首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Body size and body shape are tightly related to an animal's physiology, ecology and life history, and, as such, play a major role in understanding ecological and evolutionary phenomena. Because organisms have different shapes, only a uniform proxy of size, such as mass, may be suitable for comparisons between taxa. Unfortunately, snake masses are rarely reported in the literature. On the basis of 423 species of snakes in 10 families, we developed clade‐specific equations for the estimation of snake masses from snout–vent lengths and total lengths. We found that snout–vent lengths predict masses better than total lengths. By examining the effects of phylogeny, as well as ecological and life history traits on the relationship between mass and length, we found that viviparous species are heavier than oviparous species, and diurnal species are heavier than nocturnal species. Furthermore, microhabitat preferences profoundly influence body shape: arboreal snakes are lighter than terrestrial snakes, whereas aquatic snakes are heavier than terrestrial snakes of a similar length. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

2.
Males with enhanced traits relative to conspecifics often show increased mating and reproductive success and thus have a fitness advantage. The opportunity or potential for sexual selection is predicted to occur under these conditions. Here, we investigated proximate determinants of mating success in male copperhead snakes (Agkistrodon contortrix), a medium‐sized pitviper of North America. Specifically, we investigated the relationships of body size (snout‐vent length, body mass), body condition index, spatial metrics (total distance moved, home range size), and plasma testosterone concentration on mating success in males. The single mating season lasts from August through September. We compared a set of candidate linear mixed models and selected the best‐fitting one using the adjusted Akaike Information Criterion (AICc). The AICc‐selected model (model 2), with testosterone, body condition index, and home range size as predictor variables, showed that male mating success was positively correlated with testosterone. To our knowledge, this is the first report to show the relationship of testosterone and individual mating success in any snake species. A parallel study conducted on male fitness in A. contortrix of the same population used microsatellite markers to assign parentage of fathers (known mothers). Unlike our study, they found that snout‐vent length was positively correlated with reproductive success and that males were experiencing greater sexual selection. This relationship has been detected under natural conditions in other species of snakes. Although behavioural data are important in any mating system analysis, they should not stand alone to infer parentage, relationships or selection metrics (e.g. Bateman gradients). Long‐term sperm storage by females, female cryptic choice, and other factors contribute to the complexity of mating success of males. Accordingly, we thus conclude that estimates of reproductive success and fitness in cryptic species, such as copperheads and other snakes, require robust molecular methods to draw accurate conclusions regarding proximate and evolutionary responses. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 185–194.  相似文献   

3.
Insulin-like growth factor-binding protein 1(IGFBP-1), a hypoxia-induced protein, is a member of the IGFBP family that regulates vertebrate growth and development. In this study, full-length IGFBP-1a cDNA was cloned from a hypoxia-sensitive Cyprinidae fish species, the blunt snout bream(Megalobrama amblycephala). IGFBP-1a was expressed in various organs of adult blunt snout bream, including strongly in the liver and weakly in the gonads. Under hypoxia, IGFBP-1a mRNA levels increased sharply in the skin, liver, kidney, spleen, intestine and heart tissues of juvenile blunt snout bream, but recovered to normal levels after 24-hour exposure to normal dissolved oxygen. In blunt snout bream embryos, IGFBP-1a mRNA was expressed at very low levels at both four and eight hours post-fertilization, and strongly at later stages. Embryonic growth and development rates decreased significantly in embryos injected with IGFBP-1a mRNA. The average body length of IGFBP-1a-overexpressed embryos was 82.4% of that of the control group, and somite numbers decreased to 85.2%. These findings suggest that hypoxia-induced IGFBP-1a may inhibit growth in this species under hypoxic conditions.  相似文献   

