首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aerial parts of Saururus chinensis (SC) have been used for the treatment of edema, fever, jaundice, and inflammatory diseases in Korean folk medicine for centuries. However, the mechanism by which SC exerts these anti-tumorigenic activities in human prostate and breast cancer cells has not yet been fully understood. In this study, we report on the methylene chloride fraction from SC exerting cytotoxicity against prostate and breast cancer cells in a dose-dependent manner. Specifically, SC exerted the most potent cytotoxicity in LNCaP and MCF-7 cells. SC was shown to down-regulate various angiogenetic (VEGF), proliferative (Cyclin D1), anti-apoptotic (Bcl-2) gene products in these cells. SC also increased the number of annexin V-positive apoptotic bodies and the sub-G1 DNA contents of the cell cycle undergoing apoptosis through caspase-3 activation in both LNCaP and MCF-7 cells. We further confirmed that caspase-3 plays an important role in SC-induced apoptosis in LNCaP and MCF-7 cells through the use of the caspase-3 inhibitor. Moreover, we observed that SC potentiated paclitaxel-induced apoptosis in MCF-7 cells and sauchinone is a major active constituent of SC, which could induce apoptosis in the cells. Taken together, our data provide the evidence that SC induces apoptosis depending on caspase-3 activation and overcomes the natural biological resistance to chemotherapy found in human prostate and breast cancer cells.  相似文献   

2.
Kwon MJ  Nam TJ 《Life sciences》2006,79(20):1956-1962
Porphyrans, the sulfated polysaccharides, are the main components of Porphyra. The potential apoptotic activities of porphyran were evaluated using AGS human gastric cancer cells. Porphyran did not affect the growth of normal cells, but did induce cancer cell death in a dose-dependent manner. The addition of 0.1% porphyran also reduced DNA synthesis after 24 h of exposure, suggesting that porphyran inhibits cancer cell growth by both decreasing cell proliferation and inducing apoptosis. AGS cells treated with porphyran displayed a marked increase in poly(ADP-ribose) polymerase (PARP) cleavage, as well as caspase-3 activation. The ability of porphyran to promote apoptosis may contribute to its usefulness as an agent capable of significantly inhibiting cell growth in AGS human gastric cancer cells. Insulin-like growth factor-I receptor (IGF-IR) phosphorylation was decreased in porphyran-treated AGS cells compared to control cells, which correlated with Akt activation. Thus, porphyran appears to negatively regulate IGF-IR phosphorylation by causing a decrease in the expression levels in AGS gastric cancer cells, and then inducing caspase-3 activation.  相似文献   

3.
4.
In many cases, the process of cancer cell differentiation is associated with the programmed cell death. In the present study, interestingly, we found that eupatilin, one of the pharmacologically active ingredients of Artemisia asiatica that has been reported to induce apoptosis in human gastric cancer AGS cells, also triggers differentiation of these cells. Treatment of AGS cells with eupatilin induced cell cycle arrest at the G1 phase with the concomitant induction of p21cip1, a cell cycle inhibitor. This led us to test whether eupatilin may trigger AGS cells to differentiate into the matured phenotypes of epithelial cells and this phenomenon may be coupled to the apoptosis. Eupatilin induced changes of AGS cells to a more flattened morphology with increased cell size, granularity, and mitochondrial mass. It also markedly induced trefoil factor 1 (TFF1), a gene responsible for the gastrointestinal cell differentiation. Eupatilin dramatically induced redistribution of tight junction proteins such as occludin and ZO-1, and F-actin at the junctional region between cells. It also induced phosphorylation of extracellular signal-regulated kinase 2 and p38 kinase. Blockade of ERK signaling by PD098059 or the dominant-negative ERK2 significantly reduced eupatilin-induced TFF1 and p21 expression as well as ZO-1 redistribution, indicating that ERK cascades may mediate eupatilin-induced AGS cell differentiation. Collectively, our results suggest that eupatilin acts as a novel anti-tumor agent by inducing differentiation of gastrointestinal cancer cells rather than its direct role in inducing apoptotic cell death.  相似文献   

