首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human noroviruses (NoVs) are a significant cause of nonbacterial gastroenteritis worldwide, with contaminated drinking water a potential transmission route. The absence of a cell culture infectivity model for NoV necessitates the use of molecular methods and/or viral surrogate models amenable to cell culture to predict NoV inactivation. The NoV surrogates murine NoV (MNV), feline calicivirus (FCV), poliovirus (PV), and male-specific coliphage MS2, in conjunction with Norwalk virus (NV), were spiked into surface water samples (n = 9) and groundwater samples (n = 6). Viral persistence was monitored at 25°C and 4°C by periodically analyzing virus infectivity (for all surrogate viruses) and nucleic acid (NA) for all tested viruses. FCV infectivity reduction rates were significantly higher than those of the other surrogate viruses. Infectivity reduction rates were significantly higher than NA reduction rates at 25°C (0.18 and 0.09 log10/day for FCV, 0.13 and 0.10 log10/day for PV, 0.12 and 0.06 log10/day for MS2, and 0.09 and 0.05 log10/day for MNV) but not significant at 4°C. According to a multiple linear regression model, the NV NA reduction rates (0.04 ± 0.01 log10/day) were not significantly different from the NA reduction rates of MS2 (0.05 ± 0.03 log10/day) and MNV (0.04 ± 0.03 log10/day) and were significantly different from those of FCV (0.08 ± 0.03 log10/day) and PV (0.09 ± 0.03 log10/day) at 25°C. In conclusion, MNV shows great promise as a human NoV surrogate due to its genetic similarity and environmental stability. FCV was much less stable and thus questionable as an adequate surrogate for human NoVs in surface water and groundwater.  相似文献   

2.
The relationship between the survival of enteric viral pathogens and their indicators (coliform bacteria and coliphages) is not well understood. We compared the survival rates of feline calicivirus (FCV), Escherichia coli, and a male-specific RNA coliphage MS2 at 4, 25, and 37°C for up to 28 days in dechlorinated water. The survival rates of E. coli and FCV, a surrogate of noroviruses (NV), had a high degree of correlation at 4 and 25°C, while MS2 phage survived significantly longer (P < 0.05) at these two temperatures. At 37°C, the survival rates for all three organisms were highly correlated. Decimal reduction values indicating the number of days needed for 90% reduction in titer (D values) decreased for all three organisms as storage temperatures increased. FCV had the shortest D value among all three organisms at all temperatures investigated. These findings indicate that F-specific RNA phages may be useful indicators of NV in the environment.  相似文献   

3.
4.
Sattar SA  Ali M  Tetro JA 《PloS one》2011,6(2):e17340
Human noroviruses (HuNoV), a major cause of acute gastroenteritis worldwide, cannot be readily cultured in the lab. Therefore, a feline calicivirus (FCV) is often used as its surrogate to, among other things, test alcohol-based handrubs (ABHR). The more recent laboratory culture of a mouse norovirus (MNV) provides an alternative. While MNV is closer to HuNoV in several respects, to date, no comparative testing of FCV and MNV survival and inactivation on human hands has been performed. This study was designed to address the knowledge gap. The rates of loss in viability during drying on hands were −1.91 and −1.65% per minute for FCV and MNV, respectively. When the contaminated skin was exposed for 20 s to either a commercial ABHR with 62% (v/v) ethanol or to 75% (v/v) ethanol in water, FCV infectivity was reduced by <1 log10 while that of MNV by nearly 2.8 log10. Extending the contact time to 30 s reduced the FCV titer by almost 2 log10 by both test substances and that of MNV by >3.5 log10 by the commercial ABHR while 75% ethanol did not show any noticeable improvement in activity as compared to the 20 s contact. An 80% (v/v) aqueous solution of ethanol gave only a 1.75 log10 reduction in MNV activity after 20 s. The results show significant differences in the ethanol susceptibility of FCV and MNV in contact times relevant to field use of ABHR and also that 62% ethanol was a more effective virucide than either 75% or 80% ethanol. These findings indicate the need for a review of the continuing use of FCV as a surrogate for HuNoV.  相似文献   

