首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With an aim to study the mechanism of adaptation to acute hypoxic periods by hypoxia-tolerant catfish, Clarias batrachus, the mass-specific metabolic rate (VO2) along with its hematological parameters, metabolic response and antioxidant enzyme activities were studied. During progressive hypoxia, C. batrachus was found to be an oxyconformer and showed a steady decline in its aquatic oxygen consumption rate. When C. batrachus was exposed for different periods at experimental hypoxia level (0.98?±?0.1 mg/L, DO), hemoglobin and hematocrit concentrations were increased, along with decrease in mean cellular hemoglobin concentration, which reflected a physiological adaptation to enhance oxygen transport capacity. Significant increase in serum glucose and lactate concentration as well as lactate dehydrogenase activity was observed. Antioxidant enzymes were found to operate independently of one another, while total glutathione concentration was unaffected in any of the tissues across treatments. These observations suggested that hypoxia resulted in the development of oxidative stress and C. batrachus was able to respond through increase in the oxygen carrying capacity, metabolic depression and efficient antioxidant defense system to survive periods of acute hypoxia.  相似文献   

2.
Under conditions of experiment, effect of outer hypoxia on the hemoglobin heterogeneous system and respiratory blood characteristics were studied in the golden mullet Lisa aurata R. The control fish group was maintained at oxygen pressure of 158–162 gPa, the experimental group at 54–55 gPa. The exposure was 15 days, the water temperature—15°C. Under conditions of oxygen deficit in the mullet body there is noted development of a complex of compensatory reactions directed to maintenance of the oxygen blood capacity. Initially (the 1st–2nd day), the release of erythrocytes from spleen is noted, which increases the number of red blood cells and the hemoglobin concentration in blood (the emergency adaptation). Subsequently (the 10–15th day), there occur quantitative readjustments at the level of the hemoglobin system, which lead to an increase in the blood affinity to oxygen and to a decrease in its sensitivity to pH (the long-term adaptation). The revealed changes take place on the background of a decrease in volume of circulating erythrocytes, which reflects the character of change of erythrocytic parameters (MCV, MCHC) and seems to be a consequence of partial dehydration of blood plasma.  相似文献   

3.
Hematocrit ratio, hemoglobin concentration and blood oxygen affinity, Bohr effect factor and Hill coefficient, adenosine triphosphate and inositol pentaphosphate (IPP) concentrations were studied in blood of adult pigeons exposed first at 140 m, and then for 3 weeks at 4000 m in an altitude chamber. At altitude, the hematocrit ratio and hemoglobin concentration significantly increased, IPP concentration decreased, and P50 did not change. A lower mean red cell age and a higher hemoglobin concentration may account for the unchanged P50. Adaptation to hypoxia of the tissue oxygen supply was shown by a greater blood O2 capacitance (ΔCHbO2o2) in the physiological range of oxygen partial pressures.  相似文献   

4.
Hemoglobin affinity to oxygen, enzyme activity and metabolite concentration of carbohydrate metabolism were determined in erythrocytes of rats which were administered insulin solution. A valid decrease of the hemoglobin value P50 (pressure of hemoglobin half-saturation with oxygen), as well as a decrease of the enzyme activity of 2,3-diphosphoglycerate shunt and increase of the activity of regulatory glycolysis enzymes--hexokinase and pyruvate kinase in erythrocytes with multiple introduction of hormones to animals have been established. Such changes in rat erythrocytes were registered with the simultaneous effect of insulin and hypoxic hypoxia evoked by the "lift" of rats in the altitude chamber to the conditional altitude of 9000 m. It is found out that preliminary injection of insulin considerably increases survivability of rats under hypoxic hypoxia at great altitudes.  相似文献   

5.
Neuroblastoma cells, cultivated on plastic dishes, in presence of 15 mM glucose resist very well to hypoxia. Cells incubated on plastic dishes, if left unshaken, showed a Pasteur effect at an oxygen concentration below 10%. Oxygen diffusion was the limiting factor in these plastic dishes since improved oxygen diffusion, as a result of shaking, decreased the lactate production considerably at all oxygen concentrations used. When cells were cultivated on Petriperm® dishes, coated with polylysine, oxygen diffusion was no longer a rate-limiting factor: less lactate was produced at 21% O2 and hypoxia, down to 2.5% O2 did not show any increase in the rate of lactate production, while Antimycin A drastically increased the glycolytic rate.A situation of limited oxygen availability resulted in two different kinds of adaptation of the neuroblastoma cells: first an instantaneous metabolic regulation leading to an increased glycolytic rate—the Pasteur effect—followed later by an increase in the activities of the glycolytic enzymes-hexokinase (EC 2.7.1.1), phosphoglucose isomerase (EC 5.3.1.9), 6-phosphofructokinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40) and lactate dehydrogenase (EC 1.1.1.27) and a simultaneous decrease of the mitochondrial cytochrome c oxidase (EC 1.9.3.1) activity.However, when the glucose concentration in the medium was decreased to 5 mM the cells were affected by hypoxia already at 5% O2: cells released lactate dehydrogenase extracellularly and their protein content was decreased. This toxic effect of hypoxia was related to the exhaustion of the glucose supply.  相似文献   

