首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Phytomedicine》2014,21(8-9):1110-1119
The overexpression of ABC transporters is a common reason for multidrug resistance (MDR) in cancer cells. In this study, we found that the isoquinoline alkaloids tetrandrine and fangchinoline from Stephania tetrandra showed a significant synergistic cytotoxic effect in MDR Caco-2 and CEM/ADR5000 cancer cells in combination with doxorubicin, a common cancer chemotherapeutic agent. Furthermore, tetrandrine and fangchinoline increased the intracellular accumulation of the fluorescent P-glycoprotein (P-gp) substrate rhodamine 123 (Rho123) and inhibited its efflux in Caco-2 and CEM/ADR5000 cells. In addition, tetrandrine and fangchinoline significantly reduced P-gp expression in a concentration-dependent manner. These results suggest that tetrandrine and fangchinoline can reverse MDR by increasing the intracellular concentration of anticancer drugs, and thus they could serve as a lead for developing new drugs to overcome P-gp mediated drug resistance in clinic cancer therapy.  相似文献   

2.
BackgroundA major problem of cancer treatment is the development of multidrug resistance (MDR) to chemotherapy. MDR is caused by different mechanisms such as the expression of the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). These transporters efflux xenobiotic toxins, including chemotherapeutics, and they were found to be overexpressed in different cancer types.PurposeIdentification of novel molecules that overcome MDR by targeting ABC-transporters.MethodsResazurin reduction assay was used for cytotoxicity test. AutoDock 4.2. was used for molecular docking. The function of P-gp and BCRP was tested using a doxorubicin uptake assay and an ATPase assay. ROS generation was detected using flow cytometry for the measurement of H2DCFH-DA fluorescence. Annexin/PI staining was applied for the detection of apoptosis. Bioinformatic analyses were performed using LigandScout 3.12. software and DataWarrior software.ResultsIn our search for new molecules that selectively act against resistant phenotypes, we identified isopetasin and S-isopetasin, which are bioactive natural products from Petasites formosanus. They exerted collateral sensitivity towards leukemia cells with high P-gp expression in CEM/ADR5000 cells, compared to sensitive wild-type CCRF-CEM leukemia cells. Also, they revealed considerable activity towards breast cancer cells overexpressing breast cancer resistance protein, MDA-MB-231-BCRP clone 23. This motivated us to investigate whether the function of P-gp was inhibited. In-silico results showed the compounds bound with high affinity and interacted with key amino acid residues in P-gp . Then, we found that the two compounds increased doxorubicin accumulation in P-gp overexpressing CEM/ADR5000 by three-fold compared to cells without inhibitor. P-gp-mediated drug efflux was ATP-dependent. Isopetasin and S-isopetasin increased the ATPase activity of human P-gp in a comparable fashion as verapamil used as control P-gp inhibitor. As isopetasin and S-isopetasin exerted dual roles, first as cytotoxic compounds and then as P-gp inhibitors, we suggested that their P-gp inhibition is part of a larger complex of mechanisms to induce cell death in cancer patients. P-gp dysfunction induces mitochondrial stress to generate ATP. Upon continuing stress by P-gp inhibition, the mitochondria generate reactive oxygen species (ROS). Initially established for verapamil, this theory was validated in the present study for isopetasin and S-isopetasin, as treatment with the two candidates increased ROS levels in CEM/ADR5000 cells followed by apoptosis.ConclusionOur study highlights the importance of isopetasin and S-isopetasin as novel ROS-generating and apoptosis-inducing P-gp inhibitors.  相似文献   

