首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The fibers of drum and trunk muscles of the Tigerfish, Therapon jarbua, differ greatly in diameter. The myofibrils of the trunk muscles are irregularly oriented, while those of the drum muscles are rolled into spiral or concentric bands. Both muscle types possess the sarcomere structure typical of cross-striated musculature. However, the myofibrils of the drum muscles differ greatly in sarcomere length and width from those in the trunk musculature. The trunk muscles contain few mitochondria, whereas in the drum muscles mitochondria are abundant. The sarcoplasmic reticulum (SR) of the drum muscles takes the form of elongated tubes in both the A and the I region; that of the trunk musculature consists of small vesicles. Of the two muscle types, the drum muscle contains more SR. With respect to the form of the T system, the trunk musculature is of the Z type and the drum muscles of the A-I type. The drum muscle displays a considerably greater number of motor endplates; these lack typical junctional folds and have mitochondria with very few cristae. No fat could be demonstrated in either the drum or the trunk muscles. However, the concentration of glycogen is higher in the drum muscle than in the musculature of the trunk.This work was accomplished with support from the Deutsche Forschungsgemeinschaft and is gratefully dedicated to Prof. R. Danneel on the occasion of his 75th birthday.  相似文献   

3.
Great diversity is found in morphology and functionality of arthropod appendages, both along the body axis of individual animals and between different life-cycle stages. Despite many branchiopod crustaceans being well known for displaying a relatively simple arrangement of many serially post-maxillary appendages (trunk limbs), this taxon also shows an often unappreciated large variation in appendage morphology. Diplostracan branchiopods exhibit generally a division of labor into locomotory antennae and feeding/filtratory post-maxillary appendages (trunk limbs). We here study the functionality and morphology of the swimming antennae and feeding appendages in clam shrimps and cladocerans and analyze the findings in an evolutionary context (e.g., possible progenetic origin of Cladocera). We focus on Cyclestheria hislopi (Cyclestherida), sister species to Cladocera and exhibiting many “large” branchiopod characters (e.g., many serially similar appendages), and Sida crystallina (Cladocera, Ctenopoda), which likely exhibits plesiomorphic cladoceran traits (e.g., six pairs of serially similar appendages). We combine (semi-)high-speed recordings of behavior with confocal laser scanning microscopy analyses of musculature to infer functionality and homologies of locomotory and filtratory appendages in the two groups. Our morphological study shows that the musculature in all trunk limbs (irrespective of limb size) of both C. hislopi and S. crystallina comprises overall similar muscle groups in largely corresponding arrangements. Some differences between C. hislopi and S. crystallina, such as fewer trunk limbs and antennal segments in the latter, may reflect a progenetic origin of Cladocera. Other differences seem related to the appearance of a specialized type of swimming and feeding in Cladocera, where the anterior locomotory system (antennae) and the posterior feeding system (trunk limbs) have become fully separated functionally from each other. This separation is likely one explanation for the omnipresence of cladocerans, which have conquered both freshwater and marine free water masses and a number of other habitats.  相似文献   

4.
Growth in volume of common dentex Dentex dentex and turbot Psetta maxima during larval development was studied by means of a quantitative histological method. A two‐phase pattern of volume increase was recorded for both species, turbot volume being always higher than dentex volume. During the first phase, the increase was small but during the second phase volume rose sharply from 22 days post hatch (dph) and 17 dph onwards in dentex and turbot, respectively. In dentex, the specific growth rate ( G ) of the whole larva as well as that of all the structures studied (nervous tissue, trunk musculature, digestive tract, liver, pancreas, spleen and thymus) was always higher during the second phase, whereas in turbot, only total volume of the larva, trunk musculature and nervous tissue had a higher G during the same period. The pattern of allometric growth of digestive organs was similar for both species. These organs showed an initial positive allometric growth that later became near‐isometric (digestive tract and liver) or negative (pancreas). In dentex, nervous tissue and trunk musculature showed near‐isometry throughout the period studied. In turbot, nervous tissue exhibited negative allometry and trunk musculature changed from negative to positive allometry. In both species studied, the highest allometry coefficients were recorded for digestive organs before the larva switched to strict exotrophy. This would indicate the importance of the development of these organs for survival.  相似文献   