6.
Changes of hematocrit, hemoglobin, and blood plasma glucose and Na+ and K+ content in response to hypoxia were studied in three Black Sea fish species. It was shown that in response to hypoxia in low-mobile rock perch Scorpaena porcus L., hematocrit and the blood plasma glucose level increased, while the content of K+ in erythrocytes decreased and the content of Na+ increased. In moderately mobile sea carp Diplodus annularis L. autogenic hypoxia caused a rise of hematocrit and blood plasma glucose. In actively swimming jack mackerel Trachurus mediterraneus ponticus Aleev, only considerable increase of Na+ content was revealed in hypoxia. The obtained results indicate that fish with different mobility under hypoxic conditions use different adaptation mechanisms. The value and direction of changes of the chosen parameters can be used to determine resistance of fish to oxygen deficit.  相似文献   

7.
We demonstrated that exogenous pyruvate promotes survival under glucose depletion in aerobic mutant p53 (R175H) human melanoma cells. Others subsequently indicated that mutant p53 tumor cells undergo p53 degradation and cell death under aerobic glucose-free conditions. Since glucose starvation occurs in hypoxic gradients of poorly vascularized tumors, we investigated the role of p53 siRNA under hypoxia in wt p53 C8161 melanoma using glucose starvation or 5 mM physiological glucose. p53 Silencing decreased survival of glucose-starved C8161 melanoma with pyruvate supplementation under hypoxia (?1% oxygen), but increased resistance to glycolytic inhibitors oxamate and 2-deoxyglucose in 5 mM glucose, preferentially under normoxia. Aiming to counteract hypoxic tumor cell survival irrespective of p53 status, genetically-matched human C8161 melanoma harboring wt p53 or mutant p53 (R175H) were used combining true hypoxia (?1% oxygen) and hypoxia mimetic CoCl2. No significant decrease in metabolic activity was evidenced in C8161 melanoma irrespective of p53 status in 2.5 mM glucose after 48 h of physical hypoxia. However, combining the latter with 100 μM CoCl2 was preferentially toxic for mutant p53 C8161 melanoma, and was enhanced by catalase in wt p53 C8161 cells. Downregulation of MnSOD and LDHA accompanied the toxicity induced by hypoxia and CoCl2 in 5 mM glucose, and these changes were enhanced by oxamate or 2-deoxyglucose. Our results show for the first time that survival of malignant cells in a hypoxic microenvironment can be counteracted by hypoxia mimetic co-treatment in a p53 dependent manner.  相似文献   

8.
Eight healthy male animals were inducted and kept for 2 1/2 years at 3 650 m altitude and subjected to normal work schedules. Physiological measurements viz. heart rate, blood pressure, minute ventilation, oxygen consumption, respiration rate, hemoglobin, packed cell haematocrit volume and eosinophil count were made on these animals at periodic intervals. On acute induction to an altitude of 3 650 m these animals demonstrated a sudden increase in tidal volume, a decrease in Rf and no change in VE, suggesting a decreased dead space/tidal volume ratio at altitude.However, all these changes stabilised within 3 weeks but on prolongation of stay, the physical state of these animals was adversely affected. The respiratory adjustments occurring on return to sea level appear to be a response to thermal stress. The initial increase in heart rate and blood pressure stabilised by the 2nd week.  相似文献   

