首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study was aimed to evaluate the impact of high frequency electromagnetic fields (HF-EMF at 900 and 1800 MHz) on DNA, growth rate and antibiotic susceptibility of S. aureus, S. epidermidis, and P. aeruginosa. In this study, bacteria were exposed to 900 and 1800 MHz for 2 h and then inoculated to new medium when their growth rate and antibiotic susceptibility were evaluated. Results for the study of bacterial DNA unsuccessful to appearance any difference exposed and non-exposed S. aureus and S. epidermidis. Exposure of S. epidermidis and S. aureus to electromagnetic fields mostly produced no statistically significant decrease in bacterial growth, except for S. aureus when exposure to 900 MHz at 12 h. Exposure of P. aeruginosa to electromagnetic fields at 900 MHz however, lead to a significant reduction in growth rate, while 1800 MHz had insignificant effect. With the exception of S. aureus, treated with amoxicillin (30 µg) and exposed to electromagnetic fields, radiation treatment had no significant effect on bacterial sensitivity to antibiotics.  相似文献   

2.
Cell-to-cell communication or quorum sensing (QS) leads to biofilm formation and causing other virulence factors which are extreme problems for food safety, biofilm related infectious diseases etc. This study evaluated the anti-QS activity of the Amomum tsaoko extract (0.5–4 mg/ml) by using Chromobacterium violaceum a biosensor strain and biofilm formation by crystal violate assay. Experimental results demonstrated that the overall yield of Amomum tsao-ko extract was 11.33 ± 0.3% (w/w). MIC for Staphylococcus aureus (Gram positive), Salmonella Typhimurium and Pseudomonas aeruginosa (Gram negative) was 1, 2 and 2 mg/ml, respectively. A concentration of 4 mg/ml extract showed highest biofilm inhibition 51.96% on S. Typhimurium when 47.06%, 45.28% were shown by S. aureus, P. aeruginosa respectively. The damage of biofilm architecture was observed by Confocal Laser Scanning Microscopy (CLSM). A level of 44.59% inhibition of violacein production was demonstrated when the dose was 4 mg/ml. Swarming motility inhibition was observed in a dose dependent manner. Taken together, the treatment of A. tsaoko extract can deliver value to food product and medicine by controlling pathogenesis.  相似文献   

3.
The aim of the present study was to investigate the anti-biofilm activity of biologically synthesized selenium nanoparticles (Se NPs) against the biofilm produced by clinically isolated bacterial strains compared to that of selenium dioxide. Thirty strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis were isolated from various specimens of the patients hospitalized in different hospitals (Kerman, Iran). Quantification of the biofilm using microtiter plate assay method introduced 30% of S. aureus, 13% of P. aeruginosa and 17% of P. mirabilis isolates as severely adherent strains. Transmission electron micrograph (TEM) of the purified Se NPs (produced by Bacillus sp. MSh-1) showed individual and spherical nano-structure in the size range of 80–220 nm. Obtained results of the biofilm formation revealed that selenium nanoparticles inhibited the biofilm of S. aureus, P. aeruginosa, and P. mirabilis by 42%, 34.3%, and 53.4%, respectively, compared to that of the non-treated samples. Effect of temperature and pH on the biofilm formation in the presence of Se NPs and SeO2 was also evaluated.  相似文献   

4.
Several molecules have been discovered that interfere with formation of bacterial biofilms, opening a new strategy for the development of more efficient treatments in case of antibiotic resistant bacteria. Amongst the most active compounds are some natural brominated furanones from marine algae Delisea pulchra that have proven to be able to control pathogenic biofilms. We have recently reported that some rubrolide analogues are able to inhibit biofilm formation of Enterococcus faecalis. In the present Letter we describe results of the biological evaluation of a small library of 28 compounds including brominated furanones and the corresponding lactams against biofilm formation of Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis and Streptococcus mutans. Our results showed that in general these compounds were more active against biofilms of S. epidermidis and P. aeruginosa, with little or no inhibition of planktonic bacterial growth. In some cases they were able to prevent biofilm formation of P. aeruginosa at concentrations as low as 0.6 μg/mL (1.3 μM, compound 3d) and 0.7 μg/mL (1.3 μM, 3f). Results also indicate that, in general, lactams are more active against biofilms than their precursors, thus designating this class of molecules as good candidates for the development of a new generation of antimicrobial drugs targeted to biofilm inhibition.  相似文献   