4.
A single hagfish (Myxinidae, Eptatretus) specimen was recently captured at a hydrothermal vent site on the East Pacific Rise (38 degrees S). This is the first capture of a member of the jawless fishes (agnathans) from a hydrothermal vent site. The specimen differs from all congeners by the very slender body (depth 2.9% of total length), the paired and median ventral nasal sinus papillae, and the presence of 10 afferent branchial arteries on the medial ventral aorta. It is further unique because of a combination of the following features: slime pore counts; paired dorsal nasal sinus papillae; 12 gill pouches and gill apertures; posterior left side of body widely separated from pharyngocutaneous duct; 3/2 multicusp configuration; ventral aorta bifurcated anteriorly between 2nd and 3rd gill pouches (counted from the snout toward the heart); and pink coloration. The specimen is here described as a new species named Eptatretus strickrotti. Molecular 16S rRNA data places this new species as the basal-most species of Eptatretus, providing important new insight to the evolution of hagfishes as a whole.  相似文献   

5.
During the early development of avian nestlings, their mass-specific resting metabolic rate (RMR) changes in a biphasic pattern with the peak value often being much higher than that expected for an adult bird of similar body mass. In the present study we examined the possible influence of variations in the size of internal organs in “setting” the high RMR and peak metabolic rate (PMR) during development in a large altricial species, the European shag (Phalacrocorax aristotelis). Thermoneutral RMR and cold-exposure induced PMR were measured in nestlings 15 days old, the age at which the highest RMR occurred during development. Body mass averaged 414 g. Mean values of RMR and PMR were 5.75 W and 9.08 W, respectively; the RMR value corresponds to approximately 250% of the expected value for an adult non-passerine bird of similar body mass. The masses of all the organs measured (breast and leg muscles, heart, liver, intestine, and kidney) varied isometrically with total body mass. However, large chicks had a significantly lower fractional water content than small chicks, suggesting that the former had achieved a higher level of functional maturity. In contrast to what has been suggested for adult birds in general, the heart and kidney masses of shag nestlings were not significantly correlated with the metabolic rates. The intestine length, in contrast, was highly and positively correlated with both the RMR and the PMR, i.e. intestine length was a better predictor of RMR and PMR than was total body mass. In addition, liver mass was positively correlated with RMR. The results of the present study suggest that the liver in particular may play a key role in establishing the high, mass-specific RMR which is attained during development in bird chicks. Our results also support previous suggestions that early in their development, altricial chicks mainly allocate energy to the growth of `energy-processing' organs (such as the intestine and liver) rather than to `energy-consuming' organs. Accepted: 3 March 1999  相似文献   

6.
Piglets are particularly susceptible to cold and nutritional stress because of their poor insulation and low body fat. The purpose of this study was to examine how ambient temperature and level of food intake affect development in piglets. Thirty-two piglets were reared individually from 14 to 56 days of age in either a cold (10 degrees C) or a warm (35 degrees C) environment. Two feeding regimens, restricted and ad libitum, were used to assess the effect of food intake on organ mass. The ad libitum fed pigs in both environments gained weight at the same rate. Paired t-tests of organ weights of ad libitum fed pigs revealed that the mass of the heart, liver, kidneys, stomach, and small intestine, and total nitrogen and the length of the small intestine were greater in cold-reared than in warm-reared littermates of the same body weight. The skin mass and total fat mass, the lengths of the body, extremities, and individual long bones, and the total surface area were greater in warm-reared than in cold-reared individuals. A regression analysis showed body weight was the most important determinant of size for all tissues measured except fat mass, which was affected slightly more by rearing temperature. Of the organs and tissue components that differed in size in warm- and cold-reared pigs, heart, kidney, stomach, skin, nitrogen, and fat mass, and small intestine length and surface area were generally affected more by rearing temperature than by level of food intake. Liver and small intestine mass and femur length were affected more by level of food intake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
分子生物学研究表明,甘肃鼢鼠(Eospalaxcansus)和高原鼢鼠(Eospalax baileyi)是啮齿目(Rodentia),鼹形鼠科(Spalacidae),鼢鼠亚科(Myospalactinae),中华鼢鼠属(Eospalax)的两个  相似文献   

