首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen H  Yao XF  Emura S  Shoumura S 《Tissue & cell》2006,38(5):325-335
SAMP6, a substrain of senescence-accelerated mouse, was developed as an animal model for senile osteoporosis. Previously we observed age-related changes of the bone in SAMP6. In the present study, we investigated the morphology of the skeletal muscle, tendon and periosteum in SAMP6 and age-matched normal mouse SAMR1. We did not find any significant differences between SAMR1 and SAMP6 at 1 and 2 months of age. As compared with SAMR1, the cross-sectional area of type I and type II muscle fibers of the soleus muscle were significantly low in SAMP6 at 8 months of age. The projections in the interface of the muscle-tendon junctions were significantly decreased in SAMP6 at 8 months of age. The number of fibroblasts and the diameter of the tendon collagen fibers in Achilles fiber were significantly reduced in SAMP6 at 8 months of age. The diameter of Sharpey's fiber reduced in SAMP6 at 5 and 8 months of age. Some chondrocytes in the insertions of Achilles tendon and some osteogenic cells in the periosteum showed degenerative changes in SAMP6 at 5 and 8 months of age. The pronounced degenerative changes were detected in the skeletal muscle, muscle-tendon junction, tendon, tendon-bone interface and periosteum in SAMP6 with age. These findings indicated the atrophy of skeletal muscle, degeneration of tendon and periosteum in SAMP6, which may be involved in the bone loss for senile osteoporosis.  相似文献   

2.
Catechins, which are abundant in green tea, possess a variety of biologic actions, and their clinical application has been extensively investigated. In this study, we examined the effects of tea catechins and regular exercise on the aging-associated decline in physical performance in senescence-accelerated prone mice (SAMP1) and age-matched senescence-accelerated resistant mice (SAMR1). The endurance capacity of SAMR1 mice, measured as the running time to exhaustion, tended to increase over the 8-wk experimental period, whereas that of SAMP1 mice decreased by 17%. On the other hand, the endurance capacity of SAMP1 mice fed 0.35% (wt/wt) catechins remained at the initial level and was significantly higher than that of SAMP1 mice not fed catechins. In SAMP1 mice fed catechins and given exercise, oxygen consumption was significantly increased, and there was an increase in skeletal muscle fatty acid beta-oxidation. The mRNA levels of mitochondria-related molecules, such as peroxisome proliferator-activated receptor-gamma coactivator-1, cytochrome c oxidase-II, III, and IV in skeletal muscle were also higher in SAMP1 mice given both catechins and exercise. Moreover, oxidative stress measured as thiobarbituric reactive substances was lower in SAMP1 groups fed catechins than in the SAMP1 control group. These results suggest that long-term intake of catechins, together with habitual exercise, is beneficial for suppressing the aging-related decline in physical performance and energy metabolism and that these effects are due, at least in part, to improved mitochondrial function in skeletal muscle.  相似文献   

3.
Oral creatine supplementation can acutely ameliorate skeletal muscle function in older humans, but its value in the prevention of sarcopenia remains unknown. We evaluated the effects of lifelong creatine supplementation on muscle mass and morphology, contractility, and metabolic properties in a mouse model of muscle senescence. Male senescence-accelerated mice (SAMP8) were fed control or creatine-supplemented (2% of food intake) diet from the age of 10 to 60 wk. Soleus and extensor digitorum longus muscles were tested for in vitro contractile properties, creatine content, and morphology at weeks 25 and 60. Both muscle types showed reduced phosphocreatine content at week 60 that could not be prevented by creatine. Accordingly, age-associated decline in muscle mass and contractility was not influenced by treatment. Aged soleus muscles had fewer and smaller fast-twitch glycolytic fibers irrespective of treatment received. It is concluded that lifelong creatine supplementation is no effective strategy to prevent sarcopenia in senescence-accelerated mice.  相似文献   