5.
BackgroundAntimicrobial resistance is a great concern in the medical community, as well as food industry. Soy peptides were tested against bacterial biofilms for their antimicrobial activity. A high throughput drug screening assay was developed using microfluidic technology, RAMAN spectroscopy, and optical microscopy for rapid screening of antimicrobials and rapid identification of pathogens.MethodsSynthesized PGTAVFK and IKAFKEATKVDKVVVLWTA soy peptides were tested against Pseudomonas aeruginosa and Listeria monocytogenes using a microdilution assay. Microfluidic technology in combination with Surface Enhanced RAMAN Spectroscopy (SERS) and optical microscopy was used for rapid screening of soy peptides, pathogen identification, and to visualize the impact of selected peptides.ResultsThe PGTAVFK peptide did not significantly affect P. aeruginosa, although it had an inhibitory effect on L. monocytogenes above a concentration of 625 µM. IKAFKEATKVDKVVVLWTA was effective against both P. aeruginosa and L. monocytogenes above a concentration of 37.2 µM. High throughput drug screening assays were able to reduce the screening and bacterial detection time to 4 h. SERS spectra was used to distinguish the two bacterial species.ConclusionsPGTAVFK and IKAFKEATKVDKVVVLWTA soy peptides showed antimicrobial activity against P. aeruginosa and L. monocytogenes. Development of high throughput assays could streamline the drug screening and bacterial detection process.General significanceThe results of this study show that the antimicrobial properties, biocompatibility, and biodegradability of soy peptides could possibly make them an alternative to the ineffective antimicrobials and antibiotics currently used in the food and medical fields. High throughput drug screening assays could help hasten pre-clinical trials in the medical field.  相似文献   

6.
Twenty-five aerobic phenol-degrading bacteria, isolated from different environmental samples on phenol agar after several subcultures in phenol broth, utilized phenol (0.2 g l−1) within 24 h, but removal of phenol was more rapid when other carbon sources were also present. A microtitre plate method was developed to determine growth rate, biofilm formation and respiratory activity of the strains isolated. Pseudomonas putida strains C5 and D6 showed maximum growth (as O.D. at 600 nm), P. putida D6 and unidentified bacterial strain M1 were more stable at high concentrations of phenol (0.8 g l−1), and P. putida C5 formed the greatest amount of biofilm in 0.5 g phenol l−1 medium. Measurement of dehydrogenase activity as reduction of triphenyl tetrazolium chloride supported data on growth rate and biofilm formation. The microtitre plate method provided a selective method for detection of the best phenol degrading and biofilm-forming microorganisms, and was also a rapid, convenient means of studying the effect of phenol concentration on growth rate and biofilm formation.  相似文献   

7.
Navigating novel biological strategies to mitigate bacterial biofilms have great worth to combat bacterial infections. Bacterial infections caused by the biofilm forming bacteria are 1000 times more resistant to antibiotics than the planktonic bacteria. Among the known bacterial infections, more than 70% involve biofilms which severely complicates treatment options. Biofilm formation is mainly regulated by the Quorum sensing (QS) mechanism. Interference with the QS system by the quorum quenching (QQ) enzyme is a potent strategy to mitigate biofilm. In this study, bacterial strains with QQ activity were identified and their anti-biofilm potential was investigated against the Multidrug Resistant (MDR) Pseudomonas aeruginosa. A Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136-based bioassays were used to confirm the degradation of different Acyl Homoserine Lactones (AHLs) by QQ isolates. The 16S rRNA gene sequencing of the isolated strains identified them as Bacillus cereus strain QSP03, B. subtilis strain QSP10, Pseudomonas putida strain QQ3 and P. aeruginosa strain QSP01. Biofilm mitigation potential of QQ isolates was tested against MDR P. aeruginosa and the results suggested that 50% biofilm reduction was observed by QQ3 and QSP01 strains, and around 60% reduction by QSP10 and QSP03 bacterial isolates. The presence of AHL degrading enzymes, lactonases and acylases, was confirmed by PCR based screening and sequencing of the already annotated genes aiiA, pvdQ and quiP. Altogether, these results exhibit that QQ bacterial strains or their products could be useful to control biofilm formation in P.aeruginosa.  相似文献   

