首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.  相似文献   

2.

SUMMARY

Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation.  相似文献   

3.

SUMMARY

Biomass is constructed of dense recalcitrant polymeric materials: proteins, lignin, and holocellulose, a fraction constituting fibrous cellulose wrapped in hemicellulose-pectin. Bacteria and fungi are abundant in soil and forest floors, actively recycling biomass mainly by extracting sugars from holocellulose degradation. Here we review the genome-wide contents of seven Aspergillus species and unravel hundreds of gene models encoding holocellulose-degrading enzymes. Numerous apparent gene duplications followed functional evolution, grouping similar genes into smaller coherent functional families according to specialized structural features, domain organization, biochemical activity, and genus genome distribution. Aspergilli contain about 37 cellulase gene models, clustered in two mechanistic categories: 27 hydrolyze and 10 oxidize glycosidic bonds. Within the oxidative enzymes, we found two cellobiose dehydrogenases that produce oxygen radicals utilized by eight lytic polysaccharide monooxygenases that oxidize glycosidic linkages, breaking crystalline cellulose chains and making them accessible to hydrolytic enzymes. Among the hydrolases, six cellobiohydrolases with a tunnel-like structural fold embrace single crystalline cellulose chains and cooperate at nonreducing or reducing end termini, splitting off cellobiose. Five endoglucanases group into four structural families and interact randomly and internally with cellulose through an open cleft catalytic domain, and finally, seven extracellular β-glucosidases cleave cellobiose and related oligomers into glucose. Aspergilli contain, on average, 30 hemicellulase and 7 accessory gene models, distributed among 9 distinct functional categories: the backbone-attacking enzymes xylanase, mannosidase, arabinase, and xyloglucanase, the short-side-chain-removing enzymes xylan α-1,2-glucuronidase, arabinofuranosidase, and xylosidase, and the accessory enzymes acetyl xylan and feruloyl esterases.  相似文献   

4.

Background

The suborder Anoplura contains 540 species of blood-sucking lice that parasitize over 840 species of eutherian mammals. Fragmented mitochondrial (mt) genomes have been found in the lice of humans, pigs, horses and rats from four families: Pediculidae, Pthiridae, Haematopinidae and Polyplacidae. These lice, eight species in total, are from the same major clade of the Anoplura. The mt genomes of these lice consist of 9–20 minichromosomes; each minichromosome is 1.5–4 kb in size and has 1–8 genes. To understand mt genome fragmentation in the other major clade of the Anoplura, we sequenced the mt genomes of two species of rodent lice in the genus Hoplopleura (family Hoplopleuridae).

Results

We identified 28 mt genes on 10 minichromosomes in the mouse louse, Ho. akanezumi; each minichromosome is 1.7–2.7 kb long and has 1–6 genes. We identified 34 mt genes on 11 minichromosomes in the rat louse, Ho. kitti; each minichromosome is 1.8–2.8 kb long and has 1–5 genes. Ho. akanezumi also has a chimeric minichromosome with parts of two rRNA genes and a full-length tRNA gene for tyrosine. These two rodent lice share the same pattern for the distribution of all of the protein-coding and rRNA genes but differ in tRNA gene content and gene arrangement in four minichromosomes. Like the four genera of blood-sucking lice that have been investigated in previous studies, the Hoplopleura species have four minichromosomes that are only found in this genus.

Conclusions

Our results indicate that fragmented mt genomes were present in the most recent common ancestor of the two major clades of the blood-sucking lice, which lived ~75 million years ago. Intra-genus variation in the pattern of mt genome fragmentation is common in the blood-sucking lice (suborder Anoplura) and genus-specific minichromosomes are potential synapomorphies. Future studies should expand into more species, genera and families of blood-sucking lice to explore further the phylogenetic utility of the novel features associated with fragmented mt genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-751) contains supplementary material, which is available to authorized users.  相似文献   

5.

