首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both cryptic and aposematic colour patterns can reduce predation risk to prey. These distinct strategies may not be mutually exclusive, because the impact of prey coloration depends on a predator's sensory system and cognition and on the environmental background. Determining whether prey signals are cryptic or aposematic is a prerequisite for understanding the ecological and evolutionary implications of predator–prey interactions. This study investigates whether coloration and pattern in an exceptionally polymorphic toad, Rhinella alata, from Barro Colorado Island, Panama reduces predation via background matching, disruptive coloration, and/or aposematic signaling. When clay model replicas of R. alata were placed on leaf litter, the model's dorsal pattern – but not its colour – affected attack rates by birds. When models were placed on white paper, patterned and un‐patterned replicas had similar attack rates by birds. These results indicate that dorsal patterns in R. alata are functionally cryptic and emphasize the potential effectiveness of disruptive coloration in a vertebrate taxon.  相似文献   

2.
Parasites are considered as an important factor in regulating their host populations through trait-mediated effects. On the other hand, predation becomes particularly interesting in host–parasite systems because predation can significantly alter the abundance of parasites and their host population. The combined effects of parasites and predator on host population and community structure therefore may have larger effect. Different field experiments confirm that predators consume disproportionately large number of infected prey in comparison to their susceptible counterpart. There are also substantial evidences that predator has the ability to distinguish prey that have been infected by a parasite and avoid such prey to reduce fitness cost. In this paper we study the predator–prey dynamics, where the prey species is infected by some parasites and predators consume both the susceptible and infected prey with some preference. We demonstrate that complexity in such systems largely depends on the predator's selectivity, force of infection and predator's reproductive gain. If the force of infection and predator's reproductive gain are low, parasites and predators both go to extinction whatever be the predator's preference. The story may be totally different in the opposite case. Survival of species in stable, oscillatory or chaotic states, and their extinction largely depend on the predator's preference. The system may also show two coexistence equilibrium points for some parameter values. The equilibrium with lower susceptible prey density is always stable and the equilibrium with higher susceptible prey density is always unstable. These results suggest that understanding the consequences of predator's selectivity or preference may be crucial for community structure involving parasites.  相似文献   

3.
We experimentally demonstrate in the field that prey of the carnivorous plant Sarracenia purpurea are attracted to sugar, not to colour. Prey capture (either all taxa summed or individual common taxa considered separately) was not associated with total red area or patterning on pitchers of living pitcher plants. We separated effects of nectar availability and coloration using painted ‘pseudopitchers’, half of which were coated with sugar solution. Unsugared pseudopitchers captured virtually no prey, whereas pseudopitchers with sugar solution captured the same amount of prey as living pitchers. In contrast to a recent study that associated red coloration with prey capture but that lacked controls for nectar availability, we infer that nectar, not colour, is the primary means by which pitcher plants attract prey.  相似文献   

4.
Cryptic coloration is assumed to be beneficial to predators because of an increased encounter rate with unwary prey. This hypothesis is, however, very rarely, if ever, studied in the field. The aim of this study was to quantify the encounter rate and capture success of an ambush predator, in the field, as a function of its level of colour-matching with the background. We used the crab spider Misumena vatia, which varies its body colour and can thereby match the colour of the flower it hunts upon. We carried out a manipulative field experiment using a complete factorial design resulting in six different colour combinations of crab spiders and flowers differing in their degree of colour-matching. A rich and diverse set of naturally occurring insects visited the flowers while we continuously video-recorded the spider''s foraging activity. This enabled us to test the crypsis, the spider avoidance and the flower visitor attraction hypotheses, all three supported by previous studies. Flower visitors of different groups either avoided crab spiders independent of colour-matching, such as solitary bees and syrphid flies, or ignored them, such as bumble-bees and honeybees. Moreover, colour-matched spiders did not have a higher encounter rate and capture success compared to the visually apparent ones. Thus, our results support the spider avoidance hypothesis, reject the two other hypotheses and uncovered a fourth behaviour: indifference to predators. Because flower visitors reacted differently, a community approach is mandatory in order to understand the function of background colour-matching in generalist predators. We discuss our results in relation to the size and sociality of the prey and in relation to the functional significance of colour change in this predator.  相似文献   