9.
Extreme environmental conditions present challenges for thermoregulation in homoeothermic organisms such as mammals. Such challenges are exacerbated when two stressors are experienced simultaneously and each stimulus evokes opposing physiological responses. This is the case of cold, which induces an increase in thermogenesis, and hypoxia, which suppresses metabolism conserving oxygen and preventing hypoxaemia. As an initial approach to understanding the thermoregulatory responses to cold and hypoxia in a small mammal, we explored the effects of acclimation to these two stressors on the body temperature (Tb) and the daily and ultradian Tb variations of Sprague-Dawley rats. As Tb is influenced by sleep-wake cycles, these Tb variations reflect underlying adjustments in set-point and thermosensitivity. The Tb of rats decreased precipitously during initial hypoxic exposure which was more pronounced in cold (Tb=33.4±0.13) than in room temperature (Tb=35.74±0.17) conditions. This decline was followed by an increase in Tb stabilising at a new level ~0.5 °C and ~1.4 °C below normoxic values at room and cold temperatures, respectively. Daily Tb variations were blunted during hypoxia with a greater effect in the cold. Ultradian Tb variations exhibited daily rhythmicity that disappeared under hypoxia, independent of ambient temperature. The adjustments in Tb during hypoxia and/or cold are in agreement with the hypothesis that an initial decrease in the Tb set-point is followed by its partial re-establishment with chronic hypoxia. This rebound of the Tb set-point might reflect cellular adjustments that would allow animals to better deal with low oxygen conditions, diminishing the drive for a lower Tb set-point. Cold and hypoxia are characteristic of high altitude environments. Understanding how mammals cope with changes in oxygen and temperature will shed light into their ability to colonize new environments along altitudinal clines and increase our understanding of how Tb is regulated under stimuli that impose contrasting physiological constraints.  相似文献   

10.
Red blood cells are involved not only in transportation of oxygen and carbon dioxide but also in autoregulation of vascular tone by ATP release in hypoxic conditions. Molecular mechanisms of the ATP release from red blood cells in response to a decrease in partial oxygen pressure still remain to be elucidated. In this work we have studied effects of hypoxia on red blood cell hemolysis in humans and rats and compared the effects of inhibitors of ecto-ATPase and pannexin on the release of ATP and hemoglobin from rat erythrocytes. The 20-min hypoxia at 37°C increased hemolysis of red blood cells in humans and rats 1.5- and 2.5-fold, respectively. In rat erythrocytes a significant increase in hypoxia-induced extracellular ATP level was found only in the presence of ecto-ATPase inhibitor ARL 67156. In these conditions we observed a positive correlation (R2 = 0.5003) between the increase in free hemoglobin concentration and the ATP release. Neither carbenoxolon nor probenecid, the inhibitors of low-selectivity pannexin channels, altered the hypoxia-induced ATP release from rat erythrocytes. The obtained results indicate a key role of hemolysis in the ATP release from red blood cells.  相似文献   

11.
While bar-headed geese are renowned for migration at high altitude over the Himalayas, previous work on captive birds suggested that these geese are unable to maintain rates of oxygen consumption while running in severely hypoxic conditions. To investigate this paradox, we re-examined the running performance and heart rates of bar-headed geese and barnacle geese (a low altitude species) during exercise in hypoxia. Bar-headed geese (n = 7) were able to run at maximum speeds (determined in normoxia) for 15 minutes in severe hypoxia (7% O2; simulating the hypoxia at 8500 m) with mean heart rates of 466±8 beats min−1. Barnacle geese (n = 10), on the other hand, were unable to complete similar trials in severe hypoxia and their mean heart rate (316 beats.min−1) was significantly lower than bar-headed geese. In bar-headed geese, partial pressures of oxygen and carbon dioxide in both arterial and mixed venous blood were significantly lower during hypoxia than normoxia, both at rest and while running. However, measurements of blood lactate in bar-headed geese suggested that anaerobic metabolism was not a major energy source during running in hypoxia. We combined these data with values taken from the literature to estimate (i) oxygen supply, using the Fick equation and (ii) oxygen demand using aerodynamic theory for bar-headed geese flying aerobically, and under their own power, at altitude. This analysis predicts that the maximum altitude at which geese can transport enough oxygen to fly without environmental assistance ranges from 6,800 m to 8,900 m altitude, depending on the parameters used in the model but that such flights should be rare.  相似文献   