4.
The senescence-accelerated mouse prone10 (SAMP10) strain, a model of aging, exhibits cognitive impairments and cerebral atrophy. We noticed that SAMP10/TaSlc mice, a SAMP10 substrain, have developed persistent glucosuria over the past few years. In the present study, we characterized SAMP10/TaSlc mice and further identified a spontaneous mutation in the Slc5a2 gene encoding sodium-glucose co-transporter (SGLT) 2. The mean concentration of urine glucose was high in SAMP10/TaSlc mice and increased further with advancing age, whereas other strains of senescence-accelerated mice, including SAMP1/SkuSlc, SAMP6/TaSlc and SAMP8/TaSlc or normal aging control SAMR1/TaSlc mice, exhibited no detectable glucose in urine. SAMP10/TaSlc mice consumed increasing amounts of food and water compared to SAMR1/TaSlc mice, suggesting the compensation of polyuria and the loss of glucose. Oral glucose tolerance tests showed decreased glucose reabsorption in the kidney of SAMP10/TaSlc mice. In addition, blood glucose levels decreased in an age-dependent fashion. The kidney was innately larger than that of control mice with no histological alterations. We examined the expression levels of glucose transporters in the kidney. Among SGLT1, SGLT2, glucose transporter (GLUT) 1 and GLUT2, we found a significant decrease only in the level of SGLT2. DNA sequencing of SGLT2 in SAMP10/TaSlc mice revealed a single nucleotide deletion of guanine at 1236, which resulted in a frameshift mutation that produced a truncated protein. We designate this strain as SAMP10/TaSlc-Slc5a2slc (SAMP10-ΔSglt2). Recently, SGLT2 inhibitors have been demonstrated to be effective for the treatment of patients with type 2 diabetes (T2D). SAMP10-ΔSglt2 mice may serve as a unique preclinical model to study the link between aging-related neurodegenerative disorders and T2D.  相似文献   

5.
Senescence-accelerated mouse strains have proved to be an accelerated-aging model, which mimics numerous features with Alzheimer's disease (AD). Three, six, and nine-month senescence-accelerated resistant 1 and senescence-accelerated prone 8 (SAMP8) mice were used in the current study, to unravel potential mechanisms for dementia and explore new diagnostic approaches for AD. The amyloid-β (Aβ40) and Aβ42 levels were elevated in hippocampi and platelets from SAMP8, along with a reduced α-secretase expression and an enhanced β-secretase expression extent with age, compared to control mice. Furthermore, hippocampal Aβ40 and Aβ42 of SAMP8 were positively correlated with platelet of these mice with aging progression. In addition, β-γ-secretase-modulated proteolytic proceeding of amyloid precursor protein in platelet might work through the PI3K/Akt/GSK3β pathway. These results indicate that platelet could be a potential early marker in the periphery to study the age-correlative aggregation of the amyloid-β peptide in patients with AD, while still requiring the considerable study.  相似文献   

6.
The aging brain suffers mitochondrial dysfunction and a reduced availability of energy in the form of ATP, which in turn may cause or promote the decline in cognitive, sensory, and motor function observed with advancing age. There is a need for animal models that display some of the pathological features of human brain aging in order to study their prevention by e.g. dietary factors. We thus investigated the suitability of the fast-aging senescence-accelerated mouse-prone 8 (SAMP8) strain and its normally aging control senescence-accelerated mouse-resistant 1 (SAMR1) as a model for the age-dependent changes in mitochondrial function in the brain. To this end, 2-months old male SAMR1 (n = 10) and SAMP8 mice (n = 7) were fed a Western type diet (control groups) for 5 months and one group of SAMP8 mice (n = 6) was fed an identical diet fortified with 500 mg curcumin per kg. Dissociated brain cells and brain tissue homogenates were analyzed for malondialdehyde, heme oxygenase-1 mRNA, mitochondrial membrane potential (MMP), ATP concentrations, protein levels of mitochondrial marker proteins for mitochondrial membranes (TIMM, TOMM), the mitochondrial permeability transition pore (ANT1, VDAC1, TSPO), respiration complexes, and fission and fusion (Fis, Opa1, Mfn1, Drp1). Dissociated brain cells isolated from SAMP8 mice showed significantly reduced MMP and ATP levels, probably due to significantly diminished complex V protein expression, and increased expression of TSPO. Fission and fusion marker proteins indicate enhanced mitochondrial fission in brains of SAMP8 mice. Treatment of SAMP8 mice with curcumin improved MMP and ATP and restored mitochondrial fusion, probably by up-regulating nuclear factor PGC1α protein expression. In conclusion, SAMP8 compared to SAMR1 mice are a suitable model to study age-dependent changes in mitochondrial function and curcumin emerges as a promising nutraceutical for the prevention of neurodegenerative diseases that are accompanied or caused by mitochondrial dysfunction.  相似文献   