5.
We studied a prey–predator system in which both species evolve. We discuss here the conditions that result in coevolution towards a stable equilibrium or towards oscillations. First, we show that a stable equilibrium or population oscillations with small amplitude is likely to occur if the prey''s (host''s) defence is effective when compared with the predator''s (parasite''s) attacking ability at equilibrium, whereas large-amplitude oscillations are likely if the predator''s (parasite''s) attacking ability exceeds the prey''s (host''s) defensive ability. Second, a stable equilibrium is more likely if the prey''s defensive trait evolves faster than the predator''s attack trait, whereas population oscillations are likely if the predator''s trait evolves faster than that of the prey. Third, when the adaptation rates of both species are similar, the amplitude of the fluctuations in their abundances is small when the adaptation rate is either very slow or very fast, but at an intermediate rate of adaptation the fluctuations have a large amplitude. We also show the case in which the prey''s abundance and trait fluctuate greatly, while those of the predator remain almost unchanged. Our results predict that populations and traits in host–parasite systems are more likely than those in prey–predator systems to show large-amplitude oscillations.  相似文献   

6.
There are two major competing explanations for the counter-intuitive presence of bright coloration in certain orb-web spiders. Bright coloration could lure insect prey to the web vicinity, increasing the spider's foraging success. Alternatively, the markings could function as disruptive camouflage, making it difficult for the insect prey to distinguish spiders from background colour variation. We measured the prey capture rates of wasp spiders, Argiope bruennichi, that were blacked out, shielded from view using a leaf fragment, or left naturally coloured. Naturally coloured spiders caught over twice the number of prey as did either blacked-out or leaf-shielded spiders, and almost three times as many orthopteran prey. Spectrophotometer measurements suggest that the bright yellow bands on the spider's abdomen are visible to insect prey, but not the banding on the legs, which could disguise the spider's outline. Thus, our results provide strong support for the hypothesis that bright coloration in the wasp spider acts as a visual lure for insect prey and weak support for the hypothesis that the arrangement of the banding pattern across the spider's body disguises the presence of the spider on the web.  相似文献   

7.
1. Aposematic coloration in prey promotes its survival by conspicuously advertising unpalatability to predators. Although classical examples of aposematic signals involve constant presentation of a signal at a distance, some animals suddenly display warning colours only when they are attacked. 2. Characteristics of body parts suddenly displayed, such as conspicuous coloration or eyespot pattern, may increase the survival of the prey by startling the predator, and/or by signalling unpalatability to the predators at the moment of attack. 3. The adaptive value of such colour patterns suddenly displayed by unpalatable prey has not been studied. We experimentally blackened the red patch in the conspicuous red–white–black hindwing pattern displayed by an unpalatable insect Lycorma delicatula White (Hemiptera: Fulgoridae) in response to predator's attack. 4. There was no evidence that the presence of the red patch increased prey survival over several weeks. We hypothesise that predators generalised from the red–white–black patches on the hindwings of unpalatable L. delicatula to any similar wing display as a signal of unpalatability. Because a higher proportion of males than females stay put at their resting sites, displaying their wings in response to repeated attacks by predators, wing damage was more frequent in males than in females. 5. To our knowledge, this is the first experimental test of an adaptive role of aposematic signals presented by unpalatable prey during sudden displays triggered by direct predatory attack.  相似文献   

8.

