首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xanthine dehydrogenase (EC 1.2.1.37) was isolated from chicken livers and immobilized by adsorption to a Sepharose derivative, prepared by reaction of n-octylamine with CNBr-activated Sepharose 4B. Using a crude preparation of enzyme for immobilization it was observed that relatively more activity was adsorbed than protein, but the yield of immobilized activity increased as a purer enzyme preparation was used. As more activity and protein were bound, relatively less immobilized activity was recovered. This effect was probably due to blocking of active xanthine dehydrogenase by protein impurities. The kinetics of free and immobilized xanthine dehydrogenase were studied in the pH range 7.5-9.1. The Km and V values estimated for free xanthine dehydrogenase increase as the pH increase; the K'm and V values for the immobilized enzyme go through a minimum at pH 8.1. By varying the amount of enzyme activity bound per unit volume of gel, it was shown that K'm is larger than Km are result of substrate diffusion limitation in the pores of the support material. Both free and immobilized xanthine dehydrogenase showed substrate activation at low concentrations (up to 2 microM xanthine). Immobilized xanthine dehydrogenase was more stable than the free enzyme during storage in the temperature range of 4-50 degrees C. The operational stability of immobilized xanthine dehydrogenase at 30 degrees C was two orders of magnitude smaller than the storage stability, t 1/2 was 9 and 800 hr, respectively. The operational stability was, however, better than than of immobilized milk xanthine oxidase (t 1/2 = 1 hr). In addition, the amount of product formed per unit initial activity in one half-life, was higher for immobilized xanthine dehydrogenase than for immobilized xanthine oxidase. Unless immobilized milk xanthine oxidase can be considerable stabilized, immobilized chicken liver xanthine dehydrogenase is more promising for application in organic synthesis.  相似文献   

2.
Milk xanthine oxidase was immobilized by covalent attachment to CNBr-activated Sepharose 4B and by adsorption to n-octylamine-substituted Sepharose 4B. The amounts of activity immobilized for the two preparations were 30 and 90%, respectively. The pH optima for free and adsorbed xanthine oxidase were at 8.6 and 8.2, respectively. Both free and immobilized xanthine oxidase show substrate inhibition. The apparent inhibition constant (Ki′) found for adsorbed xanthine oxidase with xanthine as substrate was higher than the Ki for the free enzyme, which was shown to be due to substrate diffusion limitation in the pores of the carrier beads (internal diffusion limitation). Higher substrate concentrations, as desirable for practical application in organic synthesis, can therefore be used with the immobilized enzyme without decreasing the rate. As a result of the internal diffusion limitation the apparent Michaelis constant (Km′) for adsorbed xanthine oxidase was also higher than the Km for the free enzyme. Immobilized xanthine oxidase was more stable than the free enzyme during storage at 4 and 30°C. Both forms rapidly lost activity during catalysis. The loss was proportional to the amount of substrate converted. Coimmobilization of xanthine oxidase with superoxide dismutase and catalase improved the operational stability, suggesting that O2? and H2O2 side-products of the enzymatic reaction were involved in the inactivation. Coimmobilization with albumin also had some stabilizing effect. Complete surrounding of xanthine oxidase by protein, however, by means of etrapment in a glutaraldehyde-crosslinked gelatin matrix, considerably enhanced the operational half-life. This system was less efficient than the Sepharose preparations either because much activity was lost during the immobilization procedure and/or because it had poor flow properties. Xanthine (15 mg)was converted by an adsorbed xanthine oxidase preparation and product (uric acid) was isolated in high yield (84%).  相似文献   

3.
Glucoamylase from four different companies was studied: three had similar stability (half-life at 50°C about 140 hr); the fourth was less stable (half-life at 50°C about 20 hr). The immobilized enzymes were all less stable than their soluble counterparts: immobilized enzyme stability depended on the soluble enzyme used, the support, and method of immobilization. Thus enzyme bound to Enzacryl-TIO was less stable than enzyme bound to hornblende (metal-link method); this, in turn, was less stable than enzyme bound to hornblende by a silane–glutaraldehyde process. Bound enzyme stability was also improved by the presence of substrate or product (starch maltose or glucose). After 110 hr at 50°C in the presence of maltose (10% (w/v)) one preparation (a more stable soluble enzyme boul1d to hornblende by a silane–glutaraldehyde process) retained over 95% of its activity: activity loss was too low to permit the estimation of a half-life.  相似文献   