8.
Pseudomonas aeruginosa is one of the major nosocomial pathogen that can causes a wide variety of acute and chronic infections P. aeruginosa is a dreaded bacteria not just because of the high intrinsic and acquired antibiotic resistance rates but also the biofilm formation and production of multiple virulence factors. We investigated the in vitro activities of antibiotics (ceftazidime, tobramycin, ciprofloxacin, doripenem, piperacillin and colistin) and antimicrobial cationic peptides (AMPs; LL-37, CAMA: cecropin(1–7)-melittin A(2–9) amide, melittin, defensin and magainin-II) alone or in combination against biofilms of laboratory strain ATCC 27853 and 4 clinical strains of P. aeruginosa. The minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentrations (MBEC) were determined by microbroth dilution technique. The MBEC values of antibiotics and AMPs were 80–>5120 and 640–>640 mg/L, respectively. When combined with the LL-37 or CAMA at 1/10× MBEC, the MBEC values of antibiotics that active against biofilms, were decreased up to 8-fold. All of the antibiotics, and AMPs were able to inhibit the attachment of bacteria at the 1/10× MIC and biofilm formation at 1× or 1/10× MIC concentrations. Time killing curve studies showed 3-log10 killing against biofilms in 24 h with almost all studied antibiotics and AMPs. Synergism were seen in most of the studied combinations especially CAMA/LL-37 + ciprofloxacin against at least one or two strains’ biofilms. Since biofilms are not affected the antibiotics at therapeutic concentrations, using a combination of antimicrobial agents including AMPs, or inhibition of biofilm formation by blocking the attachment of bacteria to surfaces might be alternative methods to fight with biofilm associated infections.  相似文献   

9.
Herein, we describe indole-based analogues of oroidin as a novel class of 2-aminoimidazole-based inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation and, to the best of our knowledge, the first reported 2-aminoimidazole-based inhibitors of Streptococcus mutans biofilm formation. This study highlighted the indole moiety as a dibromopyrrole mimetic for obtaining inhibitors of S. aureus and S. mutans biofilm formation. The most potent compound in the series, 5-(trifluoromethoxy)indole-based analogue 4b (MBIC50 = 20 μM), emerged as a promising hit for further optimisation of novel inhibitors of S. aureus and S. mutans biofilms.  相似文献   

10.
Prevention of food spoilage and food poisoning pathogens is usually achieved by use of chemical preservatives which have negative impacts including: human health hazards of the chemical applications, chemical residues in food & feed chains and acquisition of microbial resistance to the used chemicals. Because of such concerns, the necessity to find a potentially effective, healthy safer and natural alternative preservatives is increased. Within these texts, Plant extracts have been used to control food poisoning diseases and preserve foodstuff. Antimicrobial activity of five plant extracts were investigated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi using agar disc diffusion technique. Ethanolic extracts of Punica granatum, Syzygium aromaticum, Zingiber officinales and Thymus vulgaris were potentially effective with variable efficiency against the tested bacterial strains at concentration of 10 mg/ml while extract of Cuminum cyminum was only effective against S. aureus respectively. P. granatum and S. aromaticum ethanolic extracts were the most effective plant extracts and showed bacteriostatic and bactericidal activities against the highly susceptible strains of food borne pathogenic bacteria (S. aureus and P. aeruginosa) with MIC's ranged from 2.5 to 5.0 mg/ml and MBC of 5.0 and 10 mg/ml except P. aeruginosa which was less sensitive and its MBC reached to 12.5 mg/ml of S. aromaticum respectively. These plant extracts which proved to be potentially effective can be used as natural alternative preventives to control food poisoning diseases and preserve food stuff avoiding healthy hazards of chemically antimicrobial agent applications.  相似文献   

