首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
How do earthworms affect microfloral and faunal community diversity?   总被引:17,自引:1,他引:16  
Much of the work regarding earthworm effects on other organisms has focused on the functional significance of microbial-earthworm interactions, and little is known on the effects of earthworms on microfloral and faunal diversity. Earthworms can affect soil microflora and fauna populations directly and indirectly by three main mechanisms: (1) comminution, burrowing and casting; (2) grazing; (3) dispersal. These activities change the soil's physico-chemical and biological status and may cause drastic shifts in the density, diversity, structure and activity of microbial and faunal communities within the drilosphere. Certain organisms and species may be enhanced, reduced or not be affected at all depending on their ability to adapt to the particular conditions of different earthworm drilospheres. A large host of factors (including CaCO3, enzymes, mucus and antimicrobial substances) influence the ability of preferentially or randomly ingested organisms to survive (or not) passage through the earthworm gut, and their resultant capacity to recover and proliferate (or not) in earthworm casts. Small organisms, particularly microflora and microfauna, with limited ability to move within the soil, may benefit from the (comparatively) long ranging movements of earthworms. Microflora and smaller fauna appear to be particularly sensitive to earthworm activities, and priming effects enhancing nutrient release, particularly in casts, are common. Larger fauna such as microarthropods, enchytraeids and Isopods may be enhanced under some conditions (e.g., in earthworm middens), but in other cases earthworm activity may lead to a decrease in their populations due to competition for food (microbes and organic materials), and spatial and temporal changes in food abundance. Nevertheless, considering the presently available data, the beneficial interactions of earthworms and microflora and fauna appear to far outweigh the potential negative effects. However, much is still unknown regarding the interactions of earthworms of different ecological categories on the diversity and function of microfloral and faunal communities, and much more interdisciplinary research is needed to assess the potential role of earthworms in regulating the diversity of microflora and fauna in soil systems and the potentially beneficial or harmful effects this regulation may have on ecosystem function and plant growth in different ecosystems.  相似文献   

2.
How do organic solvents affect peroxidase structure and function?   总被引:3,自引:0,他引:3  
K Ryu  J S Dordick 《Biochemistry》1992,31(9):2588-2598
The effect of organic solvents on horseradish peroxidase structure and function has been studied. Some, but not complete, enzyme denaturation occurs even in low volumes of water-miscible organic solvents (e.g., greater than 30% v/v dioxane, greater than 50% v/v methanol, and greater than 20% v/v acetonitrile) as determined by the decreased difference between the fluorescence of peroxidase's sole tryptophan residue and free L-tryptophan in solution. Absorbance and electron paramagnetic resonance spectroscopies indicate exposure of peroxidase's active site to the organic solvent. This reduces the local polarity in the enzyme's active site and results in stronger hydrogen bonding of phenolic substrates to the enzyme. In extreme cases (e.g., 95% v/v dioxane, 90% v/v acetonitrile, and ethyl and butyl acetate containing 2 and 1% v/v aqueous buffer, respectively), the transition state of the enzymic reaction is sufficiently perturbed so as to alter the magnitude of the Hammett rho value. This is most likely the result of the increased strength of hydrogen bonding between electron-donating alkoxyphenols (negative sigma values) and an electrophilic group in the enzyme's active site, thereby reducing catalytic efficiencies for such substrates relative to alkyl- and chlorophenols. Perhaps the most important effect of the organic solvent, however, is the significant ground-state stabilization of phenolic substrates in organic media as opposed to aqueous buffer. This stabilization can account for nearly 4 orders of magnitude in reduction of catalytic efficiency and is manifested in increased Km's. This study indicates that enzymes can maintain much of their native active-site structure in organic media and that the effect of solvent on substrate thermodynamics must be considered.  相似文献   

3.
The lecture presents modern knowledge of the mechanisms of cytokinin perception and signal transduction to the genes of primary and secondary responses. It also demonstrates the relations between the rapid cytokinin-induced processes and cytokinin-induced physiological effects. The characteristics of the cytokinin regulatory system and its role in the control of plant growth and development are discussed.  相似文献   

