首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(12):1851-1852
The key autophagic lipid sensors are Atg18 in yeast and the WIPI proteins in mammals. Atg18 and the WIPIs belong to the PROPPIN family of proteins. PROPPINs are seven- bladed β-propellers that bind to phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2]. In order to understand how PROPPINs bind phosphoinositides, we have determined the crystal structure of a representative, biochemically tractable PROPPIN, Hsv2 of Kluveromyces lactis. The structure revealed that PROPPINs contain two phosphoinositide binding sites which cooperate with a hydrophobic anchoring loop in membrane binding. These three binding elements cooperate in function, as demonstrated by the incremental loss of function in Atg18 mutants impaired in combinations of the two phosphoinositide binding sites and the hydrophobic loop.  相似文献   

2.
We characterized phosphoinositide binding of the S. cerevisiae PROPPIN Hsv2 qualitatively with density flotation assays and quantitatively through isothermal titration calorimetry (ITC) measurements using liposomes. We discuss the design of these experiments and show with liposome flotation assays that Hsv2 binds with high specificity to both PtdIns3P and PtdIns(3,5)P2. We propose liposome flotation assays as a more accurate alternative to the commonly used PIP strips for the characterization of phosphoinositide-binding specificities of proteins. We further quantitatively characterized PtdIns3P binding of Hsv2 with ITC measurements and determined a dissociation constant of 0.67 µM and a stoichiometry of 2:1 for PtdIns3P binding to Hsv2. PtdIns3P is crucial for the biogenesis of autophagosomes and their precursors. Besides the PROPPINs there are other PtdIns3P binding proteins with a link to autophagy, which includes the FYVE-domain containing proteins ZFYVE1/DFCP1 and WDFY3/ALFY and the PX-domain containing proteins Atg20 and Snx4/Atg24. The methods described could be useful tools for the characterization of these and other phosphoinositide-binding proteins.  相似文献   

3.
Sorting, transport, and autophagic degradation of proteins in endosomes and lysosomes, as well as the division of these organelles, depend on scission of membrane‐bound tubulo‐vesicular carriers. How scission occurs is poorly understood, but family proteins bind these membranes. Here, we show that the yeast PROPPIN Atg18 carries membrane scission activity. Purified Atg18 drives tubulation and scission of giant unilamellar vesicles. Upon membrane contact, Atg18 folds its unstructured CD loop into an amphipathic α‐helix that inserts into the bilayer. This allows the protein to engage its two lipid binding sites for PI3P and PI(3,5)P2. PI(3,5)P2 induces Atg18 oligomerization, which should concentrate lipid‐inserted α‐helices in the outer membrane leaflet and drive membrane tubulation and scission. The scission activity of Atg18 is compatible with its known roles in endo‐lysosomal protein trafficking, autophagosome biogenesis, and vacuole fission. Key features required for membrane tubulation and scission by Atg18 are shared by other PROPPINs, suggesting that membrane scission may be a generic function of this protein family.  相似文献   

4.
《Autophagy》2013,9(1):106-107
PROPPINs are a family of PtdIns3P and PtdIns(3,5)P2-binding proteins. The crystal structure now unravels the presence of two distinct phosphoinositide-binding sites at the circumference of the seven bladed β-propeller. Mutagenesis analysis of the binding sites shows that both are required for normal membrane association and autophagic activities. We identified a set of evolutionarily conserved basic and polar residues within both binding pockets, which are crucial for phosphoinositide binding. We expect that membrane association of PROPPINs is further stabilized by membrane insertions and interactions with other proteins.  相似文献   