8.
《Journal of morphology》2017,278(8):1105-1113
Heart position relative to total body length (TL) varies among snakes, with anterior hearts in arboreal species and more centrally located hearts in aquatic or ground‐dwelling species. Anterior hearts decrease the cardiac work associated with cranial blood flow and minimize drops in cranial pressure and flow during head‐up climbing. Here, we investigate whether heart position shifts intraspecifically during ontogenetic increases in TL. Insular Florida cottonmouth snakes, Agkistrodon conanti , are entirely ground‐dwelling and have a mean heart position that is 33.32% TL from the head. In contrast, arboreal rat snakes, Pantherophis obsoleta , of similar lengths have a mean heart position that is 17.35% TL from the head. In both species, relative heart position shifts craniad during ontogeny, with negative slopes = −.035 and −.021% TL/cm TL in Agkistrodon and Pantherophis , respectively. Using a large morphometric data set available for Agkistrodon (N = 192 individuals, 23–140 cm TL), we demonstrate there is an anterior ontogenetic shift of the heart position within the trunk (= 4.56% trunk length from base of head to cloacal vent), independent of head and tail allometry which are both negative. However, in longer snakes > 100 cm, the heart position reverses and shifts caudally in longer Agkistrodon but continues toward the head in longer individuals of Pantherophis . Examination of data sets for two independent lineages of fully marine snakes (Acrochordus granulatus and Hydrophis platurus ), which do not naturally experience postural gravity stress, demonstrate both ontogenetic patterns for heart position that are seen in the terrestrial snakes. The anterior migration of the heart is greater in the terrestrial species, even if TL is standardized to that of the longer P. obsoleta , and compensates for about 5 mmHg gravitational pressure head if they are fully upright.  相似文献   

9.
Here we comment on a recent article (Gartner et al. 2010 ) that addresses previous adaptive interpretations of heart position in the context of gravity effects on blood circulation of snakes. The authors used phylogenetically based statistical methods and concluded that both habitat and phylogeny influence heart position, which they contend is relatively more posterior in arboreal compared to terrestrial species. Their result is based on measurements of heart position relative to snout-vent length, rather than total body length as in previous studies. However, gravity acts on the total length of the arterial-venous vasculature, and caudal segments of continuous blood columns cannot be ignored. Arboreal snakes have relatively long tails; therefore anterior hearts appear to be more "posterior" when the position is described relative to a shorter trunk. There is no physiologically valid explanation for the alleged posterior heart position in arboreal snakes, and multiple lines of published evidence to the contrary are ignored. The authors secondarily evaluated their data set with estimates for total body length based on measurements from other taxa. They found no statistical difference between heart position in arboreal versus terrestrial species, yet their article implied otherwise. Gartner et al. ( 2010 ) contrasted "aquatic" and terrestrial species throughout their paper, and they claimed there is no correlation between heart position and habitat among "aquatic and terrestrial species." But they did not include any aquatic species in their data set. Therefore, the article confuses rather than promotes understanding of cardiovascular adaptation to gravity.  相似文献   