Objective

To identify differentially expressed proteins from serum of pregnant women carrying a conotruncal heart defects (CTD) fetus, using proteomic analysis.

Methods

The study was conducted using a nested case-control design. The 5473 maternal serum samples were collected at 14–18 weeks of gestation. The serum from 9 pregnant women carrying a CTD fetus, 10 with another CHD (ACHD) fetus, and 11 with a normal fetus were selected from the above samples, and analyzed by using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry(2D LC-MS/MS). The differentially expressed proteins identified by iTRAQ were further validated with Western blot.

Results

A total of 105 unique proteins present in the three groups were identified, and relative expression data were obtained for 92 of them with high confidence by employing the iTRAQ-based experiments. The downregulation of gelsolin in maternal serum of fetus with CTD was further verified by Western blot.

Conclusions

The identification of differentially expressed protein gelsolin in the serum of the pregnant women carrying a CTD fetus by using proteomic technology may be able to serve as a foundation to further explore the biomarker for detection of CTD fetus from the maternal serum.  相似文献   

6.

Setting

Six selected districts in Northern India.

Objectives

To find out the trend in Annual risk of tuberculous infection (ARTI) in north India.

Study Design

Two rounds of community level surveys were conducted during 2000–2001 and 2009–10 respectively. Representative samples of children 1–9 years of age were tuberculin tested and maximum transverse diameter of induration was recorded in mm at about 72 hours. ARTI was computed from the estimated Prevalence of infection using mirror-image technique and anti-mode method.

Results

ARTI was found to decline from 1.9% (confidence interval: 1.7–2.1) at round I to 1.1% (confidence interval: 0.8–1.3) at round II at the rate of 8% per year during the intervening period.

Conclusion

A significant reduction in the risk of tuberculous infection among children was observed between two rounds of surveys carried out at an interval of about 9 years.  相似文献   

7.

Objective

To examine the associations between pet keeping in early childhood and asthma and allergies in children aged 6–10 years.

Design

Pooled analysis of individual participant data of 11 prospective European birth cohorts that recruited a total of over 22,000 children in the 1990s.

Exposure definition

Ownership of only cats, dogs, birds, rodents, or cats/dogs combined during the first 2 years of life.

Outcome definition

Current asthma (primary outcome), allergic asthma, allergic rhinitis and allergic sensitization during 6–10 years of age.

Data synthesis

Three-step approach: (i) Common definition of outcome and exposure variables across cohorts; (ii) calculation of adjusted effect estimates for each cohort; (iii) pooling of effect estimates by using random effects meta-analysis models.

Results

We found no association between furry and feathered pet keeping early in life and asthma in school age. For example, the odds ratio for asthma comparing cat ownership with “no pets” (10 studies, 11489 participants) was 1.00 (95% confidence interval 0.78 to 1.28) (I2 = 9%; p = 0.36). The odds ratio for asthma comparing dog ownership with “no pets” (9 studies, 11433 participants) was 0.77 (0.58 to 1.03) (I2 = 0%, p = 0.89). Owning both cat(s) and dog(s) compared to “no pets” resulted in an odds ratio of 1.04 (0.59 to 1.84) (I2 = 33%, p = 0.18). Similarly, for allergic asthma and for allergic rhinitis we did not find associations regarding any type of pet ownership early in life. However, we found some evidence for an association between ownership of furry pets during the first 2 years of life and reduced likelihood of becoming sensitized to aero-allergens.

Conclusions

Pet ownership in early life did not appear to either increase or reduce the risk of asthma or allergic rhinitis symptoms in children aged 6–10. Advice from health care practitioners to avoid or to specifically acquire pets for primary prevention of asthma or allergic rhinitis in children should not be given.  相似文献   

8.

Background and Aims

Copper (Cu) is an essential micronutrient for plants. However, excess amounts of Cu are toxic and result in a wide range of harmful effects on the physiological and biochemical processes of plants. Cell wall has a crucial role in plant defense response to toxic metals. To date, the process of cell wall response to Cu and the detoxification mechanism have not been well documented at the proteomic level.