4.
5.
While it has often been assumed that, in humans, synonymous mutations would have no effect on fitness, let alone cause disease, this position has been questioned over the last decade. There is now considerable evidence that such mutations can, for example, disrupt splicing and interfere with miRNA binding. Two recent publications suggest involvement of additional mechanisms: modification of protein abundance most probably mediated by alteration in mRNA stability and modification of protein structure and activity, probably mediated by induction of translational pausing. These case histories put a further nail into the coffin of the assumption that synonymous mutations must be neutral.  相似文献   

6.
Populations are formed of their constituent interacting individuals, each with their own respective within‐host biological processes. Infection not only spreads within the host organism but also spreads between individuals. Here we propose and study a multilevel model which links the within‐host statuses of immunity and parasite density to population epidemiology under sublethal and lethal toxicant exposure. We analyse this nested model in order to better understand how toxicants impact the spread of disease within populations. We demonstrate that outbreak of infection within a population is completely determined by the level of toxicant exposure, and that it is maximised by intermediate toxicant dosage. We classify the population epidemiology into five phases of increasing toxicant exposure and calculate the conditions under which disease will spread, showing that there exists a threshold toxicant level under which epidemics will not occur. In general, higher toxicant load results in either extinction of the population or outbreak of infection. The within‐host statuses of the individual host also determine the outcome of the epidemic at the population level. We discuss applications of our model in the context of environmental epidemiology, predicting that increased exposure to toxicants could result in greater risk of epidemics within ecological systems. We predict that reducing sublethal toxicant exposure below our predicted safe threshold could contribute to controlling population level disease and infection.  相似文献   

7.
Yoneyama K  Xie X  Kim HI  Kisugi T  Nomura T  Sekimoto H  Yokota T  Yoneyama K 《Planta》2012,235(6):1197-1207
Plants exude strigolactones (SLs) to attract symbiotic arbuscular mycorrhizal fungi in the rhizosphere. Previous studies have demonstrated that phosphorus (P) deficiency, but not nitrogen (N) deficiency, significantly promotes SL exudation in red clover, while in sorghum not only P deficiency but also N deficiency enhances SL exudation. There are differences between plant species in SL exudation under P- and N-deficient conditions, which may possibly be related to differences between legumes and non-legumes. To investigate this possibility in detail, the effects of N and P deficiencies on SL exudation were examined in Fabaceae (alfalfa and Chinese milk vetch), Asteraceae (marigold and lettuce), Solanaceae (tomato), and Poaceae (wheat) plants. In alfalfa as expected, and unexpectedly in tomato, only P deficiency promoted SL exudation. In contrast, in Chinese milk vetch, a leguminous plant, and in the other non-leguminous plants examined, N deficiency as well as P deficiency enhanced SL exudation. Distinct reductions in shoot P levels were observed in plants grown under N deficiency, except for tomato, in which shoot P level was increased by N starvation, suggesting that the P status of the shoot regulates SL exudation. There seems to be a correlation between shoot P levels and SL exudation across the species/families investigated.  相似文献   

8.
The catalytic activities of lyophilized powders of alpha-chymotrypsin and Candida antarctica lipase were found to increase 4- to 8-fold with increasing amounts of either buffer salts or potassium chloride in the enzyme preparation. Increasing amounts of sorbitol in the chymotrypsin preparation produced a modest increase in activity. The additives are basically thought to serve as immobilization matrices, the sorbitol being inferior because of its poor mechanical properties.Besides their role as supports, the buffer species were indispensable for the transesterification activity of chymotrypsin because they prevented perturbations of the pH during the course of the reaction. Hence, increasing amounts of buffer species yielded a 100-fold increase in transesterification activity. Effects of pH changes were not as predominant in the peptide synthesis and the lipase-catalyzed reactions.Immobilization of the protease on celite resulted in a remarkable improvement of transesterification activity as compared to the suspended protease, even in the absence of buffer species. Immobilization of the lipase caused a small improvement of activity. The activity of the immobilized enzymes was further enhanced 3-4 times by including increasing amounts of buffer salts in the preparation.The inclusion of increasing amounts of sodium phosphate or sorbitol to chymotrypsin rendered the catalyst more labile against thermal inactivation. The denaturation temperature decreased with 7 degrees C at the highest content of sodium phosphate, as compared to the temperature obtained for the denaturation of the pure protein. The apparent enthalpy of denaturation increased with increasing contents of the additives. The enhancement of hydration level and flexibility of the macromolecule upon addition of the compounds partly provides the explanation for the observed results. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 67-76, 1997.  相似文献   