11.
Methanol extract of the Gracilaria changii has been screened for antimicrobial activity against Pseudomonas aeruginosa. Antimicrobial activities were carried out using disc diffusion assay and broth dilution method against P. aeruginosa. The methanol extract of G. changii showed a good antimicrobial activity against P. aeruginosa with MIC (Minimum Inhibitory Concentration) value of 6.25 mg/ml. Exposure of P. aeruginosa cells to 6.25 mg/ml of methanol extract of G. changii resulted in complete inhibition of the bacterial cells. The main abnormalities noted via SEM and TEM studies were the alterations in morphology and cytology of the bacterial cells. The main reason for this deterioration was discussed. The effect of the methanol extract on the growth profile for the bacteria was also done and confirmed the bactericidal effect of the G. changii methanol extract on P. aeruginosa by changing the normal growth profile of P. aeruginosa. In an acute toxicity study using mice, the median lethal dose (LD50) of the extract was greater than 2000 mg/kg, and we found no pathological changes in macroscopic examination by necropsy of mice treated with extract. We conclude that G. changii might be safely used as an antimicrobial agent.  相似文献   

12.
A novel series of polyhalobenzonitrile quinazolin-4(3H)-one derivatives were synthesized and characterized by NMR, IR, MS, and HRMS spectra. All of the newly prepared compounds were screened for antimicrobial activities against four strains of bacteria (Gram-positive bacterial: Staphylococcus aureus and Bacillus cereus; Gram-negative bacterial: Escherichia coli and Pseudomonas aeruginosa) and one strain of fungi (Candida albicans). Among the synthesized compounds, 5-(dimethylamino)-8-(2,4,5-trichloro-isophthalonitrile) quinazolin-4(3H)-one (7k) exhibited significant activity towards Gram-positive bacterial, Gram-negative bacterial, and the fungi strains. The MIC (0.8–3.3 μg/mL) and MBC (2.6–7.8 μg/mL) for this compound were close to those of nofloxacin, chlorothalonil, and fluconazole, making it the most potent antimicrobial agents in the series.  相似文献   

13.
Two series of thiazole derivatives containing amide skeleton were synthesized and developed as potent Escherichia coli β-ketoacyl-(acyl-carrier-protein) synthase III (ecKAS III) inhibitors. All the 24 new synthesized compounds were assayed for antibacterial activity against the respective Gram-negative and Gram-positive bacterial strains, including E. coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. In which, 10 compounds with broad-spectrum antibacterial activities were further tested for their ecKAS III inhibitory activity. Last, we have successfully found that compound 4e showed both the promising broad antibacterial activity with MIC of 1.56–6.25 μg/mL against the representative bacterial stains, and also processed the most potent ecKAS III inhibitory activity with IC50 of 5.3 μM. In addition, docking simulation also carried out in this study to give a potent prediction binding mode between the small molecule and ecKAS III (PDB code: 1hnj) protein.  相似文献   

14.
The synthesis and biofilm inhibitory activity of a 30-member aryl amide 2-aminoimidazole library against the three biofilm forming Gram-negative bacteria Escherichia coli, Psuedomonas aeruginosa, and Acinetobacter baumannii is presented. The most active compound identified inhibits the formation of E. coli biofilms with an IC50 of 5.2 μM and was observed to be non-toxic to planktonic growth, demonstrating that analogues based on an aryl framework are viable options as biofilm inhibitors within the 2-aminoimidazole family.  相似文献   

15.
The Pseudomonas aeruginosa elastase (PAE), produced by Pseudomonas aeruginosa (P. aeruginosa), is a promising biocatalyst for peptide synthesis in organic solvents. As P. aeruginosa is an opportunistic pathogen, the enzyme has been heterologously over-expressed in the safe and efficient host, Pichia pastoris (P. pastoris) for its industrial application. The recombinant elastase (rPAE) contains three potential N-glycosylation sites (Asn-Xaa-Ser/Thr consensus sequences), and is heterogeneously N-glycosylated. To investigate the role of N-glycosylation in the activity, stability, and expression of rPAE, these potential N-glycosylation sites (N43, N212, and N280) were mutated using site-directed mutagenesis. Specifically the asparagine (Asn, N) residues were converted to glutamine (Gln, Q). The enzymatic activity and stability of non-glycosylated and glycosylated rPAE were then compared. The results indicated that the influence of N-glycosylation on its activity was insignificant. The non- and glycosylated isoforms of rPAE displayed similar kinetic parameters for hydrolyzing casein in aqueous medium, and when catalyzing bipeptide synthesis in 50% (v/v) DMSO, they exhibited identical substrate specificity and activity, and produced similar yields. However, N-glycosylation improved rPAE stability both in aqueous medium and in 50% (v/v) organic solvents. The half-lives of the glycosylated and non-glycosylated forms of rPAE at 70 °C were 32.2 and 23.1 min, respectively. Mutation of any potential N-glycosylation site was detrimental to its expression in P. pastoris. There was a 23.9% decrease in expression of the N43Q mutant, 63.6% of the N212Q mutant, and 63.7% of the N280Q mutant compared with the wild type. Furthermore, combined mutation of these sites resulted in an additional decrease in the caseinolytic activities of the mutants. These results indicated that all of the N-glycosylation sites were necessary for high-level expression of rPAE.  相似文献   