3.
《Phytomedicine》2014,21(1):47-61
P-glycoprotein (P-gp or MDR1) is an ATP-binding cassette (ABC) transporter. It is involved in the efflux of several anticancer drugs, which leads to chemotherapy failure and multidrug resistance (MDR) in cancer cells. Representative secondary metabolites (SM) including phenolics (EGCG and thymol), terpenoids (menthol, aromadendrene, β-sitosterol-O-glucoside, and β-carotene), and alkaloids (glaucine, harmine, and sanguinarine) were evaluated as potential P-gp inhibitors (transporter activity and expression level) in P-gp expressing Caco-2 and CEM/ADR5000 cancer cell lines. Selected SM increased the accumulation of the rhodamine 123 (Rho123) and calcein-AM (CAM) in a dose dependent manner in Caco-2 cells, indicating that they act as competitive inhibitors of P-gp. Non-toxic concentrations of β-carotene (40 μM) and sanguinarine (1 μM) significantly inhibited Rho123 and CAM efflux in CEM/ADR5000 cells by 222.42% and 259.25% and by 244.02% and 290.16%, respectively relative to verapamil (100%). Combination of the saponin digitonin (5 μM), which also inhibits P-gp, with SM significantly enhanced the inhibition of P-gp activity. The results were correlated with the data obtained from a quantitative analysis of MDR1 expression. Both compounds significantly decreased mRNA levels of the MDR1 gene to 48% (p < 0.01) and 46% (p < 0.01) in Caco-2, and to 61% (p < 0.05) and 1% (p < 0.001) in CEM/ADR5000 cells, respectively as compared to the untreated control (100%). Combinations of digitonin with SM resulted in a significant down-regulation of MDR1. Our findings provide evidence that the selected SM interfere directly and/or indirectly with P-gp function. Combinations of different P-gp substrates, such as digitonin alone and together with the set of SM, can mediate MDR reversal in cancer cells.  相似文献   

4.
Multidrug resistance (MDR) mediated by the over expression of drug efflux protein P-glycoprotein (P-gp) is one of the major impediments to successful treatment of cancer. P-gp acts as an energy-dependent drug efflux pump and reduces the intracellular concentration of structurally unrelated drugs inside the cells. Therefore, there is an urgent need for development of new molecules that are less toxic to normal cell and preferentially effective against drug resistant malignant cells. In this preclinical study we report the apoptotic potential of copper N-(2-hydroxyacetophenone) glycinate (CuNG) on doxorubicin resistant T lymphoblastic leukaemia cells (CEM/ADR5000). To evaluate the cytotoxic effect of CuNG, we used different normal cell lines (NIH 3T3, Chang liver and human PBMC) and cancerous cell lines (CEM/ADR5000, parental sensitive CCRF-CEM, SiHa and 3LL) and conclude that CuNG preferentially kills cancerous cells, especially both leukemic cell types irrespective of their MDR status, while leaving normal cell totally unaffected. Moreover, CuNG involves reactive oxygen species (ROS) for induction of apoptosis in CEM/ADR5000 cells through the intrinsic apoptotic pathway. This is substantiated by our observation that antioxidant N-acetyle-cysteine (NAC) and PEG catalase could completely block ROS generation and, subsequently, abrogates CuNG induced apoptosis. On the other hand, uncomplexed ligand N-(2-hydroxyacetophenone) glycinate (NG) fails to generate a significant amount of ROS and concomitant induction of apoptosis in CEM/ADR5000 cells. Therefore, CuNG induces drug resistant leukemia cells to undergo apoptosis and proves to be a molecule having therapeutic potential to overcome MDR in cancer.  相似文献   

5.
《Phytomedicine》2013,20(14):1288-1297
We determined the ability of some phytochemicals, including alkaloids (glaucine, harmine, and sanguinarine), phenolics (EGCG and thymol), and terpenoids (menthol, aromadendrene, β-sitosterol-O-glucoside, and β-carotene), alone or in combination with the saponin digitonin to reverse the relative multi-drug resistance of Caco-2 and CEM/ADR5000 cells to the chemotherapeutical agent doxorubicin. The IC50 of doxorubicin in Caco-2 and CEM/ADR5000 was 4.22 and 44.08 μM, respectively. Combination of non-toxic concentrations of individual secondary metabolite with doxorubicin synergistically sensitized Caco-2 and CEM/ADR5000 cells, and significantly enhanced the cytotoxicity of doxorubicin. Furthermore, three-drug combinations (secondary metabolite + digitonin + doxorubicin) were even more powerful. The best synergist was the benzophenanthridine alkaloid sanguinarine. It reduced the IC50 value of doxorubicin 17.58-fold in two-drug combinations (sanguinarine + doxorubicin) and even 35.17-fold in three-drug combinations (sanguinarine + digitonin + doxorubicin) in Caco-2 cells. Thus synergistic drug combinations offer the possibility to enhance doxorubicin efficacy in chemotherapy.  相似文献   