5.
This study aimed to evaluate the performance of hydrogen peroxide vapour (HPV) to inactivate the chimpanzee adenovirus AZD1222 vaccine strain used in the production of recombinant COVID-19 vaccine for application in cleaning validation in pharmaceutical industries production areas. Two matrixes were tested: formulated recombinant COVID-19 vaccine (FCV) and active pharmaceutical ingredient (API). The samples were dried on stainless steel and exposed to HPV in an isolator. One biological indicator with population >106 Geobacillus stearothermophilus spores was used to validate the HPV decontamination cycle as standard. HPV exposure resulted in complete virus inactivation in FVC (≥5·03 log10) and API (≥6·40 log10), showing HPV efficacy for reducing chimpanzee adenovirus AZD1222 vaccine strain. However, the optimum concentration and contact time will vary depending on the type of application. Future decontamination studies scaling up the process to the recombinant COVID-19 vaccine manufacturing areas are necessary to evaluate if the HPV will have the same or better virucidal effectivity in each specific production area. In conclusion, HPV showed efficacy for reducing AZD1222 chimpanzee adenovirus strain and can be a good choice for pharmaceutical industries facilities disinfection during recombinant COVID-19 vaccine production.  相似文献   

6.
《Biologicals》2007,35(3):173-181
We studied the efficacy of virus reduction by three process steps (polyethylene glycol 4000 (PEG) precipitation, pasteurization, and 15 nm virus filtration) in the manufacturing of C1-inhibitor NF. The potential prion removing capacity in this process was estimated based on data from the literature. Virus studies were performed using hepatitis A virus (HAV) and human immunodeficiency virus (HIV) as relevant viruses and bovine viral diarrhea virus (BVDV), canine parvovirus (CPV) and pseudorabies virus (PRV) as model viruses, respectively. In the PEG precipitation step, an average reduction in infectious titer of 4.5 log10 was obtained for all five viruses tested. Pasteurization resulted in reduction of infectious virus of >6 log10 for BVDV, HIV, and PRV; for HAV the reduction factor was limited to 2.8 log10 and for CPV it was zero. Virus filtration (15 nm) reduced the infectious titer of all viruses by more than 4.5 log10. The overall virus reducing capacity was >16 log10 for the LE viruses. For the NLE viruses CPV and HAV, the overall virus reducing capacities were >8.7 and >10.5 log10, respectively. Based on literature and theoretical assumptions, the prion reducing capacity of the C1-inhibitor NF process was estimated to be >9 log10.  相似文献   

7.
Nitrogenase (EC 1.7.99.2) activity in pea (Pisum savitum) nodules formed after infection with Rhizobium leguminosarum (lacking uptake hydrogenase) was measured as acetylene reduction, H2 evolution in air and H2 evolution in Ar:O2. With detached roots the relative efficiency, calculated from acetylene reduction, showed a decrease (from 55 to below 0%) with increasing temperature. With excised nodules and isolated bacteroids similar results were obtained. However, the relative efficiency calculated from H2 evolution in Ar:O2 was unaffected by temperature. Measurements on both excised nodules and isolated bacteroids showed a marked difference between acetylene reduction and H2 evolution in Ar:O2 with increased temperature, indicating that either acetylene reduction or H2 evolution in Ar:O2 are inadequate measures of nitrogenase activity at higher temperature.  相似文献   

8.
The relationship between the survival of enteric viral pathogens and their indicators (coliform bacteria and coliphages) is not well understood. We compared the survival rates of feline calicivirus (FCV), Escherichia coli, and a male-specific RNA coliphage MS2 at 4, 25, and 37 degrees C for up to 28 days in dechlorinated water. The survival rates of E. coli and FCV, a surrogate of noroviruses (NV), had a high degree of correlation at 4 and 25 degrees C, while MS2 phage survived significantly longer (P < 0.05) at these two temperatures. At 37 degrees C, the survival rates for all three organisms were highly correlated. Decimal reduction values indicating the number of days needed for 90% reduction in titer (D values) decreased for all three organisms as storage temperatures increased. FCV had the shortest D value among all three organisms at all temperatures investigated. These findings indicate that F-specific RNA phages may be useful indicators of NV in the environment.  相似文献   

9.
Aims: To determine inactivation profiles of three human norovirus (NoV) surrogate viruses and coliphage MS2 by ultraviolet (UV) irradiation and the protective effect of cell association on UV inactivation. Methods and Results: The inactivation rate for cell‐free virus or intracellular echovirus 12 was determined by exposure to 254‐nm UV light at fluence up to 100 mJ cm?2. The infectivity of murine norovirus (MNV), feline calicivirus (FCV) and echovirus 12 was determined by cell culture infectivity in susceptible host cell lines, and MS2 infectivity was plaque assayed on Escherichia coli host cells. The UV fluencies to achieve 4‐log10 inactivation were 25, 29, 30 and 70 (mJ cm?2) for cell‐free FCV, MNV, echovirus 12 and MS2, respectively. However, a UV fluence of 85 mJ cm?2 was needed to inactivate intracellular echovirus 12 by 4 log10. Conclusions: Murine norovirus and echoviruses 12 are more conservative surrogates than FCV to predict the UV inactivation response of human NoV. Intracellular echovirus 12 was 2·8‐fold more resistant to UV irradiation than cell‐free one. Significance and Impact of the Study: Variation in UV susceptibilities among NoV surrogate viruses and a likely protective effect of cell association on virus susceptibility to UV irradiation should be considered for effective control of human NoV in water.  相似文献   