Methods

An recently developed 6-plex Tandem Mass Tag was used for relative and absolute quantitation methods to achieve a comprehensive understanding of Cu tolerance/detoxification molecular mechanisms in the cell wall. LC–MS/MS approach was performed to analyze the Cu-responsive cell wall proteins and polysaccharides.

Key Results

The majority of the 22 up-regulated proteins were involved in the antioxidant defense pathway, cell wall polysaccharide remodeling, and cell metabolism process. Changes in polysaccharide amount, composition, and distribution could offer more binding sites for Cu ions. The 33 down-regulated proteins were involved in the signal pathway, energy, and protein synthesis.

Conclusions

Based on the abundant changes in proteins and polysaccharides, and their putative functions, a possible protein interaction network can provide new insights into Cu stress response in root cell wall. Cu can facilitate further functional research on target proteins associated with metal response in the cell wall.  相似文献   

9.
10.
VY Muley  A Ranjan 《PloS one》2012,7(7):e42057

Background

Recent progress in computational methods for predicting physical and functional protein-protein interactions has provided new insights into the complexity of biological processes. Most of these methods assume that functionally interacting proteins are likely to have a shared evolutionary history. This history can be traced out for the protein pairs of a query genome by correlating different evolutionary aspects of their homologs in multiple genomes known as the reference genomes. These methods include phylogenetic profiling, gene neighborhood and co-occurrence of the orthologous protein coding genes in the same cluster or operon. These are collectively known as genomic context methods. On the other hand a method called mirrortree is based on the similarity of phylogenetic trees between two interacting proteins. Comprehensive performance analyses of these methods have been frequently reported in literature. However, very few studies provide insight into the effect of reference genome selection on detection of meaningful protein interactions.

Methods

We analyzed the performance of four methods and their variants to understand the effect of reference genome selection on prediction efficacy. We used six sets of reference genomes, sampled in accordance with phylogenetic diversity and relationship between organisms from 565 bacteria. We used Escherichia coli as a model organism and the gold standard datasets of interacting proteins reported in DIP, EcoCyc and KEGG databases to compare the performance of the prediction methods.

Conclusions

Higher performance for predicting protein-protein interactions was achievable even with 100–150 bacterial genomes out of 565 genomes. Inclusion of archaeal genomes in the reference genome set improves performance. We find that in order to obtain a good performance, it is better to sample few genomes of related genera of prokaryotes from the large number of available genomes. Moreover, such a sampling allows for selecting 50–100 genomes for comparable accuracy of predictions when computational resources are limited.  相似文献   

11.

Background

Polyketides are a diverse group of biotechnologically important secondary metabolites that are produced by multi domain enzymes called polyketide synthases (PKS).

Methodology/Principal Findings

We have estimated frequencies of type I PKS (PKS I) – a PKS subgroup – in natural environments by using Hidden-Markov-Models of eight domains to screen predicted proteins from six metagenomic shotgun data sets. As the complex PKS I have similarities to other multi-domain enzymes (like those for the fatty acid biosynthesis) we increased the reliability and resolution of the dataset by maximum-likelihood trees. The combined information of these trees was then used to discriminate true PKS I domains from evolutionary related but functionally different ones. We were able to identify numerous novel PKS I proteins, the highest density of which was found in Minnesota farm soil with 136 proteins out of 183,536 predicted genes. We also applied the protocol to UniRef database to improve the annotation of proteins with so far unknown function and identified some new instances of horizontal gene transfer.

Conclusions/Significance

The screening approach proved powerful in identifying PKS I sequences in large sequence data sets and is applicable to many other protein families.  相似文献   

12.

Background

The fungal genus Stachybotrys produces several diverse toxins that affect human health. Its strains comprise two mutually-exclusive toxin chemotypes, one producing satratoxins, which are a subclass of trichothecenes, and the other producing the less-toxic atranones. To determine the genetic basis for chemotype-specific differences in toxin production, the genomes of four Stachybotrys strains were sequenced and assembled de novo. Two of these strains produce atranones and two produce satratoxins.