6.
《Phytomedicine》2008,15(9):754-758
Multidrug resistance (MDR) can limit efficacy of chemotherapy. The best studied mechanism involves P-gp (P-glycoprotein) mediated drug efflux. This study focuses on MDR reversal agents from medicinal plants, which can interfere with P-gp. Rhodamine 123 accumulation assay and flow cytometry analysis were employed to screen for P-gp dependant efflux inhibitors. Lobeline, a piperidine alkaloid from Lobelia inflata and several other Lobelia species, inhibited P-gp activity. MDR reversal potential of lobeline could be demonstrated in cells treated with doxorubicin in that lobeline can sensitize resistant tumor cells at non-toxic concentrations. However, lobeline cannot block BCRP (Breast Cancer Resistance Protein) dependent mitoxantrone efflux. Lobeline could be a good candidate for the development of new MDR reversal agents.  相似文献   

7.
SY Eid  MZ El-Readi  M Wink 《Phytomedicine》2012,19(11):977-987
Proteins of the ATP-binding cassette superfamily, mainly P-glycoprotein (P-gp; MDR1), play an important role in the development of multidrug resistance (MDR) in cancer cells and thus in the potential failure of chemotherapy. A selection of carotenoids (β-carotene, crocin, retinoic acid, canthaxanthin, and fucoxanthin) was investigated whether they are substrates of P-gp, and if they can reverse MDR in resistant Caco-2 and CEM/ADR5000 cells as compared to the sensitive parent cell line CCRF-CEM. The activity of ABC transporter was determined in resistant and sensitive cells by spectrofluorometry and flow cytometry using the substrates doxorubicin, rhodamine 123, and calcein as fluorescent probes. The carotenoids increased accumulation of these P-gp substrates in a dose-dependent manner indicating that they themselves also function as substrates. Fucoxanthin and canthaxanthin (50-100μM) produced a 3-5-fold higher retention of the fluorescent probes than the known competitive inhibitor verapamil. Carotenoids showed a low cytotoxicity in cells with MDR with IC(50) values between 100 and 200μM. The combination of carotenoids with eight structurally different cytotoxic agents synergistically enhanced their cytotoxicity in Caco-2 cells, probably by inhibiting the function of the ABC transporters. For example, fucoxanthin synergistically enhanced the cytotoxicity of 5-FU 53.37-fold, of vinblastine 51.01-fold, and of etoposide 12.47-fold. RT-PCR was applied to evaluate the mRNA levels of P-gp in Caco-2 cells after treatment with carotenoids. Fucoxanthin and canthaxanthin significantly decreased P-gp levels to 12% and 24%, respectively as compared to untreated control levels (p<0.001). This study implies that carotenoids may be utilised as chemosensitisers, especially as adjuvants in chemotherapy.  相似文献   

8.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters play a key role in the development of multidrug resistance (MDR) in cancer cells. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) are important proteins in this superfamily which are widely expressed on the membranes of multidrug resistance (MDR) cancer cells. Besides, upregulation of cellular autophagic responses is considered a contributing factor for MDR in cancer cells. We designed a liposome system co-encapsulating a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and a typical autophagy inhibitior (chloroquine phosphate, CQ) at a weight ratio of 1:2 and investigated its drug resistance reversal mechanism. MTT assay showed that the IC50 of DOX/CQ co-encapsulated liposome in DOX-resistant human breast cancer cells (MCF7/ADR) was 4.7?±?0.2?μM, 5.7-fold less than that of free DOX (26.9?±?1.9 μM), whereas it was 19.5-fold in doxorubicin-resistant human acute myelocytic leukemia cancer cells (HL60/ADR) (DOX/CQ co-encapsulated liposome 1.2?±?0.1?μM, free DOX 23.4?±?2.8?μM). The cellular uptake of DOX increased upon addition of free CQ, indicating that CQ may interact with P-gp and MRP1; however, the expressions of P-gp and MRP1 remained unchanged. In contrast, the expression of the autophagy-related protein LC3-II increased remarkably. Therefore, the mechanism of MDR reversal may be closely related to autophagic inhibition. Evaluation of anti-tumor activity was achieved in an MCF-7/ADR multicellular tumor spheroid model and transgenic zebrafish model. DOX/CQ co-encapsulated liposome exerted a better anti-tumor effect in both models than that of liposomal DOX or DOX alone. These findings suggest that encapsulating CQ with DOX in liposomes significantly improves the sensitivity of DOX in DOX-resistant cancer cells.  相似文献   