9.
How do macrophyte distribution patterns affect hydraulic resistances?   总被引:1,自引:0,他引:1  
In eutrophic river systems, macrophytes attain high biomass with reduced drainage and increased flooding risk. To avoid these problems, water managers remove vegetation. Total removal, however, increases wash out of macro-invertebrate communities reducing the ecological value of rivers. Partial vegetation removal reduces this washout and prevents an increase in hydraulic resistance. In this, study the hydraulic performance of three partial vegetation removal patterns was tested. From the results it was seen that hydraulic resistance, expressed as Manning's n, was varying between 0.025 m−1/3 s and 0.050 m−1/3 s. Compared with the empty situation, the different distribution patterns increased resistance between 14 and 23%. Hydraulic resistance of these patterns was also significantly influenced by the species present in the vegetation patches. Three groups of macrophyte plants (emerged, floating leaved and submerged) with significantly different hydraulic resistances were determined. The emerged species Sparganium erectum generated the least resistance with an average friction of 0.03 m−1/3 s. Stuckenia pectinata and Potamogeton natans had slightly higher friction values around 0.4 m−1/3 s. Ranunculus penicillatus and Callitriche platycarpa had average friction values around 0.05 m−1/3 s.The proposed vegetation removal patterns are good alternatives to create a management system, which minimally increases hydraulic resistance but still guarantees the ecological functions.  相似文献   

10.
The total size of the world population is likely to increase from its current 7 billion to 8–10 billion by 2050. This uncertainty is because of unknown future fertility and mortality trends in different parts of the world. But the young age structure of the population and the fact that in much of Africa and Western Asia, fertility is still very high makes an increase by at least one more billion almost certain. Virtually, all the increase will happen in the developing world. For the second half of the century, population stabilization and the onset of a decline are likely. In addition to the future size of the population, its distribution by age, sex, level of educational attainment and place of residence are of specific importance for studying future food security. The paper provides a detailed discussion of different relevant dimensions in population projections and an evaluation of the methods and assumptions used in current global population projections and in particular those produced by the United Nations and by IIASA.  相似文献   

11.
How do grazers affect periphyton heterogeneity in streams?   总被引:1,自引:1,他引:0  
Alvarez M  Peckarsky BL 《Oecologia》2005,142(4):576-587
The effects of grazing by stream invertebrates on algal biomass and spatial heterogeneity were tested experimentally in flow-through microcosms with natural substrates (rocks). One experiment tested the effects of fixed densities of three species of grazers (the caddisfly Allomyia sp. and two mayflies, Epeorus deceptivus and Baetis bicaudatus) on periphyton. Baetis was tested with and without chemical cues from fish predators, which reduced grazer foraging activity to levels similar to the less mobile mayfly (Epeorus). Mean algal biomass (chlorophyll a; chl a) was reduced in grazer treatments compared to ungrazed controls, but there were no differences among grazer treatments. Algal heterogeneity (Morisita index) increased with grazer mobility, with the highest heterogeneity occurring in the Baetis-no fish treatment (most mobile grazer) and the lowest in the caddisfly treatment (most sedentary grazer). A second experiment used a three factorial design, and tested whether initial resource distribution (homogeneous vs. heterogeneous), Baetis density (high vs. low) and fish odor (present vs. absent) affected grazer impact on algal resources. Abundances of Baetis and chl a on individual rocks were recorded to explore the mechanisms responsible for the observed distributions of algae. Initial resource heterogeneity was maintained despite being subjected to grazing. Mean chl a was highest in controls, as in experiment I, and effects of Baetis on algal biomass increased with grazer density. There were no fish effects on algal biomass and no effects of grazer density or fish on algal heterogeneity. At the scale of individual rocks Baetis was unselective when food was homogeneously distributed, but chose high-food rocks when it was heterogeneously distributed. Results of these mechanistic experiments showed that Baetis can track resources at the scale of single rocks; and at moderate densities mobile grazers could potentially maintain periphyton distributions observed in natural streams.  相似文献   