Background

Bayesian mixing models have allowed for the inclusion of uncertainty and prior information in the analysis of trophic interactions using stable isotopes. Formulating prior distributions is relatively straightforward when incorporating dietary data. However, the use of data that are related, but not directly proportional, to diet (such as prey availability data) is often problematic because such information is not necessarily predictive of diet, and the information required to build a reliable prior distribution for all prey species is often unavailable. Omitting prey availability data impacts the estimation of a predator''s diet and introduces the strong assumption of consumer ultrageneralism (where all prey are consumed in equal proportions), particularly when multiple prey have similar isotope values.

Methodology

We develop a procedure to incorporate prey availability data into Bayesian mixing models conditional on the similarity of isotope values between two prey. If a pair of prey have similar isotope values (resulting in highly uncertain mixing model results), our model increases the weight of availability data in estimating the contribution of prey to a predator''s diet. We test the utility of this method in an intertidal community against independently measured feeding rates.

Conclusions

Our results indicate that our weighting procedure increases the accuracy by which consumer diets can be inferred in situations where multiple prey have similar isotope values. This suggests that the exchange of formalism for predictive power is merited, particularly when the relationship between prey availability and a predator''s diet cannot be assumed for all species in a system.  相似文献   

9.
Frequency-dependent predation has been proposed as a general mechanism driving the phenotypic assortment of social groups via the ‘oddity effect’, which occurs when the presence of odd individuals in a group allows a predator to fixate on a single prey item, increasing the predator''s attack-to-kill ratio. However, the generality of the oddity effect has been debated and, previously, there has not been an ecological assessment of the role of predation risk in driving the phenotypic assortment of social groups. Here, we compare the levels of body length assortment of social groups between populations of the Trinidadian guppy (Poecilia reticulata) that experience differences in predation risk. As predicted by the oddity effect hypothesis, we observe phenotypic assortment by body length to be greater under high predation risk. However, we found that a number of low-predation populations were also significantly assorted by body length, suggesting that other mechanisms may have a role to play.  相似文献   

10.
Many animals display static coloration (e.g. of feathers or fur) that can serve as a reliable sexual or social signal, but the communication function of rapidly changing colours (as in chameleons and cephalopods) is poorly understood. We used recently developed photographic and mathematical modelling tools to examine how rapid colour changes of veiled chameleons Chamaeleo calyptratus predict aggressive behaviour during male–male competitions. Males that achieved brighter stripe coloration were more likely to approach their opponent, and those that attained brighter head coloration were more likely to win fights; speed of head colour change was also an important predictor of contest outcome. This correlative study represents the first quantification of rapid colour change using organism-specific visual models and provides evidence that the rate of colour change, in addition to maximum display coloration, can be an important component of communication. Interestingly, the body and head locations of the relevant colour signals map onto the behavioural displays given during specific contest stages, with lateral displays from a distance followed by directed, head-on approaches prior to combat, suggesting that different colour change signals may evolve to communicate different information (motivation and fighting ability, respectively).  相似文献   

11.
Our understanding of the dynamics of predator–prey systems has relied heavily on the use of models based on the standard Lotka–Volterra (LV) framework, dating back over 80 years. Although these models have been repeatedly analysed and refined since their initial inception, the way they describe the predator's growth rate has received surprisingly little attention; typically it is simply assumed that the predator's growth rate is linearly related to its ingestion rate according to a constant assimilation efficiency, e. However, for many consumers e is known to decrease at high prey densities. Models that ignore variable assimilation efficiencies overlook potentially important non‐linearities, affecting the validity of predictions relating to conservation, invasion biology and pest control. Directly quantifying the relationship between e and prey abundance is, however, difficult. An alternative approach (the independent‐response, IR, approach) is to not assume any direct link between the predator's functional response (the relationship between ingestion rate and prey abundance) and its growth response. This flexibility is invaluable when parameterising models from data; providing the model‐fitting process is constrained to ensure that e never exceeds 1, this approach allows considerable insight into whether, and how, e varies with prey density. Here we examine the synergistic value of combining the IR and LV approaches. We illustrate these concepts through analysis of published functional and growth response data and show that, in many cases, e does vary with prey abundance. This paper is the first recognition that these two complementary approaches can be combined into a single framework that allows the relationship between a predator's functional and growth responses to emerge during the parameterisation process, thereby acting as a compromise between restrictive models that require this relationship to be defined a priori, and completely unrestrained models that allow assimilation efficiencies to exceed 1.  相似文献   