16.
Metronidazole has a broad-spectrum antibacterial activity. Hereby a series of novel metronidazole derivatives were designed and synthesized based on nitroimidazole scaffold in order to find some more potent antibacterial drugs. For these compounds which were reported for the first time, their antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus were tested. These compounds showed good antibacterial activities against Gram-positive strains. Compound 4m represented the most potent antibacterial activity against S. aureus ATCC 25923 with MIC of 0.003 μg/mL and it showed the most potent activity against S. aureus TyrRS with IC50 of 0.0024 μM. Molecular docking of 4m into S. aureus tyrosyl-tRNA synthetase active site were also performed to determine the probable binding mode.  相似文献   

17.
Biofilm development in urinary tract catheters is an often underestimated problem. However, this form of infection leads to high mortality rates and causes significant costs in health care. Therefore, it is important to analyze these biofilms and establish avoiding strategies. In this study a continuous flow-through system for the cultivation of biofilms under catheter-associated urinary tract infection conditions was established and validated. The in vitro urinary tract catheter system implies the composition of urine (artificial urine medium), the mean volume of urine of adults (1 mL min–1), the frequently used silicone catheter (foley silicon catheter) as well as the infection with uropathogenic microorganisms like Pseudomonas aeruginosa. Three clinical isolates from urine of catheterized patients were chosen due to their ability to form biofilms, their mobility and their cell surface hydrophobicity. As reference strain P. aeruginosa PA14 has been used. Characteristic parameters as biofilm thickness, specific biofilm growth rate and substrate consumption were observed. Biofilm thicknesses varied from 105 ± 16 μm up to 246 ± 67 μm for the different isolates. The specific biofilm growth rate could be determined with a non invasive optical biomass sensor. This sensor allows online monitoring of the biofilm growth in the progress of the cultivation.  相似文献   

18.
Two neolignans, named callislignan A and B together with known C-methyl-flavonoids, a lignan and pentacyclic triterpenoid esters were isolated from the leaves of Callistemon lanceolatus. Their structures were characterized by spectroscopic methods. Callislignan A and B had antibacterial activity against Staphylococcus aureus ATCC25923 and MRSA SK1 with callislignan B having an MIC of 8 μg/mL.  相似文献   

19.
Pseudomonas aeruginosa and Staphylococcus aureus are the most prevalent pathogens in airway infections of cystic fibrosis (CF) patients. We studied how these pathogens coexist and interact with each other. Clinical isolates of both species were retrieved from adult CF patients. Culture supernatants from 63 P. aeruginosa isolates triggered a wide range of biofilm-stimulatory activities when added to the culture of a control S. aureus strain. The extent of biofilm formation by S. aureus was positively correlated to the levels of the 2-alkyl-4-(1H)-quinolones (AQs) Pseudomonas Quinolone Signal (PQS) and 2-heptyl-4-hydroxy quinoline N-oxide (HQNO) produced by the P. aeruginosa isolates. Supernatants from P. aeruginosa isogenic mutants deficient in PQS and HQNO production stimulated significantly less biofilm formation by S. aureus than that seen with the parental strain PA14. When studying co-isolated pairs of P. aeruginosa and S. aureus retrieved from patients showing both pathogens, P. aeruginosa supernatants stimulated less biofilm production by the S. aureus counterparts compared to that observed using the control S. aureus strain. Accordingly, some P. aeruginosa isolates produced low levels of exoproducts and also some of the clinical S. aureus isolates were not stimulated by their co-isolates or by PA14 despite adequate production of HQNO. This suggests that colonization of the CF lungs promotes some type of strain selection, or that co-existence requires specific adaptations by either or both pathogens. Results provide insights on bacterial interactions in CF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号