12.
A microbial sensor consisting of immobilized living whole cells of Brevibacterium lactofermentum and an oxygen electrode was prepared for continuous determination of total assimilable sugars (glucose, fructose and sucrose) in a fermentation broth for glutamic acid production. Total assimilable sugars were evaluated from oxygen consumption by the immobilized microorganisms. When a sample solution containing glucose was applied to the sensor system, increased consumption of oxygen by the microorganisms caused a decrease in the dissolved oxygen around the Teflon membrane of the oxygen electrode and the current of the electrode decreased markedly with time until steady state was reached. The response time was ≈ 10 min by the steady state method and 1 min by the pulse method. A linear relationship was found between the decrease in current and the concentration of glucose (<1 mM), fructose (<1 mM) and sucrose (<0.8 mM). The ratio of the sensitivity of the microbial sensor to glucose, fructose and sucrose was 1.00:0.80:0.92. The decrease in current was reproducible to within 2% of the relative standard deviation when a sample solution containing glucose (0.8 mM) was employed for experiments. The selectivity of the microbial sensor for assimilable sugars was satisfactory for use in the fermentation process. The additivity of the response of the microbial sensor for glucose, fructose and sucrose was examined. The difference between the observed and calculated values was within 8%. The microbial sensor was applied to a fermentation broth for glutamic acid production. Total assimilable sugars can be determined by the microbial sensor which can be used for more than 10 days and 960 assays.  相似文献   

13.
The study was carried out on 17 healthy males aged 20-27 years subjected for 15 minutes to submaximal effort on a cycle ergometer (Elema-Schonander) under conditions of breathing ambient atmospheric air or a helium-oxygen mixture (20% O2 + 80% He) and under hypobaric pressure simulating an altitude of 3500 m above sea level. During the experiment the heart rate was recorded with ECG, and determinations were performed of the minute volume, respiratory rate, tidal volume and systolic arterial blood pressure. In the serum of venous blood obtained before and 3 minutes after the exercise the concentrations were measured of lactate (LA), pyruvate (PA) and glucose. High-altitude hypoxia caused unifavourable changes in the adaptation to effort manifesting themselves as an increase of the values of the determined physiological and biochemical indices. On the other hand, favourable changes were observed of the reaction to exercise while the subjects were breathing the helium-oxygen mixture during high-altitude hypoxia. The minute volume increased owing to increased tidal volume, and the exercise-induced rise of lactate (LA), pyruvate (PA) and the LA/PA ratio was lower. This may suggest reduced energy cost of respiration and reduced anaerobic metabolism under these conditions.  相似文献   

14.
Hypobaric hypoxia induces oxidative stress in rat brain   总被引:7,自引:0,他引:7  
High altitude exposure results in decreased partial pressure of oxygen and an increased formation of reactive oxygen and nitrogen species (RONS), which causes oxidative damage to lipids, proteins and DNA. Exposure to high altitude appears to decrease the activity and effectiveness of antioxidant enzyme system. The antioxidant system is very less in brain tissue and is very much susceptible to hypoxic stress. The aim of the present study was to investigate the time dependent and region specific changes in cortex, hippocampus and striatum on oxidative stress markers on chronic exposure to hypobaric hypoxia. The rats were exposed to simulated high altitude equivalent to 6100 m in animal decompression chamber for 3 and 7 days. Results indicate an increase in oxidative stress as seen by increase in free radical production, nitric oxide level, lipid peroxidation and lactate dehydrogenase levels. The magnitude of increase in oxidative stress was more in 7 days exposure group as compared to 3 days exposure group. The antioxidant defence system such as reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and reduced/oxidized glutathione (GSH/GSSG) levels were significantly decreased in all the three regions. The observation suggests that the hippocampus is more susceptible to hypoxia than the cortex and striatum. It may be concluded that hypoxia differentially affects the antioxidant status in the cortex, hippocampus and striatum.  相似文献   

15.
Alterations in coronary blood flow associated with adaptation to high altitude were examined. Three normal men native to low altitude were studied, first at sea level, and again after 10 days' sojourn at 3,100 m altitude. During rest at high altitude, a 32% decrease in coronary blood flow was largely offset by a 28% increase in coronary arterial O2 extraction to maintain myocardial O2 delivery. The increase in O2 extraction resulted mainly from a decrease in coronary sinus blood O2 content and saturation. However, coronary sinus O2 tension remained constant, implying a decrease in the affinity of hemoglobin for O2. These observations are consistent with the hypothesis that coronary blood flow is regulated to maintain constant myocardial tissue O2 tension (as reflected here by coronary sinus blood O2 tension). The absence of a decrease in coronary sinus O2 tension or a decrease in myocardial lactate extraction imply that myocardial hypoxia did not develop. Therefore, myocardial hypoxia is not the basis for the decrease in cardiac stroke volume at high altitude reported previously and also observed in the present study.  相似文献   

