首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microtubule-associated stable tubule only polypeptide (STOP) protein plays a key-role in neuron architecture and synaptic plasticity. Recent studies suggest that schizophrenia is associated with alterations in the synaptic connectivity. Mice invalidated for the STOP gene display phenotype reminiscent of some schizophrenic-like symptoms, such as behavioral disturbances, dopamine (DA) hyper-reactivity, and possible hypoglutamatergia, partly improved by antipsychotic treatment. In the present work, we examined potential alterations in some DAergic key proteins and behaviors in STOP knockout mice. Whereas the densities of the DA transporter, the vesicular monoamine transporter and the D1 receptor were not modified, the densities of the D2 and D3 receptors were decreased in some DAergic regions in mutant versus wild-type mice. Endogenous DA levels were selectively decreased in DAergic terminals areas, although the in vivo DA synthesis was diminished both in cell bodies and terminal areas. The DA uptake was decreased in accumbic synaptosomes, but not significantly altered in striatal synaptosomes. Finally, STOP knockout mice were hypersensitive to acute and subchronic locomotor effects of cocaine, although the drug equally inhibited DA uptake in mutant and wild-type mice. Altogether, these data showed that deletion of the ubiquitous STOP protein elicited restricted alterations in DAergic neurotransmission, preferentially in the meso-limbic pathway.  相似文献   

2.
A dysfunctional glutamatergic system is thought to be central to the negative symptoms and cognitive deficits recognized as determinant to the poor quality of life of people with schizophrenia. Modulating glutamate uptake has, thus, been suggested as a novel target for antipsychotics. Alstonine is an indole alkaloid sharing with atypical antipsychotics the profile in animal models relevant to schizophrenia, though divergent in its mechanism of action. The aim of this study was to evaluate the effects of alstonine on glutamate uptake. Additionally, the effects on glutathione content and extracellular S100B levels were assessed. Acute hippocampal slices were incubated with haloperidol (10 μM), clozapine (10 and 100 μM) or alstonine (1–100 μM), alone or in combination with apomorphine (100 μM), and 5-HT2 receptor antagonists (0.01 μM altanserin and 0.1 μM SB 242084). A reduction in glutamate uptake was observed with alstonine and clozapine, but not haloperidol. Apomorphine abolished the effect of clozapine, whereas 5-HT2A and 5-HT2C antagonists abolished the effects of alstonine. Increased levels of glutathione were observed only with alstonine, also the only compound that failed to decrease the release of S100B. This study shows that alstonine decreases glutamate uptake, which may be beneficial to the glutamatergic deficit observed in schizophrenia. Noteworthily, the decrease in glutamate uptake is compatible with the reversal of MK-801-induced social interaction and working memory deficits. An additional potential benefit of alstonine as an antipsychotic is its ability to increase glutathione, a key cellular antioxidant reported to be decreased in the brain of patients with schizophrenia. Adding to the characterization of the novel mechanism of action of alstonine, the lack of effect of apomorphine in alstonine-induced changes in glutamate uptake reinforces that D2 receptors are not primarily implicated. Though clearly mediated by 5-HT2A and 5-HT2C serotonin receptors, the precise mechanisms that result in the effects of alstonine on glutamate uptake warrant elucidation.  相似文献   