5.
Accurate quantification of the trunk transient response to sudden loading is crucial in prevention, evaluation, rehabilitation and training programs. An iterative dynamic kinematics-driven approach was used to evaluate the temporal variation of trunk muscle forces, internal loads and stability under sudden application of an anterior horizontal load. The input kinematics is hypothesized to embed basic dynamic characteristics of the system that can be decoded by our kinematics-driven approach. The model employs temporal variation of applied load, trunk forward displacement and surface EMG of select muscles measured on two healthy and one chronic low-back pain subjects to a sudden load. A finite element model accounting for measured kinematics, nonlinear passive properties of spine, detailed trunk musculature with wrapping of global extensor muscles, gravity load and trunk biodynamic characteristics is used to estimate the response under measured sudden load. Results demonstrate a delay of ~200 ms in extensor muscle activation in response to sudden loading. Net moment and spinal loads substantially increase as muscles are recruited to control the trunk under sudden load. As a result and due also to the trunk flexion, system stability significantly improves. The reliability of the kinematics-driven approach in estimating the trunk response while decoding measured kinematics is demonstrated. Estimated large spinal loads highlight the risk of injury that likely further increases under larger perturbations, muscle fatigue and longer delays in activation.  相似文献   

6.
The primary musculature of Sagitta is mainly made up of two kinds of alternating fibers, A and B. These fibers differ markedly in their localization in the muscular tissue, by the development of their SR and their mitochondria, and the shape of their myofibrils. Their contractile apparatus is similar and possesses myofibrils of regular thickness with very short I bands, flanked by invaginations which are large compartments communicating with the extracellular space. This fiber diversity appears and is maintained in the presence of an apparent common innervation. Nerve endinglike structures are scattered in the epidermis against the basement membrane and there are no nerves beneath this. The presence of at least two kinds of fibers in the primary musculature and the presence of the secondary musculature would suggest that the displacements of sagitta may be more complex than is generally admitted. The specializations of the trunk musculature underline the degree of specialization in the Chaetognatha phylum.  相似文献   

7.
Arthropods are characterized by a rigid, articulating, exoskeleton operated by a lever‐like system of segmentally arranged, antagonistic muscles. This skeletomuscular system evolved from an unsegmented body wall musculature acting on a hydrostatic skeleton, similar to that of the arthropods’ close relatives, the soft‐bodied onychophorans. Unfortunately, fossil evidence documenting this transition is scarce. Exceptionally‐preserved panarthropods from the Cambrian Lagerstätte of Sirius Passet, Greenland, including the soft‐bodied stem‐arthropod Pambdelurion whittingtoni and the hard‐bodied arthropods Kiisortoqia soperi and Campanamuta mantonae, are unique in preserving extensive musculature. Here we show that Pambdelurion's myoanatomy conforms closely to that of extant onychophorans, with unsegmented dorsal, ventral and longitudinal muscle groups in the trunk, and extrinsic and intrinsic muscles controlling the legs. Pambdelurion also possesses oblique musculature, which has previously been interpreted as an arthropodan characteristic. However, this oblique musculature appears to be confined to the cephalic region and first few body segments, and does not represent a shift towards arthropodan myoanatomy. The Sirius Passet arthropods, Kiisortoqia and Campanamuta, also possess large longitudinal muscles in the trunk, although, unlike Pambdelurion, they are segmentally divided at the tergal boundaries. Thus, the transition towards an arthropodan myoanatomy from a lobopodian ancestor probably involved the division of the peripheral longitudinal muscle into segmented units.  相似文献   

8.
We investigated the development of dorsoventral and longitudinalmusculature in all postembryonic stages of the kinorhynch Pycnophyeskielensis. Although the earliest stages have only 8 externallyseparated trunk segments, they already possess dorsoventralmuscles for 10 (prospective) trunk segments. The last, 11th,pair is added in the third juvenile stage. Longitudinal musculature,in contrast, is slower to develop and reaches its full lengthonly in the adult. In several juvenile individuals, single fibersproject from the longitudinal musculature into the followingsegments. In all juvenile stages, longitudinal muscles are continuousbetween segments, whereas in adults they are segmentally separatedfrom each other. Such late occurrence of a segmental patternin the longitudinal musculature is in contrast to patterns ofmuscle development in arthropods and annelids.  相似文献   