10.
The relative importance of cell number and cell size in determining the mass of 16 organs and tissues in mature rams of six different breeds was studied through estimation of organ deoxyribonucleic acid (DNA) content. The mean fleece-free empty body weight (FFEBW) ranged from 54.6 +/- 0.3 kg for Camden Park Merinos to 76.7 +/- 1.6 kg for Strong Wool Merinos. For all organs, mass increased with FFEBW, but the relationship was significant across all sheep for only eight organs (blood, kidney, liver, abomasum, vastus lateralis muscle, skin, perirenal fat and triceps muscle). There were significant differences between breeds in the mass of 11 organs. With four (heart, rumen reticulum, small intestine and testicular fat) this difference was independent of breed differences in FFEBW, whereas with another four (kidney, abomasum, vastus lateralis muscle and skin), it was closely related to FFEBW. Breed differences in the mass of the remaining three organs (blood, liver and perirenal fat) were partly related to FFEBW and partly breed specific. Blood mass increased with FFEBW across all animals, but, within a breed, it declined as FFEBW increased. The increase in the mass of perirenal fat with FFEBW was significantly greater within a breed than between breeds. Cell number increased significantly with the mass of all organs except blood and brain. There were between-breed differences in the number of cells in seven organs (liver, heart, rumen reticulum, abomasum, small intestine, vastus lateralis muscle and skin), which, except for heart, were attributable to between-breed differences in organ mass. With heart, the increase in cell number with organ mass within a breed was greater than across all breeds. Cell size was significantly related to organ mass only with vastus lateralis muscle, spleen, perirenal fat and liver. The relationship for vastus lateralis muscle and spleen was negative, indicating that cells were smaller in larger organs. There were differences between breeds in cell size for heart, vastus lateralis and triceps muscles. These differences for heart and triceps muscle were breed specific, whereas for vastus lateralis muscle it was attributed to breed differences in organ weight. There was a 30-fold range in mean cell size across organs, with adipose tissue having the largest cells, muscle tissue intermediate and visceral tissues the smallest. In general, organ mass is positively related to FFEBW. Cell number, not cell size, is largely responsible for differences in organ mass between mature sheep of different breeds.  相似文献   

11.
I tested biomechanical predictions that morphological proportions (snout–vent length, forelimb length, hindlimb length, tail length, and mass) and maximal sprinting and jumping ability have evolved concordantly among 15 species of Anolis lizards from Jamaica and Puerto Rico. Based on a phylogenetic hypothesis for these species, the ancestor reconstruction and contrast approaches were used to test hypotheses that variables coevolved. Evolutionary change in all morphological and performance variables scales positively with evolution of body size (represented by snout–vent length); size evolution accounts for greater than 50% of the variance in sprinting and jumping evolution. With the effect of the evolution of body size removed, increases in hindlimb length are associated with increases in sprinting and jumping capability. When further variables are removed, evolution in forelimb and tail length exhibits a negative relationship with evolution of both performance measures. The success of the biomechanical predictions indicates that the assumption that evolution in other variables (e.g., muscle mass and composition) did not affect performance evolution is probably correct; evolution of the morphological variables accounts for approximately 80% of the evolutionary change in performance ability. In this case, however, such assumptions are clade-specific; extrapolation to taxa outside the clade is thus unwarranted. The results have implications concerning ecomorphological evolution. The observed relationship between forelimb and tail length and ecology probably is a spurious result of the correlation between these variables and hindlimb length. Further, because the evolution of jumping and sprinting ability are closely linked, the ability to adapt to certain microhabitats may be limited.  相似文献   

12.
Animal species of similar body mass vary widely in basal metabolic rate (BMR). A central problem of evolutionary physiology concerns the anatomical/physiological origin and functional significance of that variation. It has been hypothesized that such interspecific differences in wild animals evolved adaptively from differences in relative sizes of metabolically active organs. In order to minimize confounding phenotypic effects and maximize relevant genetic variation, we tested for intraspecific correlations between body-mass-corrected BMR and masses of four organs (heart, kidney, liver, and small intestine) among six inbred strains of mice. We found significant differences between strains in BMR and in masses of all four organs. Strains with exceptionally high (or low) BMR tended to have disproportionately large (or small) organs. The mass of each organ was correlated with the masses of each of the other three organs. Variation in organ masses accounted for 52% of the observed variation in BMR, of which 42% represented between-strain variation, and 10% represented within-strain variation. This conclusion is supported by published measurements of metabolic rates of tissue slices from the four organs. The correlation between BMR and intestine or heart mass arose exclusively from differences between strains, while the correlation between BMR and liver or kidney mass also appeared in comparing individual mice within the same strain. Thus, even though the masses of the four examined organs account for no more than 17% of total body mass, their high metabolic activities or correlated factors account for much of the variation in BMR among mice. We suggest that large masses of metabolically active organs are subject to natural selection through evolutionary trade-offs. On the one hand, they make possible high-energy budgets (advantageous under some conditions), but on the other hand they are energetically expensive to maintain.  相似文献   