5.
Autophagy is an intracellular degradation system by which cytoplasmic materials are enclosed by an autophagosome and delivered to a lysosome/vacuole. Atg18 plays a critical role in autophagosome formation as a complex with Atg2 and phosphatidylinositol 3-phosphate (PtdIns(3)P). However, little is known about the structure of Atg18 and its recognition mode of Atg2 or PtdIns(3)P. Here, we report the crystal structure of Kluyveromyces marxianus Hsv2, an Atg18 paralog, at 2.6 Å resolution. The structure reveals a seven-bladed β-propeller without circular permutation. Mutational analyses of Atg18 based on the K. marxianus Hsv2 structure suggested that Atg18 has two phosphoinositide-binding sites at blades 5 and 6, whereas the Atg2-binding region is located at blade 2. Point mutations in the loops of blade 2 specifically abrogated autophagy without affecting another Atg18 function, the regulation of vacuolar morphology at the vacuolar membrane. This architecture enables Atg18 to form a complex with Atg2 and PtdIns(3)P in parallel, thereby functioning in the formation of autophagosomes at autophagic membranes.  相似文献   

6.
Macroautophagy is essential to cell survival during starvation and proceeds by the growth of a double-membraned phagophore, which engulfs cytosol and other substrates. The synthesis and recognition of the lipid phosphatidylinositol 3-phosphate, PI(3)P, is essential for autophagy. The key autophagic PI(3)P sensors, which are conserved from yeast to humans, belong to the PROPPIN family. Here we report the crystal structure of the yeast PROPPIN Hsv2. The structure consists of a seven-bladed β-propeller and, unexpectedly, contains two pseudo-equivalent PI(3)P binding sites on blades 5 and 6. These two sites both contribute to membrane binding in?vitro and are collectively required for full autophagic function in yeast. These sites function in concert with membrane binding by a hydrophobic loop in blade 6, explaining the specificity of the PROPPINs for membrane-bound PI(3)P. These observations thus provide a structural and mechanistic framework for one of the conserved central molecular recognition events in autophagy.  相似文献   

7.
《Autophagy》2013,9(12):2161-2162
Pichia pastoris Atg18 (PpAtg18), a member of the PROPPIN family of proteins, is localized not only to the PAS (pre-autophagosomal structure or phagophore assembly site) during autophagy but also to the vacuolar membrane during vacuolar fission. Recently we reported that the localization of Atg18 was determined by its phosphorylation level. We identified two phosphorylated regions within the β-propeller structures of PpAtg18, whose modification affects its affinity toward phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2]. The findings indicated that phosphoregulaton of Atg18 mediates the signal from various environmental stimuli and regulates its intracellular localization for vacuolar fission and autophagy.  相似文献   

8.
Krick R  Tolstrup J  Appelles A  Henke S  Thumm M 《FEBS letters》2006,580(19):4632-4638
Atg18 and Atg21 are homologous S. cerevisiae autophagy proteins. Atg18 is essential for biogenesis of Cvt vesicles and autophagosomes, while Atg21 is only essential for Cvt vesicle formation. We found that mutated Atg18-(FTTGT), which lost almost completely its binding to PtdIns3P and PtdIns(3,5)P(2), is non-functional during the Cvt pathway but active during autophagy and pexophagy. Since the Cvt pathway does not depend on PtdIns(3,5)P(2), we conclude that the Cvt pathway requires binding of Atg18 to PtdIns3P. Mutated Atg21-(FTTGT) is inactive during the Cvt pathway but showed only partly reduced binding to PtdIns-phosphates, suggesting further lipid binding domains in Atg21. GFP-Atg18-(FTTGT) and Atg21-(FTTGT)-GFP are released from vacuolar punctae to the cytosol.  相似文献   

9.
《Journal of molecular biology》2019,431(7):1494-1505
WIPI proteins are mammalian PROPPIN family members that bind to phosphoinositides and play prominent roles in autophagosome biogenesis. Two phosphoinositide-binding sites were previously described in yeast PROPPIN Hsv2 but remain to be determined in mammalian WIPI proteins. Here, we characterized four human WIPI proteins (WIPI1–4) and solved the structure of WIPI3. WIPI proteins can bind to PI(3)P and PI(3,5)P2 and adopt a conventional seven-bladed β-propeller fold. The structure of WIPI3 revealed that WIPI proteins also contain two sites embedded in blades 5 and 6 for recognizing phosphoinositides, resembling that in Hsv2. Structural comparison further demonstrated that the two conserved phosphoinositide-binding sites in PROPPIN proteins are not identical but intrinsically tend to recognize different types of phosphoinositides. This work provides the structural evidence to support the conservation of the two phosphoinositide-binding sites in WIPI proteins and also uncovers the potential phosphoinositide-binding selectivity for each site.  相似文献   