10.
When intact nodulated roots of soybean (Glycine max L. Merr. nodulated with Bradyrhizobium japonicum strain USDA 16) were exposed to an atmosphere lacking N2 gas (Ar:O2 80:20), total nitrogenase activity (measured as H2 evolution) and respiration (CO2 evolution) declined with time of exposure. In Ar-inhibited nodules, when the O2 concentration in the rhizosphere was increased in a linear `ramp' of 2.7% per minute, 93% of the original H2 evolution and 99% of the CO2 evolution could be recovered. The internal nodule O2 concentration (estimated from leghemoglobin oxygenation) declined to 56% of its initial value after 60 minutes of Ar:O2 exposure and could be partially recovered by the linear increases in O2 concentration. Nodule gas permeability, as estimated from the lag in ethylene production following exposure of nodules to acetylene, decreased to 26% of its initial value during the Ar-induced decline. Collectively, the results provide direct evidence that the Ar-induced decline results from decreased nodule gas permeability and indicate that the decline in permeability, rather than being immediate, occurs gradually over the period of Ar:O2 exposure.  相似文献   

11.
Selenium was added to the feed of White Leghorn type chickens 1 day prior to challenge with eitherEscherichia coli or sheep erythrocyte antigen. the incidence of death or lesions was reduced from 86% to 21% at the optimal dose of selenium (0.4 mg/kg resulting in feed concentration of 0.45 mg/kg). After the chickens were stressed by chilling, selenium was ineffective againstE. coli. Dietary additions of selenium between 0.1 and 0.8 mg/kg resulted in an antibody titer increase from 2.2 to 3.9 to the log2 against sheep erythrocytes (SRBC). Followng chilling, antibody titer response was reduced from 4.9 to 2.4 to the log2. This titer reduction could be prevented with dietary additions of selenium between 0.1 and 1.2 mg/kg. The effects of a nitrofuran and selenium were additive againstE. coli challenge infection.  相似文献   

12.
Joint Action of O(3) and SO(2) in Modifying Plant Gas Exchange   总被引:5,自引:2,他引:3       下载免费PDF全文
The joint action of O3 and SO2 stress on plants was investigated by determining the quantitative relationship between air pollutant fluxes and effects on stomatal conductance. Gas exchange measurements of O3, SO2, and H2O vapor were made for Pisum sativum L. (garden pea). Plants were grown under controlled environments, and O3, SO2, and H2O vapor fluxes were evaluated with a whole-plant gas exchange chamber using the mass-balance approach. Maximum O3 and SO2 fluxes per unit area (2 sided) into leaves averaged 8 nanomoles per square meter per second with exposure to either O3 or SO2 at 0.1 microliters per liter. Internal fluxes of either O3 or SO2 were reduced by up to 50% during exposure to combined versus individual pollutants; the greatest reduction occurred with simultaneous versus sequential combinations of the pollutants. Stomatal conductance to H2O was substantially altered by the pollutant exposures, with O3 molecules twice as effective as SO2 molecules in inducing stomatal closure. Stomatal conductance was related to the integrated dose of pollutants. The regression equations relating integrated dose to stomatal conductance were similar with O3 alone, O3 plus added SO2, and O3 plus SO2 simultaneously; i.e. a dose of 100 micromoles per square meter produced a 39 to 45% reduction in conductance over nonexposed plants. With SO2 alone, or SO2 plus added O3, a dose of 100 micromoles per square meter produced a 20 to 25% reduction in conductance. When O3 was present at the start of the exposure, then stomatal response resembled that for O3 more than the response for SO2. This study indicated that stomatal responses with combinations of O3 and SO2 are not dependent solely on the integrated dose of pollutants, but suggests that a metabolic synergistic effect exists.  相似文献   