12.
A detailed sensitivity analysis of a model of a predator-prey system comprised of Tetranychus urticae and Phytoseiulus persimilis was performed. The aim was to assess the relative importance of the life history parameters of both species, the functional response, and the components of the numerical response. In addition, the impact of the initial predator-prey ratio and the timing of predator introduction were tested. Results indicated that the most important factors in the system were relative rates of predator and prey development, the time of onset of predator oviposition, and the mode of the predator's oviposition curve. The total oviposition of the predator, the effect of prey consumption on predator oviposition, and predator searching were important under some conditions. Factors of moderate importance were the adult female predator's functional response, total prey oviposition, the mode of the prey's oviposition curve, abiotic mortality of the pre-adult predator, and the effect of prey consumption on predator development and on the immature predator's mortality. Factors of least importance were the variances of the predator's and prey's oviposition curves, the abiotic mortality of the adult predator, the abiotic mortality of the pre-adult and adult prey, the functional response of the nymphal and adult male predators, and the effect of prey consumption on adult predator mortality. The sex ratios had little effect, except when the proportion of female predators was very low. The initial predator-prey ratio and time of predator introduction had significant impacts on system behavior, though the patterns of impact were different.  相似文献   

13.
Behaviours related to foraging and feeding in predator–prey systems are fundamental to our understanding of food webs. From the perspective of a predator, the selection of prey size depends upon a number of factors including prey vulnerability, prey size, and the predator's motivation to eat. Thus, feeding motivation and prey visual cues are supposed to influence predator decisions and it is predicted that prey selection by visual cues is modulated by the predator's stomach fullness prior to attacking a prey. This study was conducted using an animal model from the rocky shores ecosystem, a predatory fish, the frillfin goby Bathygobius soporator, and a benthic prey, the mottled shore crab Pachygrapsus transversus. Our results demonstrate that frillfin gobies are capable of visually evaluating prey size and that the size evaluation process is modulated by the level of stomach fullness. Predators with an empty stomach (0% fullness) attacked prey that was larger than the predicted optimal size. Partially satiated predators (50% stomach fullness) selected prey close to the optimal size, while fully satiated predators (100% stomach fullness) showed no preference for size. This finding indicates an integrative response of the predator that depends on the input of both internal and external sensory information when choosing prey. Predator perceptions of visual cues (prey size) and stomach fullness modulate foraging decisions. As a result, a flexible feeding behaviour emerges, evidencing a clearly adaptive response in line with optimal foraging theory predictions.  相似文献   

14.
Birds'' eggshells are renowned for their striking colours and varied patterns. Although often considered exceptionally diverse, we report that avian eggshell coloration, sampled here across the full phylogenetic diversity of birds, occupies only 0.08–0.10% of the avian perceivable colour space. The concentrations of the two known tetrapyrrole eggshell pigments (protoporphyrin and biliverdin) are generally poor predictors of colour, both intra- and interspecifically. Here, we show that the constrained diversity of eggshell coloration can be accurately predicted by colour mixing models based on the relative contribution of both pigments and we demonstrate that the models'' predictions can be improved by accounting for the reflectance of the eggshell''s calcium carbonate matrix. The establishment of these proximate links between pigmentation and colour will enable future tests of hypotheses on the functions of perceived avian eggshell colours that depend on eggshell chemistry. More generally, colour mixing models are not limited to avian eggshell colours but apply to any natural colour. Our approach illustrates how modelling can aid the understanding of constraints on phenotypic diversity.  相似文献   