3.
In Huntington's disease (HD), neuronal loss is most prominent in the striatum leading to emotional, cognitive and progressive motor dysfunction. The R6/2 mice, transgenic for exon 1 of the HD gene, develop a neurological phenotype with similarities to these features of HD. In striatal tissue, electrically evoked release of tritiated acetylcholine (ACh) and dopamine (DA) were compared in wild-type (WT) and R6/2 mice. In R6/2 mice, the evoked release of ACh, its M2 autoreceptor-mediated maximum inhibition and its dopamine D2 heteroreceptor-mediated maximum inhibition was diminished to 51%, 74% and 87% of controls, respectively. Also, the activities of choline acetyltransferase and of synaptosomal high-affinity choline uptake decreased progressively with age in these mice. In the DA release model, however, electrical stimulation elicited equal amounts of [3H]-DA both in WT and R6/2 mice. Moreover, high-affinity DA uptake into striatal slices was similar in WT and R6/2 mice. In order to confirm these findings in vivo, intrastriatal levels of extracellular DA were measured by intracerebral microdialysis in freely moving mice: striatal DA levels were found to be equal in WT and R6/2 mice. In conclusion, in the transgenic R6/2 mice changes occur mainly in striatal cholinergic neurones and their pre-synaptic modulation, but not in the dopaminergic afferent terminals. Whether similar events also contribute to the pathogenesis of HD in humans has to be established.  相似文献   

4.
LY227942, (+/-)-N-methyl-3-(1-naphthalenyloxy)-3-(2-thiophene)propanamine ethanedioate, is a new, competitive inhibitor of monoamine uptake in synaptosomal preparations of rat brain. LY227942 inhibits uptake of serotonin (5-hydroxytryptamine, 5HT) and norepinephrine (NE) in cortical synaptosomes and uptake of dopamine (DA) in striatal synaptosomes with inhibitor constants (Ki values) of 8.5, 45 and 300 nM, respectively. Upon administration in vivo, LY227942 lowers 5HT and NE uptake in hypothalamus homogenates to half their respective control activities (ED50) at 0.74 and 1.2 mg/kg s.c., 7 and 12 mg/kg i.p., and 12 and 22 mg/kg p.o., but LY227942 at doses up to 30 mg/kg p.o. does not change DA uptake in striatal homogenates. Lowering of 5HT and NE uptake is demonstrated after 15 min and 6 hr, but has dissipated by 16 hr after oral administration. According to radioligand binding determinations, LY227942 possesses only weak affinity for muscarinic receptors, histamine-1 receptors, adrenergic receptors, dopamine receptors and serotonin receptors. These findings suggest that LY227942 has the pharmacological profile of an antidepressant drug and is useful to study the pharmacological responses of concerted enhancement of serotonergic and noradrenergic neurotransmission.  相似文献   

5.
Genetic variability in the proportion of the two alternative dopamine D2 receptor (D2R) mRNA splice variants, D2R‐long (D2L) and D2R‐short (D2S), influence corticostriatal functioning and could be implicated in liability to psychopathology. This study compared mesostriatal D2L/D2S ratios and associated neural and behavioral phenotypes in mice of the DBA/2J and C57BL/6J‐inbred strains, which differ for schizophrenia‐ and addiction‐like phenotypes. Results showed that DBA/2J mice lack the striatal predominance of D2L that has been reported in the rat and in C57BL/6J mice and confirmed in the latter strain by this study. Only C57BL/6J mice showed enhanced striatal c‐Fos expression under D1R and D2/3R co‐stimulation, indicating synergistic interaction between the subtypes of DA receptors. Instead, DBA/2J mice were characterized by opposing effects of D2/3R and D1R stimulation on striatal c‐Fos expression, in line with a more pronounced influence of D2S isoform, and did not express stereotyped climbing under D1R and D2/3R co‐stimulation, as reported for D2L?/? mice. Finally, strain‐specific modulation of c‐Fos expression by D1R and D2/3R co‐stimulation was selectively observed in striatal compartments receiving inputs from the prefrontal cortex and involved in the control of motivated behaviors. These results show differences in tissue‐specific D2R splicing in mice with intact genotypes and support a role for this phenotype in individual variability of corticostriatal functioning and in liability to psychopathology.  相似文献   