9.
Despite the acknowledged importance of the locomotory and respiratory functions associated with hypaxial musculature in salamanders, variation in gross morphology of this musculature has not been documented or evaluated within a phylogenetic or ecological context. In this study, we characterize and quantify the morphological variation of lateral hypaxial muscles using phylogenetically and ecologically diverse salamander species from eight families: Ambystomatidae (Ambystoma tigrinum), Amphiumidae (Amphiuma tridactylum), Cryptobranchidae (Cryptobranchus alleganiensis), Dicamptodontidae (Dicamptodon sp.), Plethodontidae (Gyrinophilus porphyriticus), Proteidae (Necturus maculosus), Salamandridae (Pachytriton sp.), and Sirenidae (Siren lacertina). For the lateral hypaxial musculature, we document 1) the presence or absence of muscle layers, 2) the muscle fiber angles of layers at mid‐trunk, and 3) the relative dorsoventral positions and cross‐sectional areas of muscle layers. Combinations of two, three, or four layers are observed. However, all species retain at least two layers with opposing fiber angles. The number of layers and the presence or absence of layers vary within species (Necturus maculosus and Siren lacertina), within genera (e.g., Triturus), and within families. No phylogenetic pattern in the number of layers can be detected with a family‐level phylogeny. Fiber angle variation of hypaxial muscles is considerable: fiber angles of the M. obliquus externus range from 20–80°; M. obliquus internus, 14–34°; M. transversus abdominis, 58–80° (acute angles measured relative to the horizontal septum). Hypaxial musculature comprises 17–37% of total trunk cross‐sectional area. Aquatic salamanders show relatively larger total cross‐sectional hypaxial area than salamanders that are primarily terrestrial. J. Morphol. 241:153–164, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Using cytochrome C-oxidase staining, different types of somatic musculature were clearly distinguished in the gymnotoid fish Eigenmannia virescens. Except for a few thin fibres in the region of the horizontal septum, which stained faintly, no others in the trunk muscle stained. Strong staining appeared in the fibres of the anal fin muscles. According to the classification of fish musculature into white, intermediate and red, only the locomotory organ of this fish has red fibres, whereas the trunk muscles are white. The red muscles along the horizontal septum, found in all other fish which have been investigated in this respect, seem to be absent. This is noteworthy since the anal fin alone provides locomotion while the trunk muscles are responsible for posture only.  相似文献   

11.
The existence of a unique sarcomeric actin is demonstrated in teleosts that possess substantial amounts of slow skeletal muscle in the trunk. The slow skeletal isotype is conserved. There is one amino acid substitution between Atlantic herring slow skeletal actin and the equivalent in salmonids. Conversely, the intra-species variation is considerable; 13 substitutions between different herring skeletal isotypes (slow versus fast). The isomorphisms (non-conservative underlined: residues, 2, 3, 103, 155, 160, 165, 278, 281, 310, 329, 358, 360 and 363) are restricted to sub-domains 1 and 3 and include the substitution Asp-360 in 'slow' to Gln in 'fast' which results in an electrophoretic shift at alkaline pH. The musculature of the trunk facilitates the preparation of isoactins for biochemical study. Herring slow skeletal G-actin (Ca.ATP) is more susceptible to thermal, and urea, -induced denaturation and subtilisin cleavage than that in fast skeletal, but more stable than the counterpart in salmonids (one substitution, Gln354Ala) highlighting the critical nature of actin's carboxyl-terminal insert. Fluorescent spectra of G-actin isoforms containing the isomorphism Ser155Ala in complexation with 2'-deoxy 3' O-(N'-Methylanthraniloyl) ATP infer similar polarity of the nucleotide binding cleft. An electrophoretic survey detected two skeletal actins in some (smelt and mackerel) but not all teleosts. One skeletal muscle actin was detected in frog and bird.  相似文献   

12.
M Duvert  C Salat 《Tissue & cell》1979,11(2):217-230
The histology of the Chaetognath's trunk is largely based upon works of Hertwig (1880) and Burfield (1927) and is revised here essentially on ultrastructural basis, in a study on Sagitta setosa. The trunk is composed of a thick multilayered epidermis, without cuticle, and contains an abundant nervous system. It is separated from the underlying general musculature by a "basement membrane" which is not crossed by nerves fibres in the region of the ventral ganglion. We have been mainly interested in the muscular tissue. It has no close contact with the body cavity but is surrounded by a thin monolayer epithelium. The general musculature is composed of two types of muscles. The first one, forming the primary musculature, is divided by mesenteries and lateral fields into four quadrants. It contains groups of fibres (C then A) alternating with other groups of fibres (B). The second one, constituting the secondary musculature, is divided into four bands. Both types of fibres are readily identifiable by their myofibrils. The fibres of primary musculature, in close contact with their membrane level, have no basement lamina except at the myoepidermic junctions.  相似文献   