13.
Abstract: Despite outnumbering their temperate counterparts, tropical snake species have been poorly studied. Yet, the few tropical species that have been studied show a variety of behavioural traits beyond those described in temperate species. Here we reveal both age and sexual differences in the movements of tropical green pythons (Morelia viridis: Pythonidae). We radio‐tracked 27 individuals (17 females and 10 males) for up to 18 months, locating individuals during both the day and night. The home range size for adult females (mean ± SE of 6.21 ± 1.85 ha) was correlated with snout–vent length. Neither adult males nor juveniles had a stable home range. Adult females had stable home ranges that overlapped considerably with those of other females and yellow individuals. Multiple radio‐tracked adult males passed through the territory of radio‐tracked adult females during the study. Females of all sizes were more likely to change position each day than males. There were no differences between the sexes or size categories in the distances moved in most months, although the variation in movement distances was higher in the dry season than during the wet season. In the wet season (January–March) movement distances increased and these were size‐ and sex‐related. This increased activity may be associated with mate searching. Males of M. viridis may maximize their rate of encountering mature females by roaming rather than maintaining a home range. Juvenile green pythons moved distances equal to adult snakes in most months despite their comparatively small size.  相似文献   

14.
The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the high cost of brain development and maintenance is predicted to constrain adaptive brain size evolution (the expensive tissue hypothesis, ETH). Here, we test the ETH in a teleost fish with predominant female mating competition (reversed sex roles) and male pregnancy, the pacific seaweed pipefish Syngnathus schlegeli. The relative size of the brain and other energetically expensive organs (kidney, liver, heart, gut, visceral fat, and ovary/testis) was compared among three groups: pregnant males, nonpregnant males and egg producing females. Brood size in pregnant males was unrelated to brain size or the size of any other organ, whereas positive relationships were found between ovary size, kidney size, and liver size in females. Moreover, we found that the size of energetically expensive organs (brain, heart, gut, kidney, and liver) as well as the amount of visceral fat did not differ between pregnant and nonpregnant males. However, we found marked differences in relative size of the expensive organs between sexes. Females had larger liver and kidney than males, whereas males stored more visceral fat than females. Furthermore, in females we found a negative correlation between brain size and the amount of visceral fat, whereas in males, a positive trend between brain size and both liver and heart size was found. These results suggest that, while the majority of variation in the size of various expensive organs in this species likely reflects that individuals in good condition can afford to allocate resources to several organs, the cost of the expensive brain was visible in the visceral fat content of females, possibly due to the high costs associated with female egg production.  相似文献   

15.
The African rhombic egg eater (Dasypeltis scabra) is a colubrid snake feeding exclusively on bird eggs. Frequency of feeding is governed by the seasonal availability of bird eggs; i.e., long fasting intervals change with relatively short periods when plenty of food is available. Intermittent feeding snakes show a remarkable postprandial increase of metabolic rate and digestive organ size. The postprandial increase in metabolic rate (specific dynamic action, SDA) in snakes is affected by meal size, temperature, and meal composition. A major portion of SDA in snakes is allocated to gastric function and the breakdown of the meal. We hypothesize that SDA in egg eaters is lower than in other snake species, because egg eaters feed on “liquid” food that does not require enzymatic breakdown in the stomach. We also hypothesized that other components of the postprandial response of egg eaters (e.g., size changes of the intestine and the liver) do not differ from other snakes. The standard metabolic rate and metabolic response to feeding were measured using closed-chamber respirometry. Size changes of small intestine and liver were measured using high-resolution transcutaneous ultrasonography. Standard metabolic rates of fasting egg eaters were in the same range of mass specific values as known from other snakes. Within 24 h after feeding, oxygen consumption doubled and peaked at 2 days after feeding. At the same time, the size of the small intestine and the cross-sectional diameter of the liver increased. Within 2 days after feeding, the size of the mucosal epithelium doubled its thickness. Liver size increased significantly within 24 h reaching maximum size 2–4 days after feeding. The size of both organs returned to fasting values within 7–10 days after feeding. The postprandial response of African rhombic egg eaters shows the same pattern and dynamics as known from other snake species. However, the factorial increase of metabolic rate during SDA is the lowest reported for any snake. A comparison with literature data supports the idea that SDA is mainly determined by gastric function and that it is low in egg eaters because they do not have to break down solid meals in the stomach as other snake species do.  相似文献   