5.
Gastric cancer is a common malignancy in many countries of the world, especially in Asia. Prevention is likely to be the most effective means of not only reducing the incidence but also mortality from this disease. The term 'chemoprevention' has been referred to the prevention of cancer using specific agents to suppress or reverse the carcinogenic process. In recent years, attention has been focused on the anticancer properties of edible plants, an important role in the prevention of disease. Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. The purpose of this study was to examine whether the plant, H. sabdariffa extracts (HSE), affects the apoptosis of AGS cells. Using a set of apoptotic detection assays, they showed that HSE induced cytotoxicity and apoptosis of AGS cells in a concentration-dependent manner but is ineffective in Chang liver cells. The result also revealed increased phosphorylation in p38, JNK and c-Jun, cytochrome c release, and expression of Fas, FasL, Bax, and t-Bid in the HSE-treated AGS cells. We further used MAPK inhibitors to evaluate their effect on the HSE-induced AGS death. The data showed that SB203580 (p38 inhibitor), JNK inhibitor I and II or transfection with the mutant JNK expression vector had strong potential in inhibiting AGS cells apoptosis and related proteins expression. Finally, we suggested that HSE mediated AGS apoptosis via the JNK/p38 signaling cascade. According to these results, HSE could be developed as a chemopreventive agent.  相似文献   

6.
The anti-cancer effect of amygdalin on human cancer cell lines   总被引:1,自引:0,他引:1  

Derived from rosaceous plant seed, amygdalin belongs to aromatic cyanogenic glycoside group, and its anticancer effects have been supported by mounting evidence. In this study, we objected to investigate amygdalin effect on two antiapoptotic genes (Survivin, XIAP) and two lncRNAs (GAS5, MALAT1) in human cancer cells (A549, MCF7, AGS). Employing RT-qPCR analysis, we compared the mRNA levels of the genes related to apoptosis in A549, MCF7, and AGS cancer cells between amygdalin-treated (24, 48 and 72 h) and un-treated groups. RNA was extracted from both cell groups and then cDNAs were synthesized. The changes in the gene expression levels were specified using ΔΔCt method. RT-qPCR analysis has revealed that the expression of Survivin, XIAP, GAS5 and MALAT1 in amygdala-treated cancer cells were significantly different, compared to the un-treated cells. However, these expressions were different depending on the treatment time. According to the results, amygdalin significantly inhibited the expression level of Survivin, and XIAP genes in treated via untreated group. Our findings suggest that amygdalin might have an anticancer effect due to the various gene expressions in A549, MCF7, and AGS human cancer cells, showing it’s potential as a natural therapeutic anticancer drug.

  相似文献   

7.
ABSTRACT: BACKGROUND: The root bark of Paeonia suffruticosa Andrews (PSE), also known as Moutan Cortex, has been widely used in Asia to treat various diseases. The molecular mechanisms by which PSE exerts its anti-oxidant and anti-inflammatory activities are well known, but its anti-cancer activity is not yet well understood. Here, we present evidence demonstrating that PSE can be used as a potent anti-cancer agent to treat gastric cancer. METHODS: The effects of the ethanol extract of PSE on cell proliferation were determined using an MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan) assay. Cell cytotoxicity induced by the PSE extact is measured using an LDH leakage assay. Flow cytometry was used to analyze the cell cycle and to measure the subG0/G1 apoptotic cell fraction. Apoptosis induced by the PSE extact is also examined using a DNA fragmentation assay. Western blot analysis is used to measure the levels of apoptotic proteins such as Fas receptor, caspase-8, caspase-3, PARP, Bax, Bcl-2, MDM2, and p53. RESULTS: This study demonstrated that treating AGS cells with the PSE extact significantly inhibited cell proliferation and induced cytotoxicity in a dose- and time-dependent manner. The PSE extract also induced apoptosis in AGS cells, as measured by flow cytometry and a DNA fragmentation assay. We found that the PSE extract induced apoptosis via the extrinsic Fas-mediated apoptosis pathway, which was concurrent with the activation of caspases, including caspase-8 and caspase-3, and cleavage of PARP. The MDM2-p53 pathway also played a role in the apoptosis of AGS cells that was induced by the PSE extract. CONCLUSIONS: These results clearly demonstrate that the PSE extact displays growth-suppressive activity and induces apoptosis in AGS cells. Our data suggest that the PSE extact might be a potential anti-cancer agent for gastric cancer.  相似文献   