4.
This study was designed to study xanthine oxidase (XO) and xanthine dehydrogenase (XD) activity in the lung of rats exposed to prolonged restraining immobilization stress. Immobilization caused more than twofold increase of xanthine oxidase activity in the rat lung. The activity of xanthine oxidase decreased in lung homogenates incubated at -20 degrees C for 24 h. The same incubation of homogenates from control rats caused a non-significant increase of the activity. No measurable NAD(+)-dependent xanthine dehydrogenase activity could be established in the lungs of both control rats and rats subjected to immobilization. All rats revealed methylene blue-dependent xanthine dehydrogenase activity which was more than two-times higher in the immobilized animals. Incubation at -20 degrees C for 24 h increased the methylene blue-dependent xanthine dehydrogenase activity in homogenates from control rats and decreased the enzyme activity in homogenates from immobilized rats. A working hypothesis was proposed for the sequence of events explaining the results obtained: XO-catalyzed generation of activated oxygen species may take place in the initiation of lipid peroxidation in the lung of rats immobilized for prolonged periods of time.  相似文献   

5.
Urate oxidase and catalase were purified from rat liver peroxisomes, and respective antibodies were prepared from rabbits by the administration of these enzymes. Although urate oxidase generally precipitates in immunoprecipitation-possible pH ranges (pH 4.5--9.5), the enzyme remained soluble in 50 mM glycine buffer (pH 9.5) containing 50% glycerol up to concentration of 0.3 mg/ml. Anti-urate oxidase reacted with purified urate oxidase as well as with the crude preparation. After [3H]leucine was injected to rats, urate oxidase and catalase were purified from rat liver at certain intervals, and further precipitated by respective antibodies. The half-life of the catalase was 39 h and that of urate oxidase, 20 h. When the sonicated light mitochondrial fraction was incubated at 37 degrees C and at pH 7.0 or 5.6, inactivation of catalase did not seem to differ between these pH values, and approximately 80% of the catalase activity remained even after 8 h. Urate oxidase was inactivated very rapidly at pH 5.6; only 30% of its activity survived incubation for 6 h. This inactivation was found to occur by some proteolytic process. From these findings, the turnover rate of urate oxidase was found to be different from that of catalase, and this distinction seemed to be due to different sensitivity to some degradative enzymes.  相似文献   

6.
Urate oxidase and catalase were purified from rat liver peroxisomes, and respective antibodies were prepared from rabbits by the administration of these enzymes. Although urate oxidase generally precipitates in immunoprecipitation-possible pH ranges (pH 4.5–9.5), the enzyme remained soluble in 50 mM glycine buffer (pH 9.5) containing 50% glycerol up to concentration of 0.3 mg/ml. Anti-urate oxidase reacted with purified urate oxidase as well as with the crude preparation.After [3H]leucine was injected to rats, urate oxidase and catalase were purified from rat liver at certain intervals, and further precipitated by respective antibodies. The half-life of the catalase was 39 h and that of urate oxidase, 20 h. When the sonicated light mitochondrial fraction was incubated at 37°C and at pH 7.0 or 5.6, inactivation of catalase did not seem to differ between these pH values, and approximately 80% of the catalase activity remained even after 8 h. Urate oxidase was inactivated very rapidly at pH 5.6; only 30% of its activity survived incubation for 6 h. This inactivation was found to occur by some proteolytic process.From these findings, the turnover rate of urate oxidase was found to be different from that of catalase, and this distinction seemed to be due to different sensitivity to some degradative enzymes.  相似文献   

7.
Alcohol dehydrogenase from yeast was partially purified by heat treatment (70°C, 30 min) and immobilized on porous glass, Enzacryl-TI0 and hornblende. The stabilities of these preparations were studied at 30°C and in the case of Enzacryl-TI0 and hornblende at 50°C also. These stabilities were compared with those of immobilized alcohol dehydrogenase from yeast cytosol. In all cases the mitochondrial enzyme provided the more stable bound enzyme conjugates. However, at 50°C the soluble mitochondrial enzyme was more stable than any of the immobilized derivatives: half-life values were 40, 14 and 8 h for the soluble, Enzacryl-TI0 and hornblende samples, respectively.  相似文献   