16.
Recent conceptual advances in physiological ecology emphasize the potential selective importance of whole-animal performance. Empirical studies of locomotor performance in reptiles have revealed surprising amounts of individual variation in speed and stamina. The present study is the first in a series examining the genetic basis of variation in locomotor performance, activity metabolism, and associated behaviors in garter snakes. Maximal sprint crawling speed, treadmill endurance, and antipredator displays (Arnold and Bennett, 1984; exhibited as snakes reached exhaustion on the treadmill) were measured for approximately six offspring (presumed to be full siblings) from each of 46 wild-caught gravid garter snakes (Thamnophis sirtalis). Each character was measured on two days; all were individually repeatable. Correlations of these characters with body mass, snout–vent length, age at testing, litter size, dam mass, and dam snout–vent length were removed by computing residuals from multiple-regression equations. These residuals were used in subsequent genetic analyses. Approximate coefficients of variation of residuals were 17% for speed, 48% for endurance, and 31% for antipredator displays. Broad-sense heritabilities were significant for all characters: speed h2 = 0.58; stamina h2 = 0.70; antipredator display h2 = 0.42. All three residual characters showed positive and statistically significant phenotypic correlations (r = 0.19–0.36). Genetic correlations (estimated and tested by restricted maximum likelihood) among residuals were positive and highly significant between speed and endurance (0.58), but nonsignificant between speed and antipredator display (0.43), and between endurance and antipredator display (0.26). All environmental correlations were nonsignificant. These data suggest that, contrary to expectations based on previous physiological studies, there may be no necessary evolutionary trade-off between speed and stamina in these animals. This tentative conclusion will have important implications for future theoretical studies of the evolution of locomotor performance and associated antipredator behaviors.  相似文献   

17.
Skates (Elasmobranchii, Rajiformes) are a morphologically conservative group of bentophagous chondrichthyan fishes with a high degree of endemism, that occur on marine soft bottoms. Subtle morphological aspects and bathymetric distribution are traits that vary among skate species that could have implications for their feeding ecology. We test how body size, snout length and bathymetric distribution influence the feeding habits and dietary niche breadth in skates using data on 71 species taken from the literature. We hypothesized that snout length has an effect on diet composition. We also hypothesized that dietary niche breadth increases with increasing depth range and decreases with increasing body size of skate species. Generalized additive models for location scale and shape were fitted with taxonomic level (genera nested within family) included as a random effect term in each model. A model selection approach to test the level of support for alternative models was applied. We found that skate species that forage on large prey have the largest body size and skate species with the smallest body size prey on small and medium-sized invertebrates. The results indicated that body size has an effect on feeding habits of skates, whereas an effect of snout length was not supported. Bathymetric variables have an effect on the diet of skates. Our prediction that dietary niche breadth increases with increasing depth range and decreases with increasing body size of skate species was supported in part: in a first phase the relationship between dietary niche breadth and body size is positive, then in a second phase, including species larger than 1000 mm total length, the relationship become negative.  相似文献   