8.
9.
Myrtucommulone‐A is the active compound derived from Myrtus communis. The molecular targets of myrtucommulone‐A is widely unknown, which impedes its potential therapeutic use. In this study, we demonstrated the cytotoxicity of MC‐A and its potential to induce apoptosis in cancer cells. Myrtucommulone‐A was also found to be antiproliferative and strongly inhibited cancer cell migration. Eighty four apoptotic pathway genes were used to assess the effect of myrtucommulone‐A on cancer cells. Myrtucommulone‐A mediated an increase in apoptotic genes including Fas, FasL, Gadd45a, Tnf, Tnfsf12, Trp53, and caspase 4. The increase in myrtucommulone‐A dose (25 μM versus 6.25 μM) also upregulated the expression of genes, which are involved mainly in apoptosis, regulation of apoptosis, role of mitochondria in apoptotic signaling, cytokine activity, and tumor necrosis factor signaling. Our data indicate that myrtucommulone‐A could be utilized as a potential therapeutic compound with its molecular targets in apoptotic pathways.  相似文献   

10.
Apigetrin is a flavonoid glycoside phytonutrient derived from fruits and vegetables that is well known for a variety of biological activities such as antioxidant and anti-inflammatory activities. In the current study, we determined the effect of apigetrin on AGS gastric cancer cell. Apigetrin reduced cancer cell proliferation and induced G2/M phase cell cycle arrest by regulating cyclin B1, cdc25c and cdk1 protein expression in AGS cell. Apigetrin treatment caused apoptotic cell death in AGS cells, characterized by the accumulation of apoptosis portion, cleavage of caspase-3 and poly ADP-ribose polymerase (PARP). Apigetrin-treated cells increased the expression of extrinsic apoptosis pathway proteins and mRNA. However, intrinsic apoptosis pathway related proteins were not altered. In addition, AGS cells treated with apigetrin increased autophagic cell death, featured by the formation of autophagic vacuole and acidic vesicular organelles. Autophagy marker proteins, such as LC3B-II and beclin-1, were increased, and p62, an autophagy flux marker protein, was also increased by endoplasmic reticulum stress. Also, the phosphorylation of PI3K/AKT/mTOR pathway proteins and its downstream targets in apigetrin-treated AGS cells was identified to be decreased. Taken together, these data suggest that apigetrin-treated AGS cells induced G2/M phase cell cycle arrest, extrinsic apoptosis and autophagic cell death through PI3K/AKT/mTOR pathway, which can lead to the inhibition of gastric cancer development. Thus, our findings strongly indicate that apigetrin is a basic natural derived compound that could be used as a nutrient source with potential anticancer activities against gastric cancer.  相似文献   

11.
High dietary intakes and high blood levels of β-carotene are associated with a decreased incidence of various cancers. The anticancer effect of β-carotene is related to its pro-oxidant activity. DNA repair Ku proteins, as a heterodimer of Ku70 and Ku80, play a crucial role in DNA double-strand break repair. Reductions in Ku70/80 contribute to apoptosis. Previously, we showed that reactive oxygen species (ROS) activate caspase-3 which induces degradation of Ku proteins. In the present study, we investigated the mechanism of β-carotene-induced apoptosis of gastric cancer AGS cells by determining cell viability, DNA fragmentation, apoptotic indices (increases in cytochrome c and Bax, decrease in Bcl-2), ROS levels, mitochondrial membrane potential, caspase-3 activity, Ku70/80 levels, and Ku-DNA-binding activity of the cells treated with or without antioxidant N-acetyl cysteine and caspase-3 inhibitor z-DEVED-fmk. As a result, β-carotene induced apoptosis (decrease in cell viability, increases in DNA fragmentation and apoptotic indices) and caspase-3 activation, but decreased Ku70/80 levels and Ku-DNA-binding activity. β-Carotene-induced alterations (increase in caspase-3 activity, decrease in Ku proteins) and apoptosis were inhibited by N-acetyl cysteine and z-DEVED-fmk. Increment of intracellular and mitochondrial ROS levels and loss of mitochondrial membrane potential were suppressed by N-acetyl cysteine, but not by z-DEVED-fmk in β-carotene-treated cells. Therefore, β-carotene-induced increases in ROS and caspase-3 activity may lead to reduction of Ku70/80 levels, which results in apoptosis in gastric cancer cells. Loss of Ku proteins might be the underlying mechanism for β-carotene-induced apoptosis in gastric cancer cells.  相似文献   