9.
The reversed-phase preparative HPLC analysis of the methanol (MeOH) extract of the seeds of Centaurea americana afforded a dibenzylbutyrolactone lignan, 3'-O-caffeoyl arctiin (named americanin), together with five known lignans, arctiin, arctigenin, matairesinol, matairesinoside and lappaol A, and two known phytoecdysteroids, 20-hydroxyecdysone and makisterone A. While the structures of the known compounds were determined by direct comparison of the spectral data with published data, the structure of americanin was elucidated by UV, MS and a combination of 1D and 2D NMR spectral analyses. The antioxidant properties and toxicity of the extracts and the isolated compounds were determined by the DPPH and the brine shrimp lethality assays, respectively.  相似文献   

10.
BackgroundMultidrug resistance (MDR) causes failure of doxorubicin therapy of cancer cells, which develops after or during doxorubicin treatment resulting in cross-resistance to structurally and functionally-unrelated other anticancer drugs. MDR is multifactorial phenomenon associated with overexpression of ATP-binding cassette (ABC) transporters, metabolic enzymes, impairment of apoptosis, and alteration of cell cycle checkpoints. The cancer-prevention of the dietary carotenoid; fucoxanthin (FUC) has been extensively explored. Nevertheless, the underlying mechanism of its action is not full elucidated.Hypothesis/PurposeInvestigation of the underlying mechanism of MDR reversal by the dietary carotenoid fucoxanthin (FUC) and its ability to enhance the doxorubicin (DOX) cytotoxicity in resistant breast (MCF-7/ADR), hepatic (HepG-2/ADR), and ovarian (SKOV-3/ADR) cell lines.MethodsThe synergistic interaction of FUC and DOX was evaluated using several techniques, viz.; MTT assay, ABC transporter function assays using FACS and fluorimetry, enzyme activity via spectroscopy and luminescence assays, and apoptosis assay using FACS, and gene expression using RTPCR.ResultsFUC (20 µM) synergistically enhanced the cytotoxicity of DOX and significantly reduced the dose of DOX (FR) in DOX resistant cells (MCF-7/ADR), hepatic (HepG-2/ADR), and ovarian (SKOV-3/ADR) to 8.42-(CI= 0.25), 6.28-(CI= 0.32), and 4.56-fold (CI=0.37) (P<0.001). FUC significantly increased the accumulation of DOX more than verapamil in resistant cells by 2.70, 2.67, and 3.95-fold of untreated cells (p<0.001), respectively. A FUC and DOX combination significantly increased the Rho123 accumulation higher than individual drugs by 2.36-, 2.38-, 1.89-fold verapamil effects in tested cells (p<0.001), respectively. The combination of the FUC and DOX decreased ABCC1, ABCG2, and ABCB1 expression. The FUC and DOX combination increased the levels and activity of caspases (CASP3, CASP8) and p53, while decreased the levels and activity of CYP3A4, GST, and PXR in resistant cancer cells. The combination induced early/late apoptosis to 91.9/5.4% compared with 0.0/0.7% of untreated control.ConclusionOur data suggests a new dietary and therapeutic approach of combining the FUC with DOX to overcome multidrug resistance in cancer cells. However, animal experiments should be conducted to confirm the findings before applying the results into clinical trials.  相似文献   

11.
J Sun  CA Yeung  NN Co  TY Tsang  E Yau  K Luo  P Wu  JC Wa  KP Fung  TT Kwok  F Liu 《PloS one》2012,7(8):e40720
Multidrug resistance(MDR)is one of the major reasons for failure in cancer chemotherapy and its suppression may increase the efficacy of therapy. The human multidrug resistance 1 (MDR1) gene encodes the plasma membrane P-glycoprotein (P-gp) that pumps various anti-cancer agents out of the cancer cell. R-HepG2 and MES-SA/Dx5 cells are doxorubicin induced P-gp over-expressed MDR sublines of human hepatocellular carcinoma HepG2 cells and human uterine carcinoma MES-SA cells respectively. Herein, we observed that clitocine, a natural compound extracted from Leucopaxillus giganteus, presented similar cytotoxicity in multidrug resistant cell lines compared with their parental cell lines and significantly suppressed the expression of P-gp in R-HepG2 and MES-SA/Dx5 cells. Further study showed that the clitocine increased the sensitivity and intracellular accumulation of doxorubicin in R-HepG2 cells accompanying down-regulated MDR1 mRNA level and promoter activity, indicating the reversal effect of MDR by clitocine. A 5'-serial truncation analysis of the MDR1 promoter defined a region from position -450 to -193 to be critical for clitocine suppression of MDR1. Mutation of a consensus NF-κB binding site in the defined region and overexpression of NF-κB p65 could offset the suppression effect of clitocine on MDR1 promoter. By immunohistochemistry, clitocine was confirmed to suppress the protein levels of both P-gp and NF-κB p65 in R-HepG2 cells and tumors. Clitocine also inhibited the expression of NF-κB p65 in MES-SA/Dx5. More importantly, clitocine could suppress the NF-κB activation even in presence of doxorubicin. Taken together; our results suggested that clitocine could reverse P-gp associated MDR via down-regulation of NF-κB.  相似文献   