10.
The plasma membrane-cytoskeleton interface is a dynamic structure participating in a variety of cellular events. Moesin and ezrin, proteins from the ezrin/radixin/moesin (ERM) family, provide a direct linkage between the cytoskeleton and the membrane via their interaction with phosphatidylinositol 4,5-bisphosphate (PIP(2)). PIP(2) binding is considered as a prerequisite step in ERM activation. The main objective of this work was to compare moesin and ezrin interaction with PIP(2)-containing membranes in terms of affinity and to analyze secondary structure modifications leading eventually to ERM activation. For this purpose, we used two types of biomimetic model membranes, large and giant unilamellar vesicles. The dissociation constant between moesin and PIP(2)-containing large unilamellar vesicles or PIP(2)-containing giant unilamellar vesicles was found to be very similar to that between ezrin and PIP(2)-containing large unilamellar vesicles or PIP(2)-containing giant unilamellar vesicles. In addition, both proteins were found to undergo conformational changes after binding to PIP(2)-containing large unilamellar vesicles. Changes were evidenced by an increased sensitivity to proteolysis, modifications in the fluorescence intensity of the probe attached to the C-terminus and in the proportion of secondary structure elements.  相似文献   

11.
The PROPPIN family member Atg18 is a phosphoinositide-binding protein that is composed of a seven β-propeller motif and is part of the conserved autophagy machinery. Here, we report that the Atg18 phosphorylation in the loops in the propellar structure of blade 6 and blade 7 decreases its binding affinity to phosphatidylinositol 3,5-bisphosphate in the yeast Pichia pastoris. Dephosphorylation of Atg18 was necessary for its association with the vacuolar membrane and caused septation of the vacuole. Upon or after dissociation from the vacuolar membrane, Atg18 was rephosphorylated, and the vacuoles fused and formed a single rounded structure. Vacuolar dynamics were regulated according to osmotic changes, oxidative stresses, and nutrient conditions inducing micropexophagy via modulation of Atg18 phosphorylation. This study reveals how the phosphoinositide-binding activity of the PROPPIN family protein Atg18 is regulated at the membrane association domain and highlights the importance of such phosphoregulation in coordinated intracellular reorganization.  相似文献   

12.
The lipid kinase Fab1 governs yeast vacuole homeostasis by generating PtdIns(3,5)P(2) on the vacuolar membrane. Recruitment of effector proteins by the phospholipid ensures precise regulation of vacuole morphology and function. Cells lacking the effector Atg18p have enlarged vacuoles and high PtdIns(3,5)P(2) levels. Although Atg18 colocalizes with Fab1p, it likely does not directly interact with Fab1p, as deletion of either kinase activator-VAC7 or VAC14-is epistatic to atg18Delta: atg18Deltavac7Delta cells have no detectable PtdIns(3,5)P(2). Moreover, a 2xAtg18 (tandem fusion) construct localizes to the vacuole membrane in the absence of PtdIns(3,5)P(2), but requires Vac7p for recruitment. Like the endosomal PtdIns(3)P effector EEA1, Atg18 membrane binding may require a protein component. When the lipid requirement is bypassed by fusing Atg18 to ALP, a vacuolar transmembrane protein, vac14Delta vacuoles regain normal morphology. Rescue is independent of PtdIns(3,5)P(2), as mutation of the phospholipid-binding site in Atg18 does not prevent vacuole fission and properly regulates Fab1p activity. Finally, the vacuole-specific type-V myosin adapter Vac17p interacts with Atg18p, perhaps mediating cytoskeletal attachment during retrograde transport. Atg18p is likely a PtdIns(3,5)P(2)"sensor," acting as an effector to remodel membranes as well as regulating its synthesis via feedback that might involve Vac7p.  相似文献   