16.
Studies performed in the Andean plateau, one of the highest inhabited areas in the world, have reported that reduced availability of oxygen is associated to fetal growth retardation and lower birth weight, which are established predictors of morbidity and mortality during the first year of life. To test this hypothesis, perinatal variables of neonates born at the Juan Noé Hospital of Arica, Chile, were analyzed in relation to altitude of residence and Aymara ancestry of their mothers. The study population comprised the offspring of 5,295 mothers born between February 2004 and August 2010. Information included birth weight, height, head circumference, gestational age, altitude of residence and socioeconomic status, and was obtained from medical records. Mother´s ancestry was assessed based on surnames which were linked to percentages of Aymara admixture estimates relying on 40 selected ancestry informative markers. After correcting for the effect of multicollinearity among predictor variables, neonates born to mothers with an increased component of Aymara ancestry showed significantly higher birth weight and height at sea level, a marginally significant (p-value 0.06) decrease of birth weight and a significant decrease of height with altitude in comparison with the offspring of mothers with low Aymara ancestry. Since observed tendencies are suggestive of a possible genetic adaptation to hypoxia of the Chilean Aymara, we discuss briefly preliminary evidence related to fetal oxygen transport, particularly polymorphisms in the promoters of the HBG1 and HBG2 genes that are modulators of HbF synthesis, obtained in this ethnic group.  相似文献   

17.
 High altitude stress leads to lipid peroxidation and free radical formation which results in cell membrane damage in organs and tissues, and associated mountain diseases. This paper discusses the changes in biochemical parameters and antibody response on feeding glutamate to male albino Sprague Dawley rats under hypoxic stress. Exposure of rats to simulated hypoxia at 7576 m, for 6 h daily for 5 consecutive days, in an animal decompression chamber at 32±2° C resulted in an increase in plasma malondialdehyde level with a concomitant decrease in blood glutathione (reduced) level. Supplementation of glutamate orally at an optimal dose (27 mg/kg body weight) in male albino rats under hypoxia enhanced glutathione level and decreased malondialdehyde concentration significantly. Glutamate feeding improved total plasma protein and glucose levels under hypoxia. The activities of serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) and the urea level remained elevated on glutamate supplementation under hypoxia. Glutamate supplementation increased the humoral response against sheep red blood cells (antibody titre). These results indicate a possible utility of glutamate in the amelioration of hypoxia-induced oxidative stress. Received: 23 March 1998 / Accepted: 19 October 1998  相似文献   

18.
Dynamics of hemoglobin, ceruloplasmin concentration, the changes of chemiluminescence in blood plasma and kinetics of rat erythrocyte heat denaturation during consequent exposition of high altitude hypoxia and hyperbaric oxygenation have been studied. Severe hypoxia causes the decrease of extraerythrocyte hemoglobin and oxidase activity of ceruloplasmin. Reoxygenation results in significant increase of blood plasma chemiluminescence with simultaneous increase of extraerythrocyte hemoglobin level and with modification of surface structure of the erythrocyte membranes. Possible pathways of activation of oxygen-dependent of free-radical processes during reoxygenation are discussed.  相似文献   

19.
Global warming is a threat across the world that leads to estimates of the upper thermal limits of ectothermic species. Increased water temperature up-regulates oxygen consumption and metabolic rates, and alters the physiological processes. In this study, we identified the critical thermal maxima (CTmax) and physiological responses under normoxia and hypoxia in Nile tilapia, Oreochromis niloticus. CTmax was 41.25 °C under hypoxia and 44.50 °C under normoxia. Compared to normoxia, lower values of hemoglobin (Hb) and red blood cells (RBCs) were observed at the CTmax under hypoxia. In contrast, higher values of white blood cells (WBCs) and blood glucose (Glu) levels were observed at the CTmax under hypoxia. Consequently, higher frequencies of micronucleus, cellular and nuclear abnormalities of erythrocytes were observed at the CTmax under hypoxia. These results suggest that high temperature tolerance and subsequent physiology are significantly affected by the oxygen supply in Nile tilapia. As climate vulnerability is intensifying day by day, this data will be helpful in successful management practice for the aquatic environment having low oxygen content.  相似文献   

20.
The influence of monoamine oxidase type A inhibitor pyrazidol on rats sensitivity to hypobaric hypoxia was investigated. Preliminary pyrazidol administration shows evident protective effect under hypoxia. It increases animals survival at the altitude of 12,000 m above the sea level, prevents lungs affection and erythrocyte membrane destabilization at the altitude of 9,000 m during 3 hours. Plasma total peroxidase activity, extraerythrocyte hemoglobin concentration and free iron content were used as the indexes of erythrocyte membrane stability reflecting the organism state under stress effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号