12.
《Phytomedicine》2014,21(3):323-332
The Pterogyne nitens (Fabaceae) tree, native to South America, has been found to produce guanidine alkaloids as well as bioactive flavonols such as kaempferol, quercetin, and rutin. In the present study, we examined the possibility of interaction between human ATP-binding cassette (ABC) transporter ABCB1 and four guanidine alkaloids isolated from P. nitens (i.e., galegine, nitensidine A, pterogynidine, and pterogynine) using human T cell lymphoblast-like leukemia cell line CCRF-CEM and its multi-drug resistant (MDR) counterpart CEM/ADR5000. In XTT assays, CEM/ADR5000 cells were resistant to the four guanidine alkaloids compared to CCRF-CEM cells, although the four guanidine alkaloids exhibited some level of cytotoxicity against both CCRF-CEM and CEM/ADR5000 cells. In ATPase assays, three of the four guanidine alkaloids were found to stimulate the ATPase activity of ABCB1. Notably, nitensidine A was clearly found to stimulate the ATPase activity of ABCB1 as strongly as the control drug, verapamil. Furthermore, the cytotoxic effect of nitensidine A on CEM/ADR5000 cells was synergistically enhanced by verapamil. Nitensidine A inhibited the extrusion of calcein by ABCB1. In the present study, the possibility of interaction between ABCB1 and two synthetic nitensidine A analogs (nitensidine AT and AU) were examined to gain insight into the mechanism by which nitensidine A stimulates the ATPase activity of ABCB1. The ABCB1-dependent ATPase activity stimulated by nitensidine A was greatly reduced by substituting sulfur (S) or oxygen (O) for the imino nitrogen atom (N) in nitensidine A. Molecular docking studies on human ABCB1 showed that, guanidine alkaloids from P. nitens dock to the same binding pocket as verapamil. Nitensidine A and its analogs exhibit similar binding energies to verapamil. Taken together, this research clearly indicates that nitensidine A is a novel substrate for ABCB1. The present results also suggest that the number, binding site, and polymerization degree of the isoprenyl moiety in the guanidine alkaloids and the imino nitrogen atom cooperatively contribute to their stimulation of ABCB1's ATPase activity.  相似文献   

13.
14.
目的:比较P-gp和MDR1在人乳腺癌敏感细胞(MCF-7/S)和耐药细胞(MCF-7/ADR、MCF-7/TAM)中的表达差异,初步探讨乳腺癌细胞对阿霉素与对三苯氧胺产生耐药机制的区别。方法:采用免疫细胞化学法、流式细胞术检测P-gp,采用实时荧光定量PCR法检测MDR1在三种乳腺癌细胞中的表达情况。结果:在MCF-7/ADR细胞中P-gp和MDR1均呈高表达,阳性表达率与MCF-7/S细胞比较,有统计学意义(P<0.01)。在MCF-7/TAM细胞中P-gp、MDR1均呈低表达,与MCF-7/S细胞比较,无统计学意义(P>0.05)。结论:P-gp和MDR1的高表达是乳腺癌细胞对阿霉素产生耐药的主要机制,而并非是乳腺癌细胞对三苯氧胺产生耐药的机制。  相似文献   