13.
Nodulated root systems of white lupin (Lupinus albus L. cv Ultra: Rhizobium strain WU425) were exposed to Ar:O2 (80:20, v/v) or Ar:N2:O2 (70:10:20, v/v/v) and C and N partitioning were examined over a 9- or 10-day period in comparison with control plants with nodulated roots retained in air. Accumulation of N ceased in plants exposed to Ar:O2 or was much reduced in plants exposed to Ar:N2:O2, but net C assimilation rates and profiles of C utilization remained similar to those of control N2-fixing plants. There was, however, a proportional reduction in CO2 evolution from nodulated roots of the Ar:O2 treatment. Xylem N levels fell rapidly after application of Ar:O2. C:N ratios of phloem sap of petioles and of stem base rose during the first day of Ar:O2 treatment and then fell progressively back to levels close to that of control plants as leaf reserves of N became available for loading of phloem. Stem top phloem sap increased progressively in C:N ratio throughout Ar:O2 treatment, presumably due to increasing shortage of xylem derived N for xylem to phloem exchange. Reexposure of Ar:O2-treated nodulated root systems to air prompted a rapid recovery of N2 fixation and restoration of plant N status. Rates of N2 fixation in plants whose roots were exposed to a range of N2 concentrations indicated an apparent Km of 10% N2 for the attached intact white lupin nodule.  相似文献   

14.
The dependence of alfalfa (Medicago sativa L.) root and nodule nonphotosynthetic CO2 fixation on the supply of currently produced photosynthate and nodule nitrogenase activity was examined at various times after phloem-girdling and exposure of nodules to Ar:O2. Phloemgirdling was effected 20 hours and exposure to Ar:O2 was effected 2 to 3 hours before initiation of experiments. Nodule and root CO2 fixation rates of phloem-girdled plants were reduced to 38 and 50%, respectively, of those of control plants. Exposure to Ar:O2 decreased nodule CO2 fixation rates to 45%, respiration rates to 55%, and nitrogenase activities to 51% of those of the controls. The products of nodule CO2 fixation were exported through the xylem to the shoot mainly as amino acids within 30 to 60 minutes after exposure to 14CO2. In contrast to nodules, roots exported very little radioactivity, and most of the 14C was exported as organic acids. The nonphotosynthetic CO2 fixation rate of roots and nodules averaged 26% of the gross respiration rate, i.e. the sum of net respiration and nonphotosynthetic CO2 assimilation. Nodules fixed CO2 at a rate 5.6 times that of roots, but since nodules comprised a small portion of root system mass, roots accounted for 76% of the nodulated root system CO2 fixation. The results of this study showed that exposure of nodules to Ar:O2 reduced nodule-specific respiration and nitrogenase activity by similar amounts, and that phloem-girdling significantly reduced nodule CO2 fixation, nitrogenase activity, nodule-specific respiration, and transport of 14C photoassimilate to nodules. These results indicate that nodule CO2 fixation in alfalfa is associated with N assimilation.  相似文献   

15.
Aims: This study reports the activity of two biguanides against MS2 bacteriophage used as a surrogate virus for nonenveloped mammalian viruses and provides an explanation as to their apparent limited efficacy. Methods and Results: When tested in a standard suspension test, two polyhexamethylene biguanides (PHMB), VANTOCIL? TG and COSMOCIL? CQ, reduced the viability of MS2 by only 1–2 log10 PFU ml?1. Exposure time up to 30 min did not affect the activity of the biguanides, although both PHMB were shown to strongly interact with MS2 proteins. Conclusions: Inactivation kinetics and change in virus hydrophobicity suggested that PHMB induces the formation of viral aggregates. This hypothesis was supported using dynamic light scattering that showed an increase in viral aggregates sizes (up to 500 nm) in a concentration‐dependent manner. Significance and Impact of the Study: It has been reported that viral aggregation is responsible for virus survival to the biocide exposure. Here, this might be the case, because the virucidal activity of the biguanides was modest and viral aggregation important. The formation of viral aggregates during virus exposure to PHMB was unlikely to overestimate the virucidal potential of the biguanides.  相似文献   