6.
Previous studies have shown that dopamine (DA) uptake was decreased after preincubation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP(+)) in in vitro slice and synaptosome models. The present study, conducted with and without preincubation, attempted to determine whether inhibition results from a direct effect of neurotoxins on neuronal DA transporter or from an alteration of the transporter secondary to other toxic events. DA uptake was inhibited about 50% in the presence of MPTP+O(2) or MPP(+) (0.1, 1 and 5 mM) in rat striatal slices and synaptosomes. Such inhibition was obtained in synaptosomes preincubated for 150 min with MPP(+) and then washed. Inhibition of DA uptake was lower in slices preincubated with MPTP (5 mM)+O(2) and then washed (30%). Experiments in synaptosomes prepared from slices preincubated with MPTP or MPP(+) showed greater inhibition of DA uptake with MPTP. The results suggest that the inhibition of DA uptake in vitro by MPTP or MPP(+) results initially from a direct effect on the transporter during its penetration in nerve endings and subsequently from a transporter alteration related to toxic events. Thus, the preincubation of striatal slices followed by DA uptake measurement in synaptosomes would appear to be a good in vitro model for studying the dopaminergic toxicity of MPTP.  相似文献   

7.
3H-xylamine (3H-XYL), an irreversible catecholamine uptake inhibitor, was incubated with rat striatal synaptosomes, and the membrane fraction was examined by fluorography of a sodium dodecyl sulfate-polyacrylamide gel. A number of peptides were labeled. To determine their location, the striatal dopaminergic presynaptic nerve terminals were destroyed by unilateral electrolytic lesions through the nigrostriatal fibers prior to 3H-XYL exposure. The 3H-XYL bound to membranes from lesioned striata was about 29% of that bound to control membranes, which is consistent with the 83% reduction in dopamine (DA) uptake and the 68% reduction in DA content in the lesioned tissue. The decrease in peptide-bound 3H-XYL paralleled the decrease in DA content, with the exception of a 45% decrease in binding to a 45K peptide. These data show that 3H-XYL binding is predominantly localized in the dopaminergic presynaptic nerve terminals of the striatum.  相似文献   

8.
While levodopa-induced neurochemical changes have been studied in animal models of Parkinson's disease, very little is known regarding the effects of levodopa administration in normal animals. The present study investigates the effects normal and MPTP-lesioned mice chronically treated with two different doses of levodopa. We assess changes in striatal dopamine (DA) receptor binding, striatal DA receptor mRNA levels and striatal neuropeptide precursor levels (preproenkephalin-A [PPE-A]; preprotachykinin [PPT]; preproenkephalin-B [PPE-B]). The extent of the lesion was measured by striatal DA transporter binding and stereological estimation of the number of tyrosine hydroxylase immunoreactive neurones in the substantia nigra pars compacta (SNc). In non-lesioned animals, chronic levodopa treatment induced an increase in PPE-A mRNA, whereas both D3R binding and PPE-B mRNA levels were dramatically increased in the lesioned animals in a dose dependent manner. The present results show that chronic levodopa administration may induce pathophysiological changes, even in the absence of a lesion of the nigro-striatal pathway, suggesting that the sensitization process involves predominantly the indirect striatofugal pathway in non-lesioned animals, whereas the direct pathway is primarily involved in lesioned animals.  相似文献   

9.
The dopamine (DA) transporter (DAT) is part of a presynaptic multiprotein network involving interactions with scaffold proteins via its C-terminal PDZ domain–binding sequence. Using a mouse model expressing DAT with mutated PDZ-binding sequence (DAT-AAA), we previously demonstrated the importance of this binding sequence for striatal expression of DAT. Here, we show by application of direct stochastic reconstruction microscopy not only that the striatal level of transporter is reduced in DAT-AAA mice but also that the nanoscale distribution of this transporter is altered with a higher propensity of DAT-AAA to localize to irregular nanodomains in dopaminergic terminals. In parallel, we observe mesostriatal DA adaptations and changes in DA-related behaviors distinct from those seen in other genetic DAT mouse models. DA levels in the striatum are reduced to ∼45% of that of WT, accompanied by elevated DA turnover. Nonetheless, fast-scan cyclic voltammetry recordings on striatal slices reveal a larger amplitude and prolonged clearance rate of evoked DA release in DAT-AAA mice compared with WT mice. Autoradiography and radioligand binding show reduced DA D2 receptor levels, whereas immunohistochemistry and autoradiography show unchanged DA D1 receptor levels. In behavioral experiments, we observe enhanced self-administration of liquid food under both a fixed ratio of one and progressive ratio schedule of reinforcement but a reduction compared with WT when using cocaine as reinforcer. In summary, our data demonstrate how disruption of PDZ domain interactions causes changes in DAT expression and its nanoscopic distribution that in turn alter DA clearance dynamics and related behaviors.  相似文献   