15.
Multi-drug resistance (MDR) is one of the dominant reasons for the failure of cancer chemotherapy. P-glycoprotein (P-gp) over-expression in the plasma membrane of drug-resistant tumor cells promotes the efflux of chemotherapeutic agents and plays a significant role in MDR. Several investigations have suggested that dihydro-β-agarofuran sesquiterpenes are the potential modulators of MDR. However, their cellular mechanism in regulating P-gp has not been fully explored. Seven dihydro-β-agarofuran sesquiterpenes (17) from Tripterygium hypoglaucum was evaluated for the chemoreversal activity of HepG2/Adr cells. 1, 2, 4, 5, and 7 were active with reversal fold ranging from 47.68 to 456.90. The image-based high-screening indicated that all of the active compounds were capable of decreasing the efflux of doxorubicin (Dox). The most potent 4 did not affect the expression or subcellular distribution of P-gp. P-gp ATPase activity was stimulated by 4 in a dose-depend manner, suggesting that 4 may be the substrate of P-gp. The docking data implied that 4 took PHE 979, PHE 332, and GLN 986 to bind with P-gp. Taken together, the results demonstrated that dihydro-β-agarofuran sesquiterpenes from T. Hypoglaucum were the substrate of P-gp and potential modulators of MDR.  相似文献   

16.
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is a major impediment for clinical cancer therapy. 19 novel aromatic amides with triazole-core as MDR reversal agents were designed and synthesized via click chemistry to reverse MDR. Among them, compound 42 was identified as the most promising candidate with high potency (EC50 = 78.1 ± 5.4 nM), low cytotoxity (SI > 1282) and persistent duration in reversing doxorubicin (DOX) resistance in K562/A02 cells. 42 also enhanced the potency of other P-gp associated cytotoxic agents with different structures. In further study, remarkably increased intracellular accumulation of Rh123 and DOX in K562/A02 cells was achieved by compound 42, while CYP3A4 activity had no change by compound 42. These results indicate that compound 42 as a relatively safe modulator of P-gp-mediated MDR has good potential for further development.  相似文献   

17.
BackgroundP-glycoprotein (P-gp) over-expression plays a vital role in not only systemic drug bioavailability but also cancer multi-drug resistance (MDR). Develop functional inhibitors of P-gp can conquer both problems.Purpose and study designThe aim of the present study was to research the P-gp modulating effects and MDR reversing ability of a novel flavonoid from Fissistigma cupreonitens, the underlying inhibitory mechanisms were further elucidated as well.MethodsCalcein-AM, rhodamine 123, and doxorubicin were fluorescent substrates for the evaluation of P-gp inhibitory function and detailed drug binding modes. Docking simulation was performed to reveal the in silico molecular bonding. ATPase assay and MDR1 shift assay were adopted to reveal the ATP consumption and conformational change of P-gp. The MDR reversing effects were demonstrated through cytotoxicity, cell cycle, and apoptosis analyses.Results5‑hydroxy‑7,8‑dimethoxyflavanone inhibited the efflux of rhodamine 123 and doxorubicin in a competitive manner, and increased the intracellular fluorescence of calcein at a concentration as low as 2.5 μg/ml. 5‑hydroxy‑7,8‑dimethoxyflavanone slightly changed P-gp's conformation and only stimulated ATPase at very high concentration (100 μg/ml). The docking results showed that 5‑hydroxy‑7,8‑dimethoxyflavanone and verapamil exhibited similar binding affinity to P-gp. The MDR reversing effects were prominent in the vincristine group, the reversal folds were 23.01 and 13.03 when combined with 10 μg/ml 5‑hydroxy‑7,8‑dimethoxyflavanone in the P-gp over-expressing cell line (ABCB1/Flp-In™-293) and MDR cancer cell line (KB/VIN), respectively.ConclusionThe present study demonstrated that 5‑hydroxy‑7,8‑dimethoxyflavanone was a novel effective flavonoid in the P-gp efflux inhibition and in vitro cancer MDR reversion.  相似文献   

18.
P-glycoprotein (P-gp)-mediated multiple drug resistance (MDR) is perhaps the most thoroughly studied cellular mechanism of cytotoxic drug resistance. Its efflux function can be circumvented by a wide range of pharmacological agents in vitro and in vivo. Most of these agents are pharmaceuticals used clinically for conditions other than cancer. However, their use in alleviating MDR is limited because the concentrations required for inhibition of the pump surpass their dose-limiting toxicity. The aim of this research is to study the role of gypenosides, isolated from Gynostemma pentaphyllum, as modulators of P-gp-mediated MDR in tumor cells, at both cellular and plasma membrane level. In the presence of total gypenoside preparation (0.1 mg/ml), an approximately 15-fold reversal of colchicine (COL) resistance was observed in P-gp-overexpressed CEM/VLB100 cells. However, the gypenoside sample showed no reversal effect in cells treated with vinblastine and taxol. A purified gypenoside sample (gypenoside fraction 100) exhibited even more significant reversal of COL resistance (42-fold) in the CEM/VLB100 cells. Further examination of the reversal effect of fraction 100 in membrane vesicles derived from CEM/VLB100 cells using the continuous fluorescence method found that gypenoside fraction 100 at 0.1 mg/ml completely abolished the transport of fluorescein–COL.  相似文献   