12.
One of the most promising recent advances in biogeography has been the increased interest and understanding of species distribution models – estimates of the probability that a species is present given environmental data. Unfortunately, such analyses ignore many aspects of ecology, and so are difficult to interpret. In particular, we know that species interactions have a profound influence on distributions, but it is not usually possible to incorporate this knowledge into species distribution models. What is needed is a rigorous understanding of how unmeasured biotic interactions affect the inferences generated by species distribution models. To fill this gap, we develop a general mathematical approach that uses probability theory to determine how unmeasured biotic interactions affect inferences from species distribution models. Using this approach, we reanalyze one of the most important classes of mechanistic models of competition: models of consumer resource dynamics. We determine how measurements of one aspect of the environment – a single environmental variable – can be used to estimate the probability that an environment is suitable with species distribution models. We show that species distribution models, which ignore numerous facets of consumer resource dynamics such as the presence of a competitor or the dynamics of depletable resources, can furnish useful predictions for the probability that an environment is suitable in some circumstances. These results provide a rigorous link between complex mechanistic models of species interactions and species distribution models. In so doing they demonstrate that unmeasured biotic interactions can have strong and counterintuitive consequences on species distribution models.  相似文献   

13.
Host immune responses limit, and in some instances eliminate, nematode infections. There is considerable interest in enhancing these natural processes by the use of antinematode vaccines to achieve control of infection or disease. How nematodes are damaged is unclear. Worms might be damaged directly by effector cells and molecules of the immune system. Alternatively, they might be damaged by the physiological stress of their efforts to resist attack. Separating these possibilities could have important implications for approaches to the control of nematode infections and the disease that they cause.  相似文献   

14.
Matrix projection models are among the most widely used tools in plant ecology. However, the way in which plant ecologists use and interpret these models differs from the way in which they are presented in the broader academic literature. In contrast to calls from earlier reviews, most studies of plant populations are based on < 5 matrices and present simple metrics such as deterministic population growth rates. However, plant ecologists also cautioned against literal interpretation of model predictions. Although academic studies have emphasized testing quantitative model predictions, such forecasts are not the way in which plant ecologists find matrix models to be most useful. Improving forecasting ability would necessitate increased model complexity and longer studies. Therefore, in addition to longer term studies with better links to environmental drivers, priorities for research include critically evaluating relative/comparative uses of matrix models and asking how we can use many short-term studies to understand long-term population dynamics.  相似文献   