18.
Scale dependent patterns of body size frequency distributions (BSFDs) have been explained by competition and an evolutionarily optimal body size in mammals. We test these ideas in a vertebrate group that is a model for competition and evolutionary studies by assessing the scale-dependence of BSFDs. BSFDs (body size defined as maximum total length) of North American squamates were assembled for the entire continent, biomes within the continent and local habitat patches within biomes. We described these distributions using skewness, kurtosis, interquartile range (IQR), and an index of evenness. We compared these parameters among spatial scales using Kolmogorov–Smirnov tests and bootstrap simulations. We assessed the relationship between body size and species richness using correlations (Pearsons and Spearmans R). The North American BSFD is bimodal, with a primary mode (240 mm) corresponding to lizards and small snakes and a secondary mode (912 mm) to snakes. Squamate BSFDs varied in a scale dependent fashion for some biomes and local habitat patches for kurtosis (12% of local patches and 10% of biomes more platykurtic), skewness (30% of biomes skewed to the right) and IQR (12% of patches increased). The index of evenness of BSFDs did not vary with spatial scale. Body size of biomes and local habitat patches closely resembles the North American BSFD as species richness increases. We found limited statistical support for the scale-dependency of North American squamate BSFDs (only 12–30% of patches or biomes conformed to the predicted pattern). These results suggest that the mechanisms implicated in scale-dependent patterns of BSFDs for mammals, geographic turnover of modal-sized species and competition within local assemblages may be of diminished importance in squamates. As geographic turnover of modal-sized species is theoretically linked to an evolutionarily optimal body size, this may suggest that optimal size theory is not adequate to predict spatial scaling of BSFDs in squamates.  相似文献   

19.
Physiological investigations of snakes have established the importance of heart position and pulmonary structure in contexts of gravity effects on blood circulation. Here we investigate morphological correlates of cardiopulmonary physiology in contexts related to ecology, behavior and evolution. We analyze data for heart position and length of vascular lung in 154 species of snakes that exhibit a broad range of characteristic behaviors and habitat associations. We construct a composite phylogeny for these species, and we codify gravitational stress according to species habitat and behavior. We use conventional regression and phylogenetically independent contrasts to evaluate whether trait diversity is correlated with gravitational habitat related to evolutionary transitions within the composite tree topology. We demonstrate that snake species living in arboreal habitats, or which express strongly climbing behaviors, possess relatively short blood columns between the heart and the head, as well as relatively short vascular lungs, compared to terrestrial species. Aquatic species, which experience little or no gravity stress in water, show the reverse — significantly longer heart-head distance and longer vascular lungs. These phylogenetic differences complement the results of physiological studies and are reflected in multiple habitat transitions during the evolutionary histories of these snake lineages, providing strong evidence that heart-to-head distance and length of vascular lung are co-adaptive cardiopulmonary features of snakes.  相似文献   

20.
Life-history theory predicts that “costs” of reproduction may be important evolutionary determinants of reproductive investment; previous studies on reptiles indicate that decrements to maternal mobility may be among the most important components of such costs. Biomechanical models suggest that reproductive investment in aquatic snakes may be constrained by the important locomotory role of the posterior part of the body during swimming: carrying eggs or offspring in this region would more seriously impair locomotory efficiency in swimming than in terrestrial lateral undulation. If this constraint is important, aquatic snakes would be expected to have lower clutch masses relative to body mass than terrestrial species and to carry the clutch in a more anterior position (commencing at the same proportion of maternal body length anteriorly, but not extending as far posteriorly). Comparisons between aquatic and terrestrial snakes of several families confirm these predictions. Phylogenetic analysis suggests that this pattern of reduced reproductive investment has evolved independently in each of the four ophidian lineages that contain marine species (acrochordids, homalopsine colubrids, laticaudid sea snakes, and hydrophiid sea snakes). Although it thus seems likely that these patterns represent adaptations to aquatic versus terrestrial life, the nature of the selective forces involved remains speculative. The hypothesis based on locomotory impairment of gravid females has better empirical support than any alternative hypothesis, as it successfully predicts modifications in the position of the clutch within the female's body, as well as overall reduced reproductive investment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号