Results

Comparative analysis of these four 35-Mbp genomes revealed several chemotype-specific gene clusters that are predicted to make secondary metabolites. The largest, which was named the core atranone cluster, encodes 14 proteins that may suffice to produce all observed atranone compounds via reactions that include an unusual Baeyer-Villiger oxidation. Satratoxins are suggested to be made by products of multiple gene clusters that encode 21 proteins in all, including polyketide synthases, acetyltransferases, and other enzymes expected to modify the trichothecene skeleton. One such satratoxin chemotype-specific cluster is adjacent to the core trichothecene cluster, which has diverged from those of other trichothecene producers to contain a unique polyketide synthase.

Conclusions

The results suggest that chemotype-specific gene clusters are likely the genetic basis for the mutually-exclusive toxin chemotypes of Stachybotrys. A unified biochemical model for Stachybotrys toxin production is presented. Overall, the four genomes described here will be useful for ongoing studies of this mold’s diverse toxicity mechanisms.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-590) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Bacterial spores are protected by a coat consisting of about 60 different proteins assembled as a biochemically complex structure with intriguing morphological and mechanical properties. Historically, the coat has been considered a static structure providing rigidity and mainly acting as a sieve to exclude exogenous large toxic molecules, such as lytic enzymes. Over recent years, however, new information about the coat''s architecture and function have emerged from experiments using innovative tools such as automated scanning microscopy, and high resolution atomic force microscopy.

Principal Findings

Using thin-section electron microscopy, we found that the coat of Bacillus spores has topologically specific proteins forming a layer that is identifiable because it spontaneously becomes decorated with hydrophobic fluorogenic probes from the milieu. Moreover, spores with decorated coat proteins (termed F-spores) have the unexpected attribute of responding to external germination signals by generating intense fluorescence. Fluorescence data from diverse experimental designs, including F-spores constructed from five different Bacilli species, indicated that the fluorogenic ability of F-spores is under control of a putative germination-dependent mechanism.

Conclusions

This work uncovers a novel attribute of spore-coat proteins that we exploited to decorate a specific layer imparting germination-dependent fluorogenicity to F-spores. We expect that F-spores will provide a model system to gain new insights into structure/function dynamics of spore-coat proteins.  相似文献   

14.

Background

The origin of eukaryotes remains a fundamental question in evolutionary biology. Although it is clear that eukaryotic genomes are a chimeric combination of genes of eubacterial and archaebacterial ancestry, the specific ancestry of most eubacterial genes is still unknown. The growing availability of microbial genomes offers the possibility of analyzing the ancestry of eukaryotic genomes and testing previous hypotheses on their origins.

Methodology/Principal Findings

Here, we have applied a phylogenomic analysis to investigate a possible contribution of the Myxococcales to the first eukaryotes. We conducted a conservative pipeline with homologous sequence searches against a genomic sampling of 40 eukaryotic and 357 prokaryotic genomes. The phylogenetic reconstruction showed that several eukaryotic proteins traced to Myxococcales. Most of these proteins were associated with mitochondrial lipid intermediate pathways, particularly enzymes generating reducing equivalents with pivotal roles in fatty acid β-oxidation metabolism. Our data suggest that myxococcal species with the ability to oxidize fatty acids transferred several genes to eubacteria that eventually gave rise to the mitochondrial ancestor. Later, the eukaryotic nucleocytoplasmic lineage acquired those metabolic genes through endosymbiotic gene transfer.

Conclusions/Significance

Our results support a prokaryotic origin, different from α-proteobacteria, for several mitochondrial genes. Our data reinforce a fluid prokaryotic chromosome model in which the mitochondrion appears to be an important entry point for myxococcal genes to enter eukaryotes.  相似文献   

15.

Background

So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return.

Results

Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages.