7.
Catechins have a great variety of biological actions. We evaluated the potential benefits of catechin ingestion on muscle contractile properties, oxidative stress, and inflammation following downhill running, which is a typical eccentric exercise, in senescence-accelerated prone mice (SAMP). Downhill running (13 m/min for 60 min; 16° decline) induced a greater decrease in the contractile force of soleus muscle and in Ca(2+)-ATPase activity in SAMP1 compared with the senescence-resistant mice (SAMR1). Moreover, compared with SAMR1, SAMP1 showed greater downhill running-induced increases in plasma CPK and LDH activity, malondialdehyde, and carbonylated protein as markers of oxidative stress; and in protein and mRNA expression levels of the inflammatory mediators such as tumor necrosis factor-α and monocyte chemoattractant protein-1 in muscle. SAMP1 exhibited aging-associated vulnerability to oxidative stress and inflammation in muscle induced by downhill running. Long-term (8 wk) catechin ingestion significantly attenuated the downhill running-induced decrease in muscle force and the increased inflammatory mediators in both plasma and gastrocnemius muscle. Furthermore, catechins significantly inhibited the increase in oxidative stress markers immediately after downhill running, accompanied by an increase in glutathione reductase activity. These findings suggest that long-term catechin ingestion attenuates the aging-associated loss of force production, oxidative stress, and inflammation in muscle after exercise.  相似文献   

8.
9.
Early onset increases in oxidative stress and tau pathology are present in the brain of senescence-accelerated mice prone (SAMP8). Astrocytes play an essential role, both in determining the brain's susceptibility to oxidative damage and in protecting neurons. In this study, we examine changes in tau phosphorylation, oxidative stress and glutamate uptake in primary cultures of cortical astrocytes from neonatal SAMP8 mice and senescence-accelerated-resistant mice (SAMR1). We demonstrated an enhancement of abnormally phosphorylated tau in Ser(199) and Ser(396) in SAMP8 astrocytes compared with that of SAMR1 control mice. Gsk3beta and Cdk5 kinase activity, which regulate tau phosphorylation, was also increased in SAMP8 astrocytes. Inhibition of Gsk3beta by lithium or Cdk5 by roscovitine reduced tau phosphorylation at Ser(396). Moreover, we detected an increase in radical superoxide generation, which may be responsible for the corresponding increase in lipoperoxidation and protein oxidation. We also observed a reduced mitochondrial membrane potential in SAMP8 mouse astrocytes. Glutamate uptake in astrocytes is a critical neuroprotective mechanism. SAMP8 astrocytes showed a decreased glutamate uptake compared with those of SAMR1 controls. Interestingly, survival of SAMP8 or SAMR1 neurons cocultured with SAMP8 astrocytes was significantly reduced. Our results indicate that alterations in astrocyte cultures from SAMP8 mice are similar to those detected in whole brains of SAMP8 mice at 1-5 months. Moreover, our findings suggest that this in vitro preparation is suitable for studying the molecular and cellular processes underlying early aging in this murine model. In addition, our study supports the contention that astrocytes play a key role in neurodegeneration during the aging process.  相似文献   

10.
The blood-brain barrier (BBB) to endogenous albumin was studied in the olfactory bulb and pons of the senescence-accelerated prone (SAMP8) mouse and senescence-accelerated resistant (SAMR1) mouse strains by using a quantitative immunocytochemical procedure. Ultrathin sections of Lowicryl K4M-embedded samples were exposed to anti-mouse albumin antiserum followed by protein A-gold. Morphometric analysis of the electron micrographs revealed that in the olfactory bulb of both groups of animals, especially in the internal granular layer, some percentage of capillaries and slightly larger microvessels showed leakage of albumin. However, this percentage was larger in SAMP8 than in SAMR1 mice. In the pons, no significant differences in the permeability of blood microvessels were observed in both groups of mice, although a small fraction of capillaries in SAMP8 mice showed limited extravasation of blood plasma albumin. These observations indicate that the BBB in the olfactory bulb of control and SAMP8 mice is not as tight as it is in the pons or in the previously examined cerebral cortex. The labelling density of the neuropil was slightly higher than in the cerebral cortex, suggesting that albumin may have extravasated locally, in addition to having acces to the parenchyma of the olfactory bulb and pons from neighbouring areas supplied with the non-BBB-type of microvasculature. Furthermore, the data obtained suggest that there is limited (segmental), premature agerelated impairment of the BBB function in SAMP8 mice.  相似文献   