16.
17.
Abstract

The antibacterial efficacy of hydrogen peroxide encapsulated in micelles (mH2O2) against biofilms was compared with that of hydrogen peroxide alone and of three commercially available aqueous biocides. The activity of mH2O2 on 24-h biofilms of reference strains of Staphylococcus spp. and Pseudomonas aeruginosa was tested in a static microtiter plate model. The biofilms were incubated with mH2O2 (17% v/v H2O2, 2% lactic acid, 0.3% phytoextract, H2O) and its individual ingredients and compared with three aqueous biocides at different concentrations and times of exposure. After 5-min exposure, 10% mH2O2 (corresponding to 1.7% v/v H2O2) achieved > 8 log10 reductions against all the test strains, while 1.7% H2O2 achieved a maximum of 1.5 log10 reduction. After 5-min exposure, none of the commercially available biocides tested showed themselves to be capable of completely eliminating the test strains embedded in biofilms. Hydrogen peroxide encapsulated in micelles demonstrated enhanced activity against planktonic cells and biofilms of Staphylococcus spp. and P. aeruginosa.  相似文献   

18.
Dengue virus (DENV) is an arbovirus transmitted to humans by the bite of infected Aedes mosquitoes. Experimental per os infection of mosquitoes with DENV is usually a preliminary step in virus/vector studies but it requires being able to prepare artificial blood-meals with high virus titers. We report here the convenient use of centrifugal filter devices to quickly concentrate DENV particles in cell-culture supernatants. The median viral titer in concentrated-supernatants was 8.50 log10 TCID50/mL. By using these DENV concentrated-supernatants to prepare infectious blood-meals in Aedes aegypti per os infection experiments, we obtained a mean mosquito-infection rate of 94%. We also evaluated the use of centrifugal filter devices to recover DENV particles from non-infectious blood-meals presented to infected mosquitoes through a feeding membrane to collect their saliva.  相似文献   

19.
The production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) is an important host defense mechanism in response to infection by Mycobacterium tuberculosis. A variety of genes have been implicated in resistance to ROI and RNI, including noxR1. However, studies in Mycobacterium avium, an important pathogen among nontuberculous mycobacteria, are limited. We aim to investigate the role of a novel gene cloned from M. avium with high similarity to noxR1, noA, in resistance against RNI and ROI in M. tuberculosis. After subcloning noA into vector for expression in E. coli, we performed survival rate analysis in the bacteria transformed with noA (pET-noA) and without noA (pET-his) after exposure to nitrosative stresses by S-nitrosoglutathione (GSNO) and sodium nitrite, and oxidative stresses by H2O2. Compared with pET-his, the survival rate of pET-noA was 1 log10-fold higher after exposure to GSNO and sodium nitrite. We observed 1 log10-fold, 2 log10-fold and 3 log10-fold higher survival rate in pET-noA than pET-his after exposure to H2O2 for 3, 6 and 9 h, respectively. With the combined treatment of H2O2 and GSNO, we found more than 2 log10-fold increase in survival rate in pET-noA comparing with pET-his, suggesting a possible synergistic effect. In summary, noA gene cloned from M. avium has been shown to protect E. coli from both RNI and ROI.  相似文献   

20.
Soybean (Glycine max [L.] Merr. cv Davis) was grown in a split-root growth system designed to maintain control of the root atmosphere. Two experiments were conducted to examine how 80% Ar:20% O2 (Ar:O2) and air (Air) atmospheres affected N assimilation (NH4NO3 and N2 fixation) and the partitioning of photosynthate to roots and nodules. Application of NH4NO3 to nonnodulated half-root systems enhanced root growth and root respiration at the site of application. A second experiment applied Ar:O2 or air to the two sides of nodulated soybean half-root systems for 11 days in the following combinations: (a) Air to both sides (Air/Air); (b) Air to one side, Ar:O2 to the other (Air/Ar:O2), and (c) Ar:O2 to both sides (Ar:O2/Ar:O2). Results indicated that dry matter and current photosynthate (14C) were selectively partitioned to nodules and roots where N2 was available. Both root and nodule growth on the Air side of Air/Ar:O2 plants was significantly greater than the Ar:O2 side. The relative partitioning of carbon and current photosynthate between roots and nodules on a half-root system was also affected by N2 availability. The Ar:O2 sides partitioned relatively more current photosynthate to roots (57%) than nodules (43%), while N2-fixing root systems partitioned 36 and 64% of the carbon to roots and nodules, respectively. The Ar:O2 atmosphere decreased root and nodule respiration by 80% and nitrogenase activity by 85% compared to half-root systems in Air while specific nitrogenase activity of nodules in Ar:O2 was 50% of nodules supplied Air. Results indicated that nitrogen assimilation, whether from N2 fixation or inorganic sources, had a localized effect on root development. Nodule development accounted for the major decrease in total photosynthate partitioning to non-N2-fixing nodules. Soybean compensates for ineffective nodulation by controlling the flux of carbon to ineffective nodules and their associated roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号