8.
A Cl- and NO3- insensitive oxalate oxidase, purified from the roots of 10-day old seedlings of grain Sorghum has been immobilized on polyvinyl alcohol (PVA) membrane through entrapment with 96.07% retention of initial activity. The membrane bound enzyme showed an increase in optimum pH (from 5.0 to 6.5), time of incubation (from 5 to 10 min) and Km for oxalate (from 0.38 to 6.23 mM), but decrease in incubation temperature for maximum activity (from 37 to 30 degrees C) and Vmax (from 70 nmol/min/ml to 9.7 nmol H2O2/min) and was unaffected by Cl- and NO3. The membrane bound enzyme lost 50% of its initial activity after 30 days of storage at room temperature. The use of membrane bound oxalate oxidase in determination of serum oxalate of urinary stone patients is demonstrated.  相似文献   

9.
Myocardial xanthine oxidase/dehydrogenase   总被引:3,自引:0,他引:3  
High-energy phosphates in heart muscle deprived of oxygen are rapidly broken down to purine nucleosides and oxypurines. We studied the role of xanthine oxidase/dehydrogenase (EC 1.2.3.2/EC 1.2.1.37) in this process with novel high-pressure liquid chromatographic techniques. Under various conditions, including ischemia and anoxia, the isolated perfused rat heart released adenosine, inosine and hypoxanthine, and also substantial amounts of xanthine and urate. Allopurinol, an inhibitor of xanthine oxidase, greatly enhanced the release of hypoxanthine. From the purine release we calculated that the rat heart contained about 18 mU xanthine oxidase per g wet weight. Subsequently, we measured a xanthine oxidase activity of 9 mU/g wet wt. in rat-heart homogenate. When endogenous low molecular weight inhibitors were removed by gel-filtration, the activity increased to 31 mU/g wet wt. Rat myocardial xanthine oxidase seems to be present mainly in the dehydrogenase form, which upon storage at -20 degrees C is converted to the oxidase form.  相似文献   

10.
Xanthine oxidase (1--5 microgram/ml) from cow's milk induces shape change, aggregation, and the release reaction of human washed platelets. Xanthine oxidase plus xanthine produce superoxide radicals, which reduce nitro blue tetrazolium. Superoxide dismutase, allopurinol, or ommission of xanthine inhibits the reduction of nitro blue tetrazolium but has no influence on the platelet response to xanthine oxidase. In contrast, small amounts of plasma or apyrase from potatoes abolish the effect on platelets, but not the enzyme activity of xanthine oxidase. Comparison of two xanthine oxidase preparations shows that higher specific enzyme activity corresponds to a lesser effect on platelets. The results suggest that platelet and enzyme activities reside in different components of xanthine oxidase preparations.  相似文献   

11.
Urate oxidase (EC 1.7.3.3) of Chlamydomonas reinhardii cells grown on purines and purine derivatives has been partially characterized. Crude enzyme preparations have a pH optimum of 9.0, require O2 for activity, have an apparent Km of 12 μ M for urate, and are inhibited by high concentrations of this substrate. Enzyme activity was particularly sensitive to metal ion chelating agents like cyanide, cupferron, diethyldithiocarbamate and o -phenanthroline, and to structural analogues of urate like hypoxanthine and xanthine. Chlamydomonas cells grow phototrophically on adenine, guanine, hypoxanthine, xanthine, urate, allantoin or allantoate as sole nitrogen source, indicating that in this alga the standard pathway of aerobic degradation of purines of higher plants, animals and many microorganisms operates. As deduced from experiments in vivo , urate oxidase from Chlamydomonas is repressed in the presence of ammonia or nitrate.  相似文献   