11.
Senescence-accelerated mouse (SAM) strains constitute a model of accelerated senescence coupled with a short lifespan and the early development of various age-related disorders. To identify differential gene expression in testes between senescence-accelerated SAMP1 and control SAMR1 mice, we performed suppression subtractive hybridization. We observed that the expression of three genes related to cell proliferation (myosin regulatory light chain B, aldolase 1A isoform, and cytochrome c oxidase subunit VIc) were upregulated and four genes implicated in spermatogenesis were downregulated in SAMP1 mice. Asb-8, a member of ankyrin repeat-containing proteins, was abundantly expressed in the testes and downregulated in SAMP1. The other three downregulated genes (germ cell-specific gene 1, T-complex polypeptide 1b, and activator of cAMP responsive element modulator in testis) have been reported to regulate late-stage spermatogenesis. These gene expression profiles might explain the findings of early testicular maturation and rapid decline in the ability to produce spermatozoa with advancing age in SAMP1 mice.  相似文献   

12.
Liver disease is characterized by fatty liver, hepatitis, fibrosis and cirrhosis and is a major cause of illness and death worldwide. The prevalence of liver diseases highlights the need for animal models for research on the mechanism of disease pathogenesis and efficient and cost-effective treatments. Here we show that a senescence-accelerated mouse strain (SAMP8 mice), displays severe liver pathology, which is not seen in senescence-resistant mice (SAMR1). The livers of SAMP8 mice show fatty degeneration, hepatocyte death, fibrosis, cirrhotic changes, inflammatory mononuclear cell infiltration and sporadic neoplastic changes. SAMP8 mice also show abnormal liver function tests: significantly increased levels of alanine amino-transferase (ALT) and aspartate aminotransferase (AST). Furthermore, titers of murine leukemia virus are higher in livers of SAMP8 than in those of SAMR1 mice. Our observations suggest that SAMP8 mouse strain is a valuable animal model for the study of liver diseases. The possible mechanisms of liver damage in SAMP8 mice are also discussed.  相似文献   

13.
Disturbed deoxythymidine triphosphate biosynthesis due to the inhibition of thymidylate synthase (TS) can lead to uracil accumulation in DNA, eventually, lead to neurocytes apoptosis and cognitive decline. Folic acid supplementation delayed cognitive decline and neurodegeneration in senescence-accelerated mouse prone 8 (SAMP8). Whether folic acid, one of nutrition factor, the effect on the expression of TS is unknown. The study aimed to determine if folic acid supplementation could alleviate age-related cognitive decline and apoptosis of neurocytes by increasing TS expression in SAMP8 mice. According to folic acid concentration in diet, four-month-old male SAMP8 mice were randomly divided into three different diet groups by baseline body weight in equal numbers. Moreover, to evaluate the role of TS, a TS inhibitor was injected intraperitoneal. Cognitive test, apoptosis rates of neurocytes, expression of TS, relative uracil level in telomere, and telomere length in brain tissue were detected. The results showed that folic acid supplementation decreased deoxyuridine monophosphate accumulation, uracil misincorporation in telomere, alleviated telomere length shorting, increased expression of TS, then decreased apoptosis rates of neurocytes, and alleviated cognitive performance in SAMP8 mice. Moreover, at the same concentration of folic acid, TS inhibitor raltitrexed increased deoxyuridine monophosphate accumulation, uracil misincorporation in telomere, and exacerbated telomere length shorting, decreased expression of TS, then increased apoptosis rates of neurocytes, and decreased cognitive performance in SAMP8 mice. In conclusion, folic acid supplementation alleviated age-related cognitive decline and inhibited apoptosis of neurocytes by increasing TS expression in SAMP8 mice.  相似文献   

14.
Glucocorticoids (GCs) are important regulators of skeletal muscle mass, and prolonged exposure will induce significant muscle atrophy. To better understand the mechanism of skeletal muscle atrophy induced by elevated GC levels, we examined three different models: exogenous synthetic GC treatment [dexamethasone (DEX)], nutritional deprivation, and denervation. Specifically, we tested the direct contribution of the glucocorticoid receptor (GR) in skeletal muscle atrophy by creating a muscle-specific GR-knockout mouse line (MGR(e3)KO) using Cre-lox technology. In MGR(e3)KO mice, we found that the GR is essential for muscle atrophy in response to high-dose DEX treatment. In addition, DEX regulation of multiple genes, including two important atrophy markers, MuRF1 and MAFbx, is eliminated completely in the MGR(e3)KO mice. In a condition where endogenous GCs are elevated, such as nutritional deprivation, induction of MuRF1 and MAFbx was inhibited, but not completely blocked, in MGR(e3)KO mice. In response to sciatic nerve lesion and hindlimb muscle denervation, muscle atrophy and upregulation of MuRF1 and MAFbx occurred to the same extent in both wild-type and MGR(e3)KO mice, indicating that a functional GR is not required to induce atrophy under these conditions. Therefore, we demonstrate conclusively that the GR is an important mediator of skeletal muscle atrophy and associated gene expression in response to exogenous synthetic GCs in vivo and that the MGR(e3)KO mouse is a useful model for studying the role of the GR and its target genes in multiple skeletal muscle atrophy models.  相似文献   