13.
Atg18 is essential for both autophagy and the regulation of vacuolar morphology. The latter process is mediated by phosphatidylinositol 3,5-bisphosphate binding, which is dispensable for autophagy. Atg18 also binds to phosphatidylinositol 3-phosphate (PtdIns(3)P) in vitro. Here, we investigate the relationship between PtdIns(3)P-binding of Atg18 and autophagy. Using an Atg18 variant, Atg18(FTTG), which is unable to bind phosphoinositides, we found that PtdIns(3)P binding of Atg18 is essential for full activity in both selective and nonselective autophagy. Atg18(FTTG) formed a complex with Atg2 in a normal manner, and Atg18-Atg2 complex formation occurred in cells in the absence of PtdIns(3)P, indicating that Atg18-Atg2 complex formation is independent of PtdIns(3)P-binding of Atg18. Atg18 localized to endosomes, the vacuolar membrane, and autophagic membranes, whereas Atg18(FTTG) did not localize to these structures. The localization of Atg2 to autophagic membranes was also lost in Atg18(FTTG) cells. These data indicate that PtdIns(3)P-binding of Atg18 is involved in directing the Atg18-Atg2 complex to autophagic membranes. Connection of a 2xFYVE domain, a specific PtdIns(3)P-binding domain, to the C terminus of Atg18(FTTG) restored the localization of Atg18-Atg2 to autophagic membranes and full autophagic activity, indicating that PtdIns(3)P-binding by Atg18 is dispensable for the function of the Atg18-Atg2 complex but is required for its localization. This also suggests that PtdIns(3)P does not act allosterically on Atg18. Taken together, Atg18 forms a complex with Atg2 irrespective of PtdIns(3)P binding, associates tightly to autophagic membranes by interacting with PtdIns(3)P, and plays an essential role.  相似文献   

14.
The tumour suppressor EWI2 associates with tetraspanins and regulates tumour cell movement and proliferation. The short cytoplasmic domain of EWI2 is positively charged; five out of the ten residues of this domain are basic. In the present study we demonstrated that the EWI2 cytoplasmic tail interacts specifically with negatively charged PIPs (phosphatidylinositol phosphates), but not with other membrane lipids. The PIPs that interact with EWI2 cytoplasmic tail include PtdIns5P, PtdIns4P, PtdIns3P, PtdIns(3,5)P(2) and PtdIns(3,4)P2. The binding affinity of PIPs to the EWI2 tail, however, is not solely based on charge because PtdIns5P, PtdIns4P and PtdIns3P have a higher affinity to EWI2 than PtdIns(3,5)P(2) and PtdIns(3,4)P(2) do. Mutation of either of two basic residue clusters in the EWI2 cytoplasmic tail abolishes PIP binding, and PIP binding is also determined by the position of basic residues in the EWI2 cytoplasmic tail. In addition, EWI2 is constitutively palmitoylated at the cytoplasmic cysteine residues located at the N-terminal of those basic residues. The PIP interaction is not required for, but appears to regulate, the palmitoylation, whereas palmitoylation is neither required for nor regulates the PIP interaction. Functionally, the PIP interaction regulates the stability of EWI2 proteins, whereas palmitoylation is needed for tetraspanin-EWI2 association and EWI2-dependent inhibition of cell migration and lamellipodia formation. For cell-cell adhesion and cell proliferation, the PIP interaction functions in opposition to the palmitoylation. In conclusion, the EWI2 cytoplasmic tail actively engages with the cell membrane via PIP binding and palmitoylation, which play differential roles in EWI2 functions.  相似文献   

15.