12.
The reaction of xanthine and xanthine oxidase generates superoxide and hydrogen peroxide. In contrast to earlier works, recent spin trapping data (Kuppusamy, P., and Zweier, J.L. (1989) J. Biol. Chem. 264, 9880-9884) suggested that hydroxyl radical may also be a product of this reaction. Determining if hydroxyl radical results directly from the xanthine/xanthine oxidase reaction is important for 1) interpreting experimental data in which this reaction is used as a model of oxidant stress, and 2) understanding the pathogenesis of ischemia/reperfusion injury. Consequently, we evaluated the conditions required for hydroxyl radical generation during the oxidation of xanthine by xanthine oxidase. Following the addition of some, but not all, commercial preparations of xanthine oxidase to a mixture of xanthine, deferoxamine, and either 5,5-dimethyl-1-pyrroline-N-oxide or a combination of alpha-phenyl-N-tert-butyl-nitrone and dimethyl sulfoxide, hydroxyl radical-derived spin adducts were detected. With other preparations, no evidence of hydroxyl radical formation was noted. Xanthine oxidase preparations that generated hydroxyl radical had greater iron associated with them, suggesting that adventitious iron was a possible contributing factor. Consistent with this hypothesis, addition of H2O2, in the absence of xanthine, to "high iron" xanthine oxidase preparations generated hydroxyl radical. Substitution of a different iron chelator, diethylenetriaminepentaacetic acid for deferoxamine, or preincubation of high iron xanthine oxidase preparations with chelating resin, or overnight dialysis of the enzyme against deferoxamine decreased or eliminated hydroxyl radical generation without altering the rate of superoxide production. Therefore, hydroxyl radical does not appear to be a product of the oxidation of xanthine by xanthine oxidase. However, commercial xanthine oxidase preparations may contain adventitious iron bound to the enzyme, which can catalyze hydroxyl radical formation from hydrogen peroxide.  相似文献   

13.
Xanthine oxidase may be isolated from various mammalian tissues as one of two interconvertible forms, viz., a dehydrogenase (NAD+ dependent, form D) or an oxidase (O2 utilizing, form O). A crude preparation of rat liver xanthine dehydrogenase (form D) was treated with an immobilized preparation of crude bovine sulfhydryl oxidase. Comparison of the rates of conversion of xanthine dehydrogenase to the O form in the presence and absence of the immobilized enzyme indicated that sulfhydryl oxidase catalyzes such conversion. These results were substantiated in a more definitive study in which purified bovine milk xanthine oxidase, which had been converted to the D form by treatment with dithiothreitol, was incubated with purified bovine milk sulfhydryl oxidase. Comparison of measured rates of conversion (in the presence and absence of active sulfhydryl oxidase and in the presence of thermally denatured sulfhydryl oxidase) revealed that sulfhydryl oxidase enzymatically catalyzes the conversion of type D activity to type O activity in xanthine oxidase with the concomitant disappearance of its sulfhydryl groups. It is possible that the presence or absence of sulfhydryl oxidase in a given tissue may be an important factor in determining the form of xanthine-oxidizing activity found in that tissue.  相似文献   

14.
The absorption of xanthine oxidase into the bloodstream was studied in rabbits given a milk/cream preparation, fortified with 130 U bovine milk xanthine oxidase or the milk/cream preparation alone (control). The preparations were injected trans-abdominally into the intestines. The rise of plasma xanthine oxidase/dehydrogenase activity was studied with a radioenzymatic assay with and without NAD+. In rabbits, which received the fortified mixture, the plasma xanthine oxidase increase in 8 h was six times more than the increase in control animals (P less than 0.001). In both groups plasma xanthine dehydrogenase activity increased 3-4 times (P less than 0.001), without a significant difference between the two groups. We estimate that only 0.003%, or about 3 micrograms, of the xanthine oxidase added, is absorbed as an active enzyme from the intestine.  相似文献   

15.
Xanthine oxidoreductase (xanthine dehydrogenase + xanthine oxidase) is a complex enzyme that catalyzes the oxidation of hypoxanthine to xanthine, subsequently producing uric acid. The enzyme complex exists in separate but interconvertible forms, xanthine dehydrogenase and xanthine oxidase, which generate reactive oxygen species (ROS), a well known causative factor in ischemia/reperfusion injury and also in some other pathological states and diseases. Because the enzymes had not been localized in human corneas until now, the aim of this study was to detect xanthine oxidoreductase and xanthine oxidase in the corneas of normal post-mortem human eyes using histochemical and immunohistochemical methods. Xanthine oxidoreductase activity was demonstrated by the tetrazolium salt reduction method and xanthine oxidase activity was detected by methods based on cerium ion capture of hydrogen peroxide. For immunohistochemical studies. we used rabbit antibovine xanthine oxidase antibody, rabbit antihuman xanthine oxidase antibody and monoclonal mouse antihuman xanthine oxidase/xanthine dehydrogenase/aldehyde oxidase antibody. The results show that the enzymes are present in the corneal epithelium and endothelium. The activity of xanthine oxidoreductase is higher than that of xanthine oxidase, as clearly seen in the epithelium. Further studies are necessary to elucidate the role of these enzymes in the diseased human cornea. Based on the findings obtained in this study (xanthine oxidoreductase/xanthine oxidase activities are present in normal human corneas), we hypothesize that during various pathological states, xanthine oxidase-generated ROS might be involved in oxidative eye injury.  相似文献   