15.
Muscle disuse produces severe atrophy and a slow-to-fast phenotype transition in the postural Soleus (Sol) muscle of rodents. Antioxidants, amino-acids and growth factors were ineffective to ameliorate muscle atrophy. Here we evaluate the effects of nandrolone (ND), an anabolic steroid, on mouse skeletal muscle atrophy induced by hindlimb unloading (HU). Mice were pre-treated for 2-weeks before HU and during the 2-weeks of HU. Muscle weight and total protein content were reduced in HU mice and a restoration of these parameters was found in ND-treated HU mice. The analysis of gene expression by real-time PCR demonstrates an increase of MuRF-1 during HU but minor involvement of other catabolic pathways. However, ND did not affect MuRF-1 expression. The evaluation of anabolic pathways showed no change in mTOR and eIF2-kinase mRNA expression, but the protein expression of the eukaryotic initiation factor eIF2 was reduced during HU and restored by ND. Moreover we found an involvement of regenerative pathways, since the increase of MyoD observed after HU suggests the promotion of myogenic stem cell differentiation in response to atrophy. At the same time, Notch-1 expression was down-regulated. Interestingly, the ND treatment prevented changes in MyoD and Notch-1 expression. On the contrary, there was no evidence for an effect of ND on the change of muscle phenotype induced by HU, since no effect of treatment was observed on the resting gCl, restCa and contractile properties in Sol muscle. Accordingly, PGC1α and myosin heavy chain expression, indexes of the phenotype transition, were not restored in ND-treated HU mice. We hypothesize that ND is unable to directly affect the phenotype transition when the specialized motor unit firing pattern of stimulation is lacking. Nevertheless, through stimulation of protein synthesis, ND preserves protein content and muscle weight, which may result advantageous to the affected skeletal muscle for functional recovery.  相似文献   

16.
Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy.  相似文献   

17.
Sarcopenia is an age-related systemic syndrome with progressive deterioration in skeletal muscle functions and loss in mass. Although the senescence-accelerated mouse P8 (SAMP8) was reported valid for muscular ageing research, there was no report on the details such as sarcopenia onset time. Therefore, this study was to investigate the change of muscle mass, structure and functions during the development of sarcopenia. Besides the average life span, muscle mass, structural and functional measurements were also studied. Male SAMP8 animals were examined at month 6, 7, 8, 9, and 10, in which the right gastrocnemius was isolated and tested for ex vivo contractile properties and fatigability while the contralateral one was harvested for muscle fiber cross-sectional area (FCSA) and typing assessments. Results showed that the peak of muscle mass appeared at month 7 and the onset of contractility decline was observed from month 8. Compared with month 8, most of the functional parameters at month 10 decreased significantly. Structurally, muscle fiber type IIA made up the largest proportion of the gastrocnemius, and the fiber size was found to peak at month 8. Based on the altered muscle mass, structural and functional outcomes, it was concluded that the onset of sarcopenia in SAMP8 animals was at month 8. SAMP8 animals at month 8 should be at pre-sarcopenia stage while month 10 at sarcopenia stage. It is confirmed that SAMP8 mouse can be used in sarcopenia research with established time line in this study.  相似文献   