15.
Intraguild predation theory centres on two predictions: (i) for an omnivore and an intermediate predator (IG-prey) to coexist on shared resources, the IG-prey must be the superior resource competitor, and (ii) increasing resource productivity causes the IG-prey''s equilibrium abundance to decline. I tested these predictions with a series of species-rich food webs along New Zealand''s rocky shores, focusing on two predatory whelks, Haustrum haustorium, a trophic omnivore, and Haustrum scobina, the IG-prey. In contrast to theory, the IG-prey''s abundance increased with productivity. Furthermore, feeding rates and allometric considerations indicate a competitive advantage for the omnivore when non-shared prey are considered, despite the IG-prey''s superiority for shared prey. Nevertheless, clear and regular cross-gradient changes in network structure and interaction strengths were observed that challenge the assumptions of current theory. These insights suggest that the consideration of consumer-dependent functional responses, non-equilibrium dynamics, the dynamic nature of prey choice and non-trophic interactions among basal prey will be fruitful avenues for theoretical development.  相似文献   

16.
The traps of many carnivorous plants are red in colour. This has been widely hypothesized to serve a prey attraction function; colour has also been hypothesized to function as camouflage, preventing prey avoidance. We tested these two hypotheses in situ for the carnivorous plant Drosera rotundifolia. We conducted three separate studies: (i) prey attraction to artificial traps to isolate the influence of colour; (ii) prey attraction to artificial traps on artificial backgrounds to control the degree of contrast and (iii) observation of prey capture by D. rotundifolia to determine the effects of colour on prey capture. Prey were not attracted to green traps and were deterred from red traps. There was no evidence that camouflaged traps caught more prey. For D. rotundifolia, there was a relationship between trap colour and prey capture. However, trap colour may be confounded with other leaf traits. Thus, we conclude that for D. rotundifolia, red trap colour does not serve a prey attraction or camouflage function.  相似文献   

17.
Mougi A 《PloS one》2010,5(11):e13887

Background

Our understanding of coevolution in a predator–prey system is based mostly on pair-wise interactions.

Methodology and Principal Findings

Here I analyze a one-predator–two-prey system in which the predator''s attack ability and the defense abilities of the prey all evolve. The coevolutionary consequences can differ dramatically depending on the initial trait value and the timing of the alternative prey''s invasion into the original system. If the invading prey species has relatively low defense ability when it invades, its defense is likely to evolve to a lower level, stabilizing the population dynamics. In contrast, if when it invades its defense ability is close to that of the resident prey, its defense can evolve to a higher level and that of the resident prey may suddenly cease to evolve, destabilizing the population dynamics. Destabilization due to invasion is likely when the invading prey is adaptively superior (evolution of its defense is less constrained and fast), and it can also occur in a broad condition even when the invading prey is adaptively inferior. In addition, invasion into a resident system far from equilibrium characterized by population oscillations is likely to cause further destabilization.

Conclusions and Significance

An invading prey species is thus likely to destabilize a resident community.  相似文献   

18.
Multiple predator species that coexist with each other and their mutual prey can have combined effects on prey mortality that are similar to the sum of each predator's individual impact (linear effects), greater than the sum of each predator's individual impact (risk enhancement), or less than the sum of each predator's individual impact (risk reduction). Understanding multiple predator effects is important to determine the impact of predators on pest prey in agroecosystems. If two predators share the same broad spatial domain and hunting mode and engage in intraguild predation, then their combination is expected to result in risk reduction for a mutual prey. We tested this hypothesis using both additive and replacement experimental designs on two species of generalist wolf spider predators (Tasmanicosa leuckartii and Hogna crispipes) that hunt in the same domain, and a mutual insect prey (cotton bollworm Helicoverpa armigera). We used two types of enclosures: a small simple laboratory enclosure, and a larger more complex cotton plant enclosure. We found that in the small simple laboratory enclosures, the presence of two spiders led to risk reduction of Helicoverpa larva mortality as expected, but in larger more complex cotton plant enclosures the presence of both species resulted in linear effects rather than risk reduction on Helicoverpa mortality. Furthermore, intraguild predation did not change multiple predator effects in laboratory or plant enclosures. This study has implications for managing arthropod predators in agroecosystems; contrary to predictions of ecological frameworks, coexistence of predators that share the same hunting mode and hunting domain may not lead to risk reduction on a mutual prey in more complex environments, where encounters among predators can be lower. Conservation of multiple predators of a single guild can play an essential role on biological control of insect pests.  相似文献   