19.
ObjectiveMultidrug resistance (MDR) is the major barrier to the successful treatment of chemotherapy. Compounds from nature products working as MDR sensitizers provided new treatment strategies for chemo-resistant cancers patients.MethodsWe investigated the reversal effects of nuciferine (NF), an alkaloid from Nelumbo nucifera and Nymphaea caerulea, on the paclitaxel (PTX) resistance ABCB1-overexpressing cancer in vitro and in vivo, and explored the underlying mechanism by evaluating drug sensitivity, cell cycle perturbations, intracellular accumulation, function and protein expression of efflux transporters as well as molecular signaling involved in governing transporters expression and development of MDR in cancer.ResultsNF overcomes the resistance of chemotherapeutic agents included PTX, doxorubicin (DOX), docetaxel, and daunorubicin to HCT-8/T and A549/T cancer cells. Notably, NF suppressed the colony formation of MDR cells in vitro and the tumor growth in A549/T xenograft mice in vivo, which demonstrated a very strong synergetic cytotoxic effect between NF and PTX as combination index (CI) (CI<0.1) indicated. Furthermore, NF increased the intracellular accumulation of P-gp substrates included DOX and Rho123 in the MDR cells and inhibited verapamil-stimulated ATPase activity. Mechanistically, inhibition of PI3K/AKT/ERK pathways by NF suppressed the activation of Nrf2 and HIF-1α, and further reduced the expression of P-gp and BCRP, contributing to the sensitizing effects of NF against MDR in cancer.ConclusionThis novel finding provides a promising treatment strategy for overcoming MDR and improving the efficiency of chemotherapy by using a multiple-targets MDR sensitizer NF.  相似文献   

20.
《Phytomedicine》2014,21(11):1264-1272
ObjectiveMultidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer drugs is an obstacle to successful chemotherapy. Overexpression of P-glycoprotein (P-gp), an ATP-binding cassette (ABC) membrane transporter, can mediate the efflux of cytotoxic drugs out of cancer cells, leading to MDR and chemotherapy failure. Thus, development of safe and effective P-gp inhibitors plays an important role in circumvention of MDR. This study investigated the reversal of P-gp mediated multidrug resistance in colon cancer cells by five tanshinones including tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone and miltirone isolated from Salvia miltiorrhiza (Danshen), known to be safe in traditional Chinese medicine.MethodsThe inhibitory effects of tanshinones on P-gp function were compared using digoxin bi-directional transport assay in Caco-2 cells. The potentiation of cytotoxicity of anticancer drugs by effective tanshinones were evaluated by MTT assay. Doxorubicin efflux assay by flow cytometry, P-gp protein expression by western blot analysis, immunofluorescence for P-gp by confocal microscopy, quantitative real-time PCR and P-gp ATPase activity assay were used to study the possible underlying mechanisms of action of effective tanshinones.ResultsBi-directional transport assay showed that only cryptotanshinone and dihydrotanshinone decreased digoxin efflux ratio in a concentration-dependent manner, indicating their inhibitory effects on P-gp function; whereas, tanshinone I, tanshinone IIA and miltirone had no inhibitory effects. Moreover, both cryptotanshinone and dihydrotanshinone could potentiate the cytotoxicity of doxorubicin and irinotecan in P-gp overexpressing SW620 Ad300 colon cancer cells. Results from mechanistic studies revealed that these two tanshinones increased intracellular accumulation of the P-gp substrate anticancer drugs, presumably by down-regulating P-gp mRNA and protein levels, and inhibiting P-gp ATPase activity.ConclusionsTaken together, these findings suggest that cryptotanshinone and dihydrotanshinone could be further developed for sensitizing resistant cancer cells and used as an adjuvant therapy together with anticancer drugs to improve their therapeutic efficacies for colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号