12.
In our previous study, we showed that Helicobacter pylori γ-glutamyltranspeptidase (GGT) is associated with H. pylori-induced apoptosis through a mitochondrial pathway. To better understand the role of GGT in apoptosis, we examined the effect of GGT on cell cycle regulation in AGS cells. To determine the effect of recombinant GGT (rGGT) on cell cycle distribution and apoptosis, rGGT-treated and untreated AGS cells were analyzed in parallel by flow cytometry using propidium iodide (PI). We found that rGGT inhibited the growth of AGS cells in a time-dependent manner, and that the pre-exposure of cells to a caspase-3 inhibitor (z-DEVD-fmk) effectively blocked GGT-induced apoptosis. Cell cycle analysis showed G1 phase arrest and apoptosis in AGS cells following rGGT treatment. The rGGT-mediated G1 phase arrest was found to be associated with down-regulation of cyclin E, cyclin A, Cdk 4, and Cdk 6, and the up-regulation of the cyclindependent kinase (Cdk) inhibitors p27 and p21. Our results suggest that H. pylori GGT induces cell cycle arrest at the G1-S phase transition.  相似文献   

13.
Gastric cancer (GC) is one of the prevalent human malignancies and the third most common cause of cancer‐related death worldwide. The doxorubicin hydrochloride is one of the important chemotherapeutic anticancer agents, with a limited therapeutic efficacy for treatment of GC. Therefore, taking advantage of synergistic effects by strategies like combination therapy seems appropriate and promising in treatment of GC. The aim of this study was to investigate a novel method to enhance the therapeutic efficacy of doxorubicin (as a chemotherapeutic agent) by co‐administration of curcumin (as a bioactive herbal compound) in GC treatment. In the present study, the effects of curcumin, doxorubicin, and their combinations (Dox‐Cur) were evaluated on the viability, morphological features, tumor spheroid formation, migration, invasion, and apoptosis of gastric adenocarcinoma cell line (AGS). Moreover, expression levels of BAX, BCL‐2, and CASP9 genes were assessed among AGS cells treated with curcumin, doxorubicin, and Dox‐Cur. The obtained results showed that all of curcumin, doxorubicin, and Dox‐Cur treatments significantly decreased the viability, tumor spheroid formation, migration, and invasion in the GC model cells. Furthermore, apoptosis rates in AGS cells were increased in a concentration‐ and time‐dependent manner in all of the treatment groups. Moreover, the anticancer activity of the Dox‐Cur combination was significantly more than curcumin and doxorubicin treatments alone. According to the results, Dox‐Cur combination therapy exerts more profound apoptotic and anticancer effects on the AGS cell line than curcumin or doxorubicin monotherapy.  相似文献   

14.
Juglone is a natural compound which has been isolated from Juglans mandshurica Maxim. Recent studies have shown that juglone had various pharmacological effects such as anti-viral, anti-bacterial and anti-cancer. However, its anti-cancer activity on human prostate cancer LNCaP cell has not been examined. Thus, the current study was designed to elucidate the molecular mechanism of apoptosis induced by juglone in androgen-sensitive prostate cancer LNCaP cells. MTT assay was performed to examine the anti-proliferative effect of juglone. Occurrence of apoptosis was detected by Hoechst 33342 staining and flow cytometry in LNCaP cells treated with juglone for 24 h. The result shown that juglone inhibited the growth of LNCaP cells in a dose-dependent manner. Morphological changes of apoptotic body formation after juglone treatment were observed by Hoechst 33342 staining. This apoptotic induction was associated with loss of mitochondrial membrane potential, and caspase-3, -9 activation. Moreover, we found that juglone significantly inhibited the expression levels of androgen receptor (AR) and prostate-specific antigen (PSA) in a dose-dependent manner, as well as abrogated up-regulation of AR and PSA genes with and/or without dihydrotestosterone (DHT). Take together, our results demonstrated that juglone might induce the apoptosis in LNCaP cell via down-regulation of AR expression. Therefore, our results indicated that juglone may be a potential candidate of drug for androgen-sensitive prostate cancer.  相似文献   