Background

Autophagy is a cytoprotective, lysosomal degradation system regulated upon induced phosphatidylinositol 3-phosphate (PtdIns(3)P) generation by phosphatidylinositol 3-kinase class III (PtdIns3KC3) downstream of mTORC1 inhibition. The human PtdIns(3)P-binding β-propeller protein WIPI-1 accumulates at the initiation site for autophagosome formation (phagophore), functions upstream of the Atg12 and LC3 conjugation systems, and localizes at both the inner and outer membrane of generated autophagosomes. In addition, to a minor degree WIPI-1 also binds PtdIns(3,5)P2. By homology modelling we earlier identified 24 evolutionarily highly conserved amino acids that cluster at two opposite sites of the open Velcro arranged WIPI-1 β-propeller.

Results

By alanine scanning mutagenesis of 24 conserved residues in human WIPI-1 we define the PtdIns-binding site of human WIPI-1 to critically include S203, S205, G208, T209, R212, R226, R227, G228, S251, T255, H257. These amino acids confer PtdIns(3)P or PtdIns(3,5)P2 binding. In general, WIPI-1 mutants unable to bind PtdIns(3)P/PtdIns(3,5)P2 lost their potential to localize at autophagosomal membranes, but WIPI-1 mutants that retained PtdIns(3)P/PtdIns(3,5)P2 binding localized at Atg12-positive phagophores upon mTORC1 inhibition. Both, downregulation of mTOR by siRNA or cellular PtdIns(3)P elevation upon PIKfyve inhibition by YM201636 significantly increased the localization of WIPI-1 at autophagosomal membranes. Further, we identified regulatory amino acids that influence the membrane recruitment of WIPI-1. Exceptional, WIPI-1 R110A localization at Atg12-positive membranes was independent of autophagy stimulation and insensitive to wortmannin. R112A and H185A mutants were unable to bind PtdIns(3)P/PtdIns(3,5)P2 but localized at autophagosomal membranes, although in a significant reduced number of cells when compared to wild-type WIPI-1.

Conclusions

We identified amino acids of the WIPI-1 β-propeller that confer PtdIns(3)P or PtdIns(3,5)P2 binding (S203, S205, G208, T209, R212, R226, R227, G228, S251, T255, H257), and that regulate the localization at autophagosomal membranes (R110, R112, H185) downstream of mTORC1 inhibition.
  相似文献   

16.
The basic effector domain of myristoylated alanine-rich C kinase substrate (MARCKS), a major protein kinase C substrate, binds electrostatically to acidic lipids on the inner leaflet of the plasma membrane; interaction with Ca2+/calmodulin or protein kinase C phosphorylation reverses this binding. Our working hypothesis is that the effector domain of MARCKS reversibly sequesters a significant fraction of the L-alpha-phosphatidyl-D-myo-inositol 4,5-bisphosphate (PIP2) on the plasma membrane. To test this, we utilize three techniques that measure the ability of a peptide corresponding to its effector domain, MARCKS(151-175), to sequester PIP2 in model membranes containing physiologically relevant fractions (15-30%) of the monovalent acidic lipid phosphatidylserine. First, we measure fluorescence resonance energy transfer from Bodipy-TMR-PIP2 to Texas Red MARCKS(151-175) adsorbed to large unilamellar vesicles. Second, we detect quenching of Bodipy-TMR-PIP2 in large unilamellar vesicles when unlabeled MARCKS(151-175) binds to vesicles. Third, we identify line broadening in the electron paramagnetic resonance spectra of spin-labeled PIP2 as unlabeled MARCKS(151-175) adsorbs to vesicles. Theoretical calculations (applying the Poisson-Boltzmann relation to atomic models of the peptide and bilayer) and experimental results (fluorescence resonance energy transfer and quenching at different salt concentrations) suggest that nonspecific electrostatic interactions produce this sequestration. Finally, we show that the PLC-delta1-catalyzed hydrolysis of PIP2, but not binding of its PH domain to PIP2, decreases markedly as MARCKS(151-175) sequesters most of the PIP2.  相似文献   