13.
The larval trunk morphology including chaetotaxy, locomotory structures, and trunk musculature of Heterobathmia pseuderiocrania, Eriocrania cicatricella, and Acanthopteroctetes unifascia is described using conventional light, polarization, and scanning electron microscopy. The ground plan morphology of the lepidopteran larva and neolepidopteran caterpillar is discussed in light of the life history succession from free soil dwelling organism to endophagous and finally to a primarily free living, angiosperm associated organism. I suggest that the larval morphology is argued to be strongly influenced by the shift in number of surfaces present in the larval environment. Especially the environment of the endophagous species, where the upper surface of the leaf mine is linked to the presence of dorsal locomotory structures such as the retractable calli and dorsal friction patches is proposed to have had a significant impact on the morphology and locomotory mechnism of the lepidopteran caterpillar. The chaetotaxy of the lepidopteran ground plan is found to be simple, consisting only of primary and secondary tactile setae and segmental proprioceptors. The presumption of Gerasimov ([1935] Zool Anz 112:177–194) that MXD1 of the prothorax is a shifted mesothoracic MD setae is supported. I suggest that the serial arrangement of the proprioceptors MD1, present on all trunk segments except the prothorax, and a trisetous MV group on all the thoracic segments is part of the lepidopteran larval ground plan. The absence of apodeme structures associated with trunk musculature in the nonglossatans suggests that this is an autapomorphic character of the Lepidoptera and it is further found to have been influential in the evolution of the typical caterpillar trunk. The attachments of the thoracic muscles directly to the trunk integument, suggest that the apodemal structures ancestral to the Amphiesmenoptera have been reduced in the Lepidoptera. Within the non‐Neolepidoptera, the lifehistory shift may have resulted in reduction of the dorsal locomotory structures, such as calli. The abdominal musculature and structural similarities further suggest that the ventral calli are structural predecessors to the crotchet bearing proleg of the “typical caterpillar.” J. Morphol. 274:1239–1262, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
SYNOPSIS. The axial musculature of all vertebrates consistsof two principal masses, the epaxial and hypaxial muscles. Theprimitive function of both axial muscle masses is to generatelateral bending of the trunk during swimming, as is seen inmost fishes. Within amphibians we see multiple functional andmorphological elaborations of the axial musculature. These elaborationsappear to be associated not only with movement into terrestrialhabits (salamanders), but also with subsequent locomotor specializationsof two of the three major extant amphibian clades (frogs andcaecilians). Salamanders use both epaxial and hypaxial musclesto produce lateral bending during swimming and terrestrial,quadrupedal locomotion. However during terrestrial locomotionthe hypaxial muscles are thought to perform an added function,resisting long-axis torsion of the trunk. Relative to salamanders,frogs have elaborate epaxial muscles, which function to bothstabilize and extend the iliosacral and coccygeosacral joints.These actions are important in the effective use of the hindlimbsduring terrestrial saltation and swimming. In contrast, caecilianshave relatively elaborate hypaxial musculature that is linkedto a helix of connective tissue embedded in the skin. The helixand associated hypaxial muscles form a hydrostatic skeletonaround the viscera that is continuously used to maintain bodyposture and also contributes to forward force production duringburrowing.  相似文献   

15.
A hominine hip bone, KNM-ER 3228, from East Lake Turkana, Kenya   总被引:1,自引:0,他引:1  
A male hominine partial hip bone, KNM -ER 3228, from East Lake Turkana , Kenya is described. In most of its features this specimen resembles modern human male hip bones. This is especially true for functional features related to weight transfer from the trunk to the pelvis and within the pelvis, and to the effective action of musculature arising from the pelvis during the performance of the modern human type of bipedalism . KNM -ER 3228 is very similar to the Olduvai Hominid 28 and the Arago XLIV hip bones, both attributed to Homo erectus .  相似文献   

16.
The perivertebral musculature of lizards is critical for the stabilization and the mobilization of the trunk during locomotion. Some trunk muscles are also involved in ventilation. This dual function of trunk muscles in locomotion and ventilation leads to a biomechanical conflict in many lizards and constrains their ability to breathe while running (“axial constraint”) which likely is reflected by their high anaerobic scope. Furthermore, different foraging and predator‐escape strategies were shown to correlate with the metabolic profile of locomotor muscles in lizards. Because knowledge of muscle's fiber‐type composition may help to reveal a muscle's functional properties, we investigated the distribution pattern of muscle fiber types in the perivertebral musculature in two small lizard species with a generalized body shape and subjected to the axial constraint (Dipsosaurus dorsalis, Acanthodactylus maculatus) and one species that circumvents the axial constraint by means of gular pumping (Varanus exanthematicus). Additionally, these species differ in their predator‐escape and foraging behaviors. Using refined enzyme‐histochemical protocols, muscle fiber types were differentiated in serial cross‐sections through the trunk, maintaining the anatomical relationships between the skeleton and the musculature. The fiber composition in Dipsosaurus and Acanthodactylus showed a highly glycolytic profile, consistent with their intermittent locomotor style and reliance on anaerobic metabolism during activity. Because early representatives of diapsids resemble these two species in several postcranial characters, we suggest that this glycolytic profile represents the plesiomorphic condition for diapsids. In Varanus, we found a high proportion of oxidative fibers in all muscles, which is in accordance with its high aerobic scope and capability of sustained locomotion. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Fluorescence-labelled phalloidin in combination with confocal laser scanning microscopy (cLSM) has been used to reconstruct the body musculature in Encentrum mucronatum and Dicranophorus forcipatus in order to gain insight into the architecture of body musculature in representatives of the hitherto uninvestigated Dicranophoridae.

