGPRT deficiency has been clarified, but the connection between the enzyme deficiency and the neurological manifestations is still unknown. In search for this connection, in the present study, we characterized purine nucleotide metabolism in primary astroglia cultures from HGPRT-deficient transgenic mice. The HGPRT-deficient astroglia exhibited the basic abnormalities in purine metabolism reported before in neurons and various other HGPRT-deficient cells. The following abnormalities were found: absence of detectable uptake of guanine and of hypoxanthine into intact cell nucleotides; 27.8% increase in the availability of 5-phosphoribosyl-1-pyrophosphate; 9.4-fold acceleration of the rate of de novo nucleotide synthesis; manyfold increase in the excretion into the culture media of hypoxanthine (but normal excretion of xanthine); enhanced loss of label from prelabeled adenine nucleotides (loss of 71% in 24 h, in comparison with 52.7% in the normal cells), due to 4.2-fold greater excretion into the media of labeled hypoxanthine. In addition, the HGPRT-deficient astroglia were shown to contain lower cellular levels of ADP, ATP, and GTP, indicating that the accelerated de novo purine synthesis does not compensate adequately for the deficiency of salvage nucleotide synthesis, and higher level of UTP, probably due to enhanced de novo synthesis of pyrimidine nucleotides. Altered nucleotide content in the brain may have a role in the pathogenesis of the neurological deficit in Lesch-Nyhan syndrome.  相似文献   

17.
Monoamine oxidase activity of the A type was measured in homogenates of cultured human skin fibroblasts. Twenty-four control lines had activities ranging over fifty-fold with an apparent bimodal distribution. Activity in fibroblasts from 20 patients with the Lesch-Nyhan syndrome fell in the low portion of the normal distribution with a mean activity about 50% that of the control mean (p<0.05). In a subgroup of control and Lesch-Nyhan lines with levels of enzyme activity from 0.9 to 179 pmol/min/mg protein, monoamine oxidase was similar with respect to apparent Km for tryptamine, thermal stability at 56 C, and sensitivity to clorgyline. Thus the lower mean levels of activity observed in the Lesch-Nyhan as compared to control fibroblasts were not associated with other altered properties of the enzyme. The bimodal distribution of enzyme activity suggests that a genetic polymorphism for monoamine oxidase may control levels of activity expressed in fibroblasts.M. R. C. C. was funded by the Dystonia Medical Research Foundation. This work was supported by grants from USPHS—NS12105 and GM20124—and from the National Foundation-March of Dimes.  相似文献   

18.
Hypoxanthine-guanine phosphoribosyl transferase (HGPRT; EC 2.4.2.8) is a central enzyme in the purine recycling pathway. Parasitic protozoa (Leishmania donovani) cannot synthesize purines de novo and utilize the salvage pathway to produce purine bases. Thus, this enzyme is targeted in drug discovery and development. The model of the monomeric L. donovani HGPRT showed that this enzyme is an α/β type protein with a PRTase type I folding pattern. Among all of the computationally screened compounds, pentamidine, 1,3-dinitroadamantane, acyclovir and analogs of acyclovir had higher binding affinities than the real substrate (guanosine monophosphate). Amino acids of HGPRT that are frequently involved in the binding of these compounds are Lys 66, Asp 74, Arg 77, Asp 81, Val 88, Tyr 182, Arg 192 and Arg 194. It is predicted that patients suffering from both HIV and visceral leishmaniasis (VL) may benefit if they are treated with acyclovir or pentamidine in conjunction with first-line antileishmanial therapies such as miltefosine and AmBisome.  相似文献   

19.
Deletion and amplification of the HGPRT locus in Chinese hamster cells.   总被引:37,自引:13,他引:24       下载免费PDF全文
Somatic cell selective techniques and hybridization analyses with a cloned cDNA probe were used to isolate and identify Chinese hamster cell lines in which the X-linked gene for hypoxanthine-guanine phosphoribosyltransferase (HGPRT) has been altered. Two of 19 HGPRT-deficient mutants selected were found to have major DNA deletions affecting the HGPRT locus. Cytogenetic studies revealed that the X chromosome of each deletion mutant had undergone a translocation event, whereas those from the remaining 17 mutants were normal. Phenotypic revertants of the thermosensitive HGPRT mutant RJK526 were isolated, and amplification of the mutant allele was shown to be the predominant mechanism of reversion. Comparisons of restriction enzyme fragments of DNA from deletion versus amplification strains identified two regions of the Chinese hamster genome that contained homology to the cDNA probe. One was shown to be much larger than the 1,600-nucleotide mRNA for HGPRT and to be comprised of linked fragments that contained the functional HGPRT gene. The second was neither transcribed nor tightly linked to the functional gene. These initial studies of HGPRT alterations at the level of DNA thus identified molecular mechanisms of phenotypic variation.  相似文献   

20.
Hypoxanthine guanine phosphoribosyltransferases (HGPRTs) catalyze the conversion of 6-oxopurine bases to their respective nucleotides, the phosphoribosyl group being derived from phosphoribosyl pyrophosphate. Recombinant Plasmodium falciparum HGPRT, on purification, has negligible activity, and previous reports have shown that high activities can be achieved upon incubation of recombinant enzyme with the substrates hypoxanthine and phosphoribosyl pyrophosphate [Keough DT, Ng AL, Winzor DJ, Emmerson BT & de Jersey J (1999) Mol Biochem Parasitol98, 29-41; Sujay Subbayya IN & Balaram H (2000) Biochem Biophys Res Commun279, 433-437]. In this report, we show that activation is effected by the product, Inosine monophosphate (IMP), and not by the substrates. Studies carried out on Plasmodium falciparum HGPRT and on a temperature-sensitive mutant, L44F, show that the enzymes are destabilized in the presence of the substrates and the product, IMP. These stability studies suggest that the active, product-bound form of the enzyme is less stable than the ligand-free, unactivated enzyme. Equilibrium isothermal-unfolding studies indicate that the active form is destabilized by 2-3 kcal x mol(-1) compared with the unactivated state. This presents a unique example of an enzyme that attains its active conformation of lower stability by product binding. This property of ligand-mediated activation is not seen with recombinant human HGPRT, which is highly active in the unliganded state. The reversibility between highly active and weakly active states suggests a novel mechanism for the regulation of enzyme activity in P. falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号