15.
Abstract Coral-reef fishes, like many other marine organisms, generally possess a benthic adult stage and pelagic larval stage. What can population genetics studies tell us about the demographic, evolutionary and biogeographic consequences of this life cycle? Ten studies of geographical patterns of intraspecific genetic differentiation in reef fishes have been published. These studies have included 2t > species/species complexes (14 in the family Pomacentridae, the remaining 12 in 9 different families) and have been about equally divided between the tropical Pacific and the tropical western Atlantic. A survey of these studies shows the following: (i) the existence of the pelagic larval stage appears to have led to high levels of gene flow even among populations separated by thousands of kilometres of open ocean; (ii) an apparent pattern of increased gene flow among populations connected by intermediate 'stepping stones’; (iii) very tentative evidence for a relationship between length of pelagic larval life and gene flow; (iv) no clear relationship between egg type (pelagic rs non-pelagic) and gene flow; and (v) suggestive evidence that damselfishes (family Pomacentridae) may have more restricted dispersal (less gene flow) than other reef fishes. The application of current and future molecular tools has the strong potential to clarify some of these relationships, particularly by using relatively neutral genetic markers. Additionally, discoveries of DNA markers having very high rates of mutation may allow tracking of demographically relevant levels of larval dispersal. Molecular tools are becoming especially valuable in uncovering the biogeographic and phylogenetic history of reef fishes. The one molecular study to date has suggested that at least some speciation events may have occurred during the climate changes and sea-level regressions associated with Pleistocene glacial episodes. Molecular tools need to be used to further explore the means by which high species diversity can be generated in the face of the apparently high gene flow observed in most coral-reef fishes.  相似文献   

16.
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the “mechanical chevron plot” as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions.  相似文献   

17.
After replication in the cytoplasm, viruses spread from the infected cell into the neighboring cells through plasmodesmata, membranous channels embedded by the cell wall. As obligate parasites, viruses have acquired the ability to utilize host factors that unwillingly cooperate for the viral infection process. For example, the viral movement proteins (MP) interacts with the host pectin methylesterase (PME) and both proteins cooperate to sustain the viral spread. However, how and where PMEs interact with MPs and how the PME/MP complexes favor the viral translocation is not well understood. Recently, we demonstrated that the overexpression of PME inhibitors (PMEIs) in tobacco and Arabidopsis plants limits the movement of Tobacco mosaic virus and Turnip vein clearing virus and reduces plant susceptibility to these viruses. Here we discuss how overexpression of PMEI may reduce tobamovirus spreading.  相似文献   

18.
The most important floating aquatic weeds (FAWs) are Eichhornia crassipes, Salvinia molesta and Pistia stratiotes. E. crassipes and P. stratiotes reproduce sexually. All three species reproduce asexually. E. crassipes and S. molesta have particularly high growth rates. All can form dense mats and growth rates are increased by high nutrient levels and temperatures. Spread between continents and watersheds is largely the result of human activities. Spread within watersheds is mostly via floating propagules. FAWs are known to affect water resource management, the continued existence of human riverine and wetland communities, and conservation of biodiversity. Waterways can be blocked, and the efficiency of irrigation and hydro generation impaired. People are affected by reduction of the fish catch, inability to travel by boat and consequent isolation from gardens, markets and health services, and also changes in populations of vectors of human and animal diseases. Biodiversity can be reduced and conservation value affected. It is proposed that rational application of physical, chemical and biological control of FAWs, and reduction of nutrient input should be part of every strategy for the sustainable management of wetlands.  相似文献   

19.
20.
1. Population models that are used to predict weed population dynamics or the impact of control measures on weed abundance typically ignore temporal variability in life-history parameters and control measures, and utilize mean arithmetic population growth rates to predict population abundance.
2. We demonstrate that the persistence of weeds in a stochastically varying environment depends on the geometric mean population growth rate being greater than zero, rather than the arithmetic mean population growth rate being greater than zero.
3. In a stochastically varying environment we show that temporal variability in fecundity, germination and survivorship will tend to decrease population size, relative to predictions based on arithmetic means. Conversely, variability in competitive effects and weed control will tend to increase population size, relative to predictions based on arithmetic mean values. The distinction between these two sets of parameters is that increases in the former will increase population growth rate, whereas increases in the latter will decrease it.
4. We argue that population models based on arithmetic mean population growth rates will tend to over-estimate population size. Numerical simulations indicate that this bias may be considerable.
5. Since short-term studies cannot, in general, estimate the geometric mean growth rate of a population we suggest several approaches for estimating the degree of bias in the predictions of models owing to the effects of variability. Accounting for such variability is necessary since current models for the dynamics of weed populations are based on arithmetic mean measures of population growth and hence likely to be biased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号