Conclusions

SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-831) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.

Background

Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species.

Methods and Findings

We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity.

Conclusions

The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.  相似文献   

18.

Background

A better understanding of the size and abundance of open reading frames (ORFS) in whole genomes may shed light on the factors that control genome complexity. Here we examine the statistical distributions of open reading frames (i.e. distribution of start and stop codons) in the fully sequenced genomes of 297 prokaryotes, and 14 eukaryotes.

Methodology/Principal Findings

By fitting mixture models to data from whole genome sequences we show that the size-frequency distributions for ORFS are strikingly similar across prokaryotic and eukaryotic genomes. Moreover, we show that i) a large fraction (60–80%) of ORF size-frequency distributions can be predicted a priori with a stochastic assembly model based on GC content, and that (ii) size-frequency distributions of the remaining “non-random” ORFs are well-fitted by log-normal or gamma distributions, and similar to the size distributions of annotated proteins.

Conclusions/Significance

Our findings suggest stochastic processes have played a primary role in the evolution of genome complexity, and that common processes govern the conservation and loss of functional genomics units in both prokaryotes and eukaryotes.  相似文献   

19.

Background

Members of the thermophilic genus Geobacillus can grow at high temperatures and produce a battery of thermostable hemicellulose hydrolytic enzymes, making them ideal candidates for the bioconversion of biomass to value-added products. To date the molecular determinants for hemicellulose degradation and utilization have only been identified and partially characterized in one strain, namely Geobacillus stearothermophilus T-6, where they are clustered in a single genetic locus.

Results

Using the G. stearothermophilus T-6 hemicellulose utilization locus as genetic marker, orthologous hemicellulose utilization (HUS) loci were identified in the complete and partial genomes of 17/24 Geobacillus strains. These HUS loci are localized on a common genomic island. Comparative analyses of these loci revealed extensive variability among the Geobacillus hemicellulose utilization systems, with only seven out of 41–68 proteins encoded on these loci conserved among the HUS+ strains. This translates into extensive differences in the hydrolytic enzymes, transport systems and metabolic pathways employed by Geobacillus spp. to degrade and utilize hemicellulose polymers.

Conclusions

The genetic variability among the Geobacillus HUS loci implies that they have variable capacities to degrade hemicellulose polymers, or that they may degrade distinct polymers, as are found in different plant species and tissues. The data from this study can serve as a basis for the genetic engineering of a Geobacillus strain(s) with an improved capacity to degrade and utilize hemicellulose.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-836) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

Psychrophiles are presumed to play a large role in the catabolism of alkanes and other components of crude oil in natural low temperature environments. In this study we analyzed the functional diversity of genes for alkane hydroxylases, the enzymes responsible for converting alkanes to more labile alcohols, as found in the genomes of nineteen psychrophiles for which alkane degradation has not been reported. To identify possible mechanisms of low temperature optimization we compared putative alkane hydroxylases from these psychrophiles with homologues from nineteen taxonomically related mesophilic strains.

Results

Seven of the analyzed psychrophile genomes contained a total of 27 candidate alkane hydroxylase genes, only two of which are currently annotated as alkane hydroxylase. These candidates were mostly related to the AlkB and cytochrome p450 alkane hydroxylases, but several homologues of the LadA and AlmA enzymes, significant for their ability to degrade long-chain alkanes, were also detected. These putative alkane hydroxylases showed significant differences in primary structure from their mesophile homologues, with preferences for specific amino acids and increased flexibility on loops, bends, and α-helices.

Conclusion

A focused analysis on psychrophile genomes led to discovery of numerous candidate alkane hydroxylase genes not currently annotated as alkane hydroxylase. Gene products show signs of optimization to low temperature, including regions of increased flexibility and amino acid preferences typical of psychrophilic proteins. These findings are consistent with observations of microbial degradation of crude oil in cold environments and identify proteins that can be targeted in rate studies and in the design of molecular tools for low temperature bioremediation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1120) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号