In both species, a system of outer circular and inner longitudinal muscles has been found. In E. mucronatum, seven circular muscles (musculi circulares I–VII) and six paired longitudinal muscles (musculi longitudinales I–VI) have been identified. In D. forcipatus, eight circular muscles (musculi circulares I–VIII) and nine paired longitudinal muscles (musculi longitudinales I–IX) are present. In both species, some of the longitudinal muscles span the whole specimen, while others are shorter and connect head and trunk or foot and trunk. Differences in shape and extension of the circular muscles in both species are related to differences in structure of the trunk integument.

Surveying the literature on rotifer musculature, muscles identified in this study are homologised across Rotifera and given individual names. Based on the study of E. mucronatum and D. forcipatus and previous studies on other rotifers, a system of musculature in the ground pattern of Ploima comprising at least three circular muscles (pars coronalis, corona sphincter, musculus circumpedalis) and three pairs of longitudinal muscles (musculi longitudinales ventrales, musculi longitudinales dorsales and musculi longitudinales capitum) is suggested.  相似文献   


18.
Body morphology is a valuable feature for distinguishing teleostean fishes. However, the utility of character variation in separate body regions has yet to be tested. The taxonomy of the Gerreidae family is controversial due to character overlapping among its fish species. This work aims to analyze and compare the body shape variation in three regions, cephalic, trunk, and caudal peduncle, using landmark data and geometric morphometric methods in 17 species and five genera of the family Gerreidae. The pattern of shape variation for the cephalic region consisted of well-defined character states exclusive of each species analyzed. Shape variation in the trunk and caudal peduncle regions does not distinguish all species in this study. This study showed that the dorsal cephalic profile is highly variable among the species, therefore, shape variation in this region is useful for distinguishing Gerreidae species. In contrast, some species within the same genus share similar shape states in the trunk and caudal peduncle regions, with the most shape variation in the dorsal profile and anal fin for the trunk and in the middle of the caudal peduncle.  相似文献   

19.
The use of electromyographic signals in the modeling of muscle forces and joint loads requires an assumption of the relationship between EMG and muscle force. This relationship has been studied for the trunk musculature and been shown to be predominantly non-linear, with more EMG producing less torque output at higher levels of activation. However, agonist-antagonist muscle co-activation is often substantial during trunk exertions, yet has not been adequately accounted for in determining such relationships. The purpose of this study was to revisit the EMG-moment relationship of the trunk recognizing the additional moment requirements necessitated due to antagonist muscle activity. Eight participants generated a series of isometric ramped trunk flexor and extensor moment contractions. EMG was recorded from 14 torso muscles, and the externally resisted moment was calculated. Agonist muscle moments (either flexor or extensor) were estimated from an anatomically detailed biomechanical model of the spine and fit to: the externally calculated moment alone; the externally calculated moment combined with the antagonist muscle moment. When antagonist activity was ignored, the EMG-moment relationship was found to be non-linear, similar to previous work. However, when accounting for the additional muscle torque generated by the antagonist muscle groups, the relationships became, in three of the four conditions, more linear. Therefore, it was concluded that antagonist muscle co-activation must be included when determining the EMG-moment relationship of trunk muscles and that previous impressions of non-linear EMG-force relationships should be revisited.  相似文献   

20.
The trunk morphology of the larvae of the kauri pine (Agathis) seed infesting moth Agathiphaga is described using conventional, polarization, and scanning electron microscopy. The pine seed chamber formed by the larva is also described and commented on. The simple larval chaetotaxy includes more of the minute posture sensing setae, proprioceptors, than expected from the lepidopteran larval ground plan. The excess of proprioceptors is suggested to be necessary for sensory input concerning the larval posture within the seed chamber. The trunk musculature includes an autapomorphic radial ventral musculature made up of unique multisegmental muscles. The combined presence of additional proprioceptors and the unique ventral musculature is proposed to be related to the larval movement within the confined space of the seed chamber, especially to a proposed somersault movement that allows the larva to orientate itself within the chamber. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号