15.
《Autophagy》2013,9(9):966-978
Quercetin, a dietary antioxidant present in fruits and vegetables, is a promising cancer chemopreventive agent that inhibits tumor promotion by inducing cell cycle arrest and promoting apoptotic cell death. In this study, we examined the biological activities of quercetin against gastric cancer. Our studies demonstrated that exposure of gastric cancer cells AGS and MKN28 to quercetin resulted in pronounced pro-apoptotic effect through activating the mitochondria pathway. Meanwhile, treatment with quercetin induced appearance of autophagic vacuoles, formation of acidic vesicular organelles (AVOs), conversion of LC3-I to LC3-II, recruitment of LC3-II to the autophagosomes as well as activation of autophagy genes, suggesting that quercetin initiates the autophagic progression in gastric cancer cells. Furthermore, either administration of autophagic inhibitor chloroquine or selective ablation of atg5 or beclin 1 using small interfering RNA (siRNA) could augment quercetin-induced apoptotic cell death, suggesting that autophagy plays a protective role against quercetin-induced apoptosis. Moreover, functional studies revealed that quercetin activated autophagy by modulation of Akt-mTOR signaling and hypoxia-induced factor 1α (HIF-1α) signaling. Finally, a xenograft model provided additional evidence for occurrence of quercetin-induced apoptosis and autophagy in vivo. Together, our studies provided new insights regarding the biological and anti-proliferative activities of quercetin against gastric cancer, and may contribute to rational utility and pharmacological study of quercetin in future anti-cancer research.  相似文献   

16.
Satellite cell (SC) proliferation and differentiation have critical roles in skeletal muscle recovery after injury and adaptation in response to hypertrophic stimuli. Normal ageing hinders SC proliferation and differentiation, and is associated with increased expression of a number of pro-apoptotic factors in skeletal muscle. In light of previous studies that have demonstrated age-related altered expression of genes involved in SC antioxidant and repair activity, this investigation was aimed at evaluating the incidence of apoptotic features in human SCs. Primary cells were obtained from vastus lateralis of nine young (27.3±2.0 years old) and nine old (71.1±1.8 years old) subjects, and cultured in complete medium for analyses at 4, 24, 48, and 72 h. Apoptosis was assessed using AnnexinV/propidium iodide staining, the terminal deoxynucleotidyl transferase dUTP nick-end labelling technique, RT-PCR, DNA microarrays, flow cytometry, and immunofluorescence analysis. There was an increased rate of apoptotic cells in aged subjects at all of the experimental time points, with no direct correlation between AnnexinV-positive cells and caspase-8 activity. On the other hand, CASP2, CASP6, CASP7, and CASP9 and a number of cell death genes were upregulated in the aged SCs. Altogether, our data show age-related enhanced susceptibility of human SCs to apoptosis, which might be responsible for their reduced response to muscle damage.  相似文献   

17.
Wang K  Liu R  Li J  Mao J  Lei Y  Wu J  Zeng J  Zhang T  Wu H  Chen L  Huang C  Wei Y 《Autophagy》2011,7(9):966-978
Quercetin, a dietary antioxidant present in fruits and vegetables, is a promising cancer chemopreventive agent that inhibits tumor promotion by inducing cell cycle arrest and promoting apoptotic cell death. In this study, we examined the biological activities of quercetin against gastric cancer. Our studies demonstrated that exposure of gastric cancer cells AGS and MKN28 to quercetin resulted in pronounced pro-apoptotic effect through activating the mitochondria pathway. Meanwhile, treatment with quercetin induced appearance of autophagic vacuoles, formation of acidic vesicular organelles (AVOs), conversion of LC3-I to LC3-II, recruitment of LC3-II to the autophagosomes as well as activation of autophagy genes, suggesting that quercetin initiates the autophagic progression in gastric cancer cells. Furthermore, either administration of autophagic inhibitor chloroquine or selective ablation of atg5 or beclin 1 using small interfering RNA (siRNA) could augment quercetin-induced apoptotic cell death, suggesting that autophagy plays a protective role against quercetin-induced apoptosis. Moreover, functional studies revealed that quercetin activated autophagy by modulation of Akt-mTOR signaling and hypoxia-induced factor 1α (HIF-1α) signaling. Finally, a xenograft model provided additional evidence for occurrence of quercetin-induced apoptosis and autophagy in vivo. Together, our studies provided new insights regarding the biological and anti-proliferative activities of quercetin against gastric cancer, and may contribute to rational utility and pharmacological study of quercetin in future anti-cancer research.  相似文献   