17.
The FYVE domain mediates the recruitment of proteins involved in membrane trafficking and cell signaling to phosphatidylinositol 3-phosphate (PtdIns(3)P)-containing membranes. To elucidate the mechanism by which the FYVE domain interacts with PtdIns(3)P-containing membranes, we measured the membrane binding of the FYVE domains of yeast Vps27p and Drosophila hepatocyte growth factor-regulated tyrosine kinase substrate and their mutants by surface plasmon resonance and monolayer penetration analyses. These measurements as well as electrostatic potential calculation show that PtdIns(3)P specifically induces the membrane penetration of the FYVE domains and increases their membrane residence time by decreasing the positive charge surrounding the hydrophobic tip of the domain and causing local conformational changes. Mutations of hydrophobic residues located close to the PtdIns(3)P-binding pocket or an Arg residue directly involved in PtdIns(3)P binding abrogated the penetration of the FYVE domains into the monolayer, the packing density of which is comparable with that of biological membranes and large unilamellar vesicles. Based on these results, we propose a mechanism of the membrane binding of the FYVE domain in which the domain first binds to the PtdIns(3)P-containing membrane by specific PtdIns(3)P binding and nonspecific electrostatic interactions, which is then followed by the PtdIns(3)P-induced partial membrane penetration of the domain.  相似文献   

18.
Polyphosphoinositides (PPIn) are low-abundance membrane phospholipids that each bind to a distinctive set of effector proteins and, thereby, regulate a characteristic suite of cellular processes. Major functions of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P(2)] are in membrane and protein trafficking, and in pH control in the endosome-lysosome axis. Recently identified PtdIns(3,5)P(2) effectors include a family of novel beta-propeller proteins, for which we propose the name PROPPINs [for beta-propeller(s) that binds PPIn], and possibly proteins of the epsin and CHMP (charged multi-vesicular body proteins) families. All eukaryotes, with the exception of some pathogenic protists and microsporidians, possess proteins needed for the formation, metabolism and functions of PtdIns(3,5)P(2). The importance of PtdIns(3,5)P(2) for normal cell function is underscored by recent evidence for its involvement in mammalian cell responses to insulin and for PtdIns(3,5)P(2) dysfunction in the human genetic conditions X-linked myotubular myopathy, Type-4B Charcot-Marie-Tooth disease and fleck corneal dystrophy.  相似文献   

19.
ABSTRACT

Macroautophagy/autophagy is a conserved catabolic recycling pathway involving the sequestration of cytoplasmic components within double-membrane vesicles termed autophagosomes. The autophagy-related (Atg) protein Atg13 is a key member of the autophagy initiation complex. The Atg13 C terminus is an intrinsically disordered region (IDR) harboring a binding site for the vacuolar membrane protein Vac8. Recent reports suggest Atg13 acts as a hub to assemble the initiation complex, and also participates in membrane recognition. Here we show that the Atg13 C terminus directly binds to lipid membranes via electrostatic interactions between positively charged residues in Atg13 and negatively charged phospholipids as well as a hydrophobic insertion of a Phe residue. We identified 2 sets of residues in the Atg13 IDR that affect its phospholipid-binding properties; these residues overlap with the Vac8-binding domain of Atg13. Our data indicate that Atg13 binding to phospholipids and Vac8 is mutually exclusive, and both are required for efficient autophagy.  相似文献   

20.
Phosphatidylinositol 3,5‐bisphosphate (PtdIns(3,5)P2) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze‐fracture electron microscopy. GST‐ATG18‐4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3‐phosphate (PtdIns(3)P) was blocked by an excess of the p40phox PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)‐deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP‐deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid‐disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP‐deficient, PtdIns(3)P‐rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5‐ and RAB7‐positive endosome/lysosomes of the tubulo‐vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2‐rich and ‐deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号