18.
BACKGROUNDSynaptophysin plays a key role in synaptic development and plasticity of neurons and is closely related to the cognitive process of Alzheimer’s disease (AD) patients. Exogenous neural stem cells (NSCs) improve the damaged nerve function. The effects of Sanjiao acupuncture on cognitive impairment may be related to the regulation of the NSC microenvironment.AIMTo explore the anti-dementia mechanism of acupuncture by regulating the NSC microenvironment.METHODSNSCs were isolated from pregnant senescence-accelerated mouse resistant 1 (SAMR1) mice, labeled with BrdU, and injected into the hippocampus of senescence-accelerated mouse prone 8 (SAMP8) mice. Eight-month-old senescence-accelerated mice (SAM) were randomly divided into six groups: SAMR1 (RC), SAMP8 (PC), sham transplantation (PS), NSC transplantation (PT), NSC transplantation with acupuncture (PTA), and NSC transplantation with non-acupoint acupuncture (PTN). Morris water maze test was used to study the learning and memory ability of mice after NSC transplantation. Hematoxylin-eosin staining and immunofluorescence were used to observe the his-topathological changes and NSC proliferation in mice. A co-culture model of hippocampal slices and NSCs was established in vitro, and the synaptophysin expression in the hippocampal microenvironment of mice was observed by flow cytometry after acupuncture treatment.RESULTSMorris water maze test showed significant cognitive impairment of learning and memory in 8-mo-old SAMP8, which improved in all the NSC transplantation groups. The behavioral change in the PTA group was stronger than those in the other two groups (P < 0.05). Histopathologically, the hippocampal structure was clear, the cell arrangement was dense and orderly, and the necrosis of cells in CA1 and CA3 areas was significantly reduced in the PTA group when compared with the PC group. The BrdU-positive proliferating cells were found in NSC hippocampal transplantation groups, and the number increased significantly in the PTA group than in the PT and PTN groups (P < 0.05). Flow cytometry showed that after co-culture of NSCs with hippocampal slices in vitro, the synaptophysin expression in the PC group decreased in comparison to the RC group, that in PT, PTA, and PTN groups increased as compared to the PC group, and that in the PTA group increased significantly as compared to the PTN group with acupoint-related specificity (P < 0.05).CONCLUSIONAcupuncture may promote nerve regeneration and synaptogenesis in SAMP8 mice by regulating the microenvironment of NSC transplantation to improve the nerve activity and promote the recovery of AD-damaged cells.  相似文献   

19.
Amyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduced oxidative stress-mediated damage and prevented or reverted cognitive deficits in senescence-accelerated prone mice (SAMP8), a useful animal model for investigating the events related to Aβ pathology and possibly to the early phase of AD. In the current study, aged SAMP8 were treated by AO directed against PS-1, a component of the γ-secretase complex, and tested for learning and memory in T-maze foot shock avoidance and novel object recognition. Brain tissue was collected to identify the decrease of oxidative stress and to evaluate the proteins that are differently expressed and oxidized after the reduction in free radical levels induced by Aβ. We used both expression proteomics and redox proteomics approaches. In brain of AO-treated mice a decrease of oxidative stress markers was found, and the proteins identified by proteomics as expressed differently or nitrated are involved in processes known to be impaired in AD. Our results suggest that the treatment with AO directed against PS-1 in old SAMP8 mice reverses learning and memory deficits and reduces Aβ-mediated oxidative stress with restoration to the normal condition and identifies possible pharmacological targets to combat this devastating dementing disease.  相似文献   

20.
The present study examined the effects of inducible nitric oxide synthase (iNOS) deficiency on skeletal muscle atrophy in single leg-immobilized iNOS knockout (KO) and wild-type (WT) mice. The left leg was immobilized for 1 wk, and the right leg was used as the control. Muscle weight and contraction-stimulated glucose uptake were reduced by immobilization in WT mice, which was accompanied with increased iNOS expression in skeletal muscle. Deficiency of iNOS attenuated muscle weight loss and the reduction in contraction-stimulated glucose uptake by immobilization. Phosphorylation of Akt, mTOR, and p70S6K was reduced to a similar extent by immobilization in both WT and iNOS KO mice. Immobilization decreased FoxO1 phosphorylation and increased mRNA and protein levels of MuRF1 and atrogin-1 in WT mice, which were attenuated in iNOS KO mice. Aconitase and superoxide dismutase activities were reduced by immobilization in WT mice, and deficiency of iNOS normalized these enzyme activities. Increased nitrotyrosine and carbonylated protein levels by immobilization in WT mice were reversed in iNOS KO mice. Phosphorylation of ERK and p38 was increased by immobilization in WT mice, which was reduced in iNOS KO mice. Immobilization-induced muscle atrophy was also attenuated by an iNOS-specific inhibitor N(6)-(1-iminoethyl)-l-lysine, and this finding was accompanied by increased FoxO1 phosphorylation and reduced MuRF1 and atrogin-1 levels. These results suggest that deficiency of iNOS attenuates immobilization-induced skeletal muscle atrophy through reduced oxidative stress, and iNOS-induced oxidative stress may be required for immobilization-induced skeletal muscle atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号