18.
Sorcin (Soluble resistance related calcium binding protein) is a small soluble penta EF family (PEF) of calcium (Ca2+) binding protein (22,000 Da). It has been reported to play crucial roles in the regulation of calcium homeostasis, apoptosis, vesicle trafficking, cancer development, and multidrug resistance (MDR). Overexpression of sorcin has been reported to be associated with different cancers such as breast cancer, colorectal cancer, gastric cancer, leukemia, lung cancer, nasopharyngeal cancer, ovarian cancer, etc. Essentially, expression of sorcin has been found to be elevated in cancer cells as compared to normal cells, indicating that it has prominent role in cancer. Moreover, sorcin was found to be the regulator of various proteins that has an association with carcinogenesis including NF-κB, STAT3, Akt, ERK1/2, VEGF, MMPs, caspases, etc. Sorcin was also found to regulate apoptosis, as silencing of the same resulted in increased levels of proapoptotic genes and induced mitochondrial apoptotic pathway in cancer. Interestingly, mutations in the sorcin gene have been closely linked with poor overall survival in bladder cancer, brain lower-grade glioma, glioblastoma, glioblastoma multiforme, kidney renal clear cell carcinoma, and stomach adenocarcinoma. Additionally, overexpression of sorcin was also found to induce MDR against different chemotherapeutic drugs. All these findings mark the importance of sorcin in cancer development and MDR. Therefore, there is urgent need to explore the functional mechanism of sorcin and to analyze whether silencing of sorcin would able to chemosensitize MDR cells. The current review summarizes the structure, expression, and functions of sorcin and its importance in the regulation of various malignancies and MDR.  相似文献   

19.
Cancer traits dependent chemo and radiotherapy display acute toxicity and long-term side effects. Since last two decades, researchers investigated a new anticancer agents derived from plants. Cassia alata (L.) is a medicinal herb distributed in the tropical and humid regions. In this study, C. alata flower methanol extract (CME) have been prepared using cold percolation method and the phytochemical components were identified using GC–MS analysis. CME have been used to study the antiproliferative and apoptosis properties against human colon cancer HT-115 colon cancer cells, its molecular mechanism have been explored. 0.2 mg/mL dose of CME, inhibited 50% of HT-115 colon cancer cell growth after 48hr was confirmed the significant antiproliferation effect. In normal cells such as Vero cells and hMSCs, 0.2 mg/mL dose of CME shown only 4% and 5% growth inhibition confirmed the HT-115 cell specific cytotoxic effect. This effect might be due to the availability of phytoactive biomolecules in CME such as, cyclotrisiloxan, beta-sitosterol and alpha-tocopherol have been confirmed by GC–MS. Most interestingly, PI and AO/ErBr staining of CME treated HT-115 cells shown early (25%), pro (17%) and late (8%) apoptotic and 3% necrotic cells after 48 hr. Treatment with CME extract showed potential effect on the inhibition of protumorigenic inflammatory and oxidative stress genes. Protumorigenic COX-2/PGE-2 and TNF-α/NF-κB immune axis were normalized after CME treatment. Amounts of both apoptosis related mRNA p53, Bax, caspase 3 and p21 genes were upregulated, whereas it resulted in significant reduction in the anti-apoptotic marker mdm2 and Bcl-2 genes. In conclusion, bioactive compounds present in CME potentially inhibit HT-115 colon cancer cell proliferation via an inhibition of protumorigenic immune axis and stimulation of mitochondria dependent apoptotic pathway without necrotic effect.  相似文献   

20.
A series of novel derivatives of isaindigotone, which comes from the root of isaits indinatca Fort, were synthesised (Compound 1–26). Four human gastrointestinal cancer cells (HCT116, PANC-1, SMMC-7721, and AGS) were employed to evaluate the anti-proliferative activity. Among them, Compound 6 displayed the most effective inhibitory activity on AGS cells with an IC50 (50% inhibitory concentration) value of 2.2 μM. The potential mechanism study suggested that Compound 6 induced apoptosis in AGS cells. The collapse of mitochondrial membrane potential (MMP) in AGS cells was proved. In docking analysis, good affinity interaction between Compound 6 and AKT1 was discovered. Treatment of AGS cells with Compound 6 also resulted in significant suppression of PI3K/AKT/mTOR signal pathway. The collapse of MMP and suppression of PI3K/AKT/mTOR signal pathway may be responsible for induction of apoptosis. This derivative Compound 6 could be useful as an underlying anti-tumour agent for treatment of gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号