16.
Commercial, but not pure, preparations of xanthine oxidase in the absence of an aldehyde or xanthine were observed to inhibit Ca-uptake by the subcellular membranes isolated from the smooth muscle of the pig coronary artery. This inhibition was not due to xanthine oxidase but a contaminant in the preparation. The commercial preparation caused a greater relaxation of the PGF2 alpha contracted coronary artery than the pure enzyme. The tissues treated with the commercial xanthine oxidase partially lost the ability to contract subsequently to PGF2 alpha.  相似文献   

17.
Arthrobacter species strain FR-3, isolated from sediments of a swamp, produced a novel serine-type sulfide oxidase. The production of sulfide oxidase was maximal at pH 7.5 and 30 degrees C. Among various carbon and nitrogen sources tested, glucose and yeast extract were found to be the most effective substrates for the secretion of sulfide oxidase. The sulfide oxidase was purified to homogeneity and the molecular weight of the purified enzyme was 43 kDa when estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified sulfide oxidase can be effectively immobilized in DEAE (diethylaminoethyl)-cellulose matrix with a yield of 66%. The purified free and immobilized enzyme had optimum activity at pH 7.5 and 6.0, respectively. Immobilization increases the stability of the enzyme with respect to temperature. The half-life of the immobilized enzyme was 30 min at 45 degrees C, longer than that of the free enzyme (10 min). The purified free sulfide oxidase activity was completely inhibited by 1 mM Co2+ and Zn2+ and sulfhydryl group reagents (para-chloromercuribenzoic acid and iodoacetic acid). Catalytic activity was not affected by 1 mM Ca2+, Mg2+, Na+ and metal-chelating agent (EDTA).  相似文献   

18.
Rifamycin oxidase of Curvularia lunata was immobilized on polyacrylamide gel. The optimum pH and temperature for immobilized enzyme reaction were 6.5 and 50 °C, respectively. Enzyme stability increased on immobilization and the half lives of immobilized enzyme preparations at 30 and 40 °C were 30 and 11.5 d, respectively. With 2.5 mm beads diffusional resistances were observed. Reusability studies showed that 1 mm size beads gave a higher rate of transformation in comparison with 2 or 2.5 mm beads.  相似文献   

19.
Reoxygenation of isolated hepatocytes from fed rats after 3 h of anaerobic incubation led to a significantly enhanced loss of cell viability. No evidence for the participation of reactive oxygen species generated by xanthine oxidase in this reoxygenation injury was found. Conversion of xanthine dehydrogenase to xanthine oxidase occurred at a time when almost all of the hepatocytes had lost their viability. Furthermore, xanthine dehydrogenase was first released from the severely injured cells and then converted to the oxidase form. The results suggest that in the intact organ participation of reactive oxygen species, generated by xanthine oxidase, in reoxygenation injury may only occur when, upon reoxygenation, hypoxic cell injury in part of the tissue has progressed to such an extent that there is a significant conversion of xanthine dehydrogenase to xanthine oxidase.  相似文献   

20.
A biosensor for the specific determination of uric acid in urine was developed using urate oxidase (EC 1.7.3.3) in combination with a dissolved oxygen probe. Urate oxidase was immobilized with gelatin by means of glutaraldehyde and fixed on a pretreated teflon membrane to serve as enzyme electrode. The electrode response was maximum when 50 mM glycine buffer was used at pH 9.2 and 35 degrees C. The enzyme electrode response depends linearly on uric acid concentration between 5-40 microM with a response time of 5 min. The enzyme electrode is stable for more than 2 weeks and during this period over 35 assays were performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号