19.
Synthesis Predation risk experienced by individuals living in groups depends on the balance between predator dilution, competition for refuges, and predator interference or synergy. These interactions operate between prey species as well: the benefits of group living decline in the presence of an alternative prey species. We apply a novel model‐fitting approach to data from field experiments to distinguish among competing hypotheses about shifts in predator foraging behavior across a range of predator and prey densities. Our study provides novel analytical tools for analyzing predator foraging behavior and offers insight into the processes driving the dynamics of coral reef fish. Studies of predator foraging behavior typically focus on single prey species and fixed predator densities, ignoring the potential importance of complexities such as predator dilution; predator‐mediated effects of alternative prey; heterospecific competition; or predator–predator interactions. Neglecting the effects of prey density is particularly problematic for prey species that live in mixed species groups, where the beneficial effects of predator dilution may swamp the negative effects of heterospecific competition. Here we use field experiments to investigate how the mortality rates of a shoaling coral reef fish (a wrasse: Thalassoma amblycephalum), change as a result of variation in: 1) conspecific density, 2) density of a predator (a hawkfish: Paracirrhites arcatus), and 3) presence of an alternative prey species that competes for space (a damselfish: Pomacentrus pavo). We quantify changes in prey mortality rates from the predator's perspective, examining the effects of added predators or a second prey species on the predator's functional response. Our analysis highlights a model‐fitting approach that discriminates amongst multiple hypotheses about predator foraging in a community context. Wrasse mortality decreased with increasing conspecific density (i.e. mortality was inversely density‐dependent). The addition of a second predator doubled prey mortality rates, without significantly changing attack rate or handling time – i.e. there was no evidence for predator interference. The presence of a second prey species increased wrasse mortality by 95%; we attribute this increase either to short‐term apparent competition (predator aggregation) or to a decrease in handling time of the predator (e.g. through decreased wrasse vigilance). In this system, 1) prey benefit from intraspecific group living though a reduced predation risk, and 2) the benefit of group living is reduced in the presence of an alternative prey species.  相似文献   

20.
This paper analyzes a number of relatively general models of predator-prey adaptation and coadaptation. The motivation behind this work is, in part, to evaluate the “race analogy” that has been applied in analyzing predator-prey coevolution. The models are based on the assumption that increased investment in predation-related adaptations must be paid for by decreased adaptation to some other factor. Increased investment in predation-related adaptations by the prey lowers the predator's functional response, and increased investment by the predator increases the functional response. The models are used to determine how each species should respond to an increase in the predation-related investment of the other species. Several broad classes of population-dynamics models and several alternatives for the cost of predation-related adaptation are investigated. The results do not support the general applicability of the race analogy. In the type of model analyzed in greatest detail here, predator and prey adaptations combine multiplicatively in determining the predator's capture-rate constant. In such models, prey usually increase investment in predator avoidance or escape when predators increase their investment in capture. However, predators often do not change or decrease their investment in response to an increase in the prey's investment. The direction of the predator's response depends on the particular parameter that pays the cost of increased predation investment, the shape of the cost-benefit functions, and the assumptions about the population dynamics of the predator-prey system. Similar models are used to determine whether increased investment by one species should increase the rate of incorporation of mutations that improve the predation-related adaptations of the other species. The arms-race analogy also fails for this case. The results cast doubt on the usefulness of Dawkins and Krebs (1979) “life-dinner” principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号