10.
Several experimental studies have shown that acidosis impairs neurotransmitter uptake processes. The purpose of this study was to determine the mechanism underlying acidosis-induced alterations of the high-affinity dopamine (DA) uptake in rat striatal synaptosomes and slices. Acidosis (pH 5.5) performed either by lactic acid or phosphoric acid induced a decrease in the high-affinity DA uptake in the two striatal models, slices being lesser affected than synaptosomes. Addition of the acid prior to uptake measurement led to a strong reduction of the DA uptake velocity. This early inhibitory effect was completely reversed when acid was removed from the medium by washings. Conversely, when slices and synaptosomes were pre-incubated for different times with each acid, DA uptake remained inhibited in spite of washings. This later inhibition was accompanied by the production of thiobarbituric acid reactive substances, a marker of lipid peroxidation, and was partially prevented by the antioxidant Trolox. Taken together, these results suggest that acidosis, in a degree encountered during ischemia, alters the high-affinity DA uptake by at least two ways: an early and direct effect of H(+) ions on the DA transporters, and subsequently an inhibition partially mediated by free radical damage.  相似文献   

11.

Background

DYT11 myoclonus-dystonia (M-D) syndrome is a neurological movement disorder characterized by myoclonic jerks and dystonic postures or movement that can be alleviated by alcohol. It is caused by mutations in SGCE encoding ε-sarcoglycan (ε-SG); the mouse homolog of this gene is Sgce. Paternally-inherited Sgce heterozygous knockout (Sgce KO) mice exhibit myoclonus, motor impairment and anxiety- and depression-like behaviors, modeling several clinical symptoms observed in DYT11 M-D patients. The behavioral deficits are accompanied by abnormally high levels of dopamine and its metabolites in the striatum of Sgce KO mice. Neuroimaging studies of DYT11 M-D patients show reduced dopamine D2 receptor (D2R) availability, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out.

Methodology/Principal Findings

The protein levels of striatal D2R, dopamine transporter (DAT), and dopamine D1 receptor (D1R) in Sgce KO mice were analyzed by Western blot. The striatal dopamine release after amphetamine injection in Sgce KO mice were analyzed by microdialysis in vivo. The striatal D2R was significantly decreased in Sgce KO mice without altering DAT and D1R. Sgce KO mice also exhibited a significant increase of dopamine release after amphetamine injection in comparison to wild-type (WT) littermates.

Conclusion/Significance

The results suggest ε-SG may have a role in the regulation of D2R expression. The loss of ε-SG results in decreased striatal D2R, and subsequently leads to increased discharge of dopamine which could contribute to the behavioral impairment observed in DYT11 dystonia patients and in Sgce KO mice. The results suggest that reduction of striatal D2R and enhanced striatal dopamine release may contribute to the pathophysiology of DYT11 M-D patients.  相似文献   

12.
Incubation of rat striatal synaptosomes in ascorbic acid induced the production of thiobarbituric acid reactive substances, a marker of lipid peroxidation, and 4-hydroxynonenal (4-HNE), a lipid peroxidation aldehydic product. Incubations with 4-HNE, used at a range of concentrations comparable to those obtained during peroxidation, induced a simultaneous, dose-dependent decrease of dopamine (DA) uptake and Na+/K+ ATPase activity and a loss of sulfhydryl (SH) groups. Similar results were observed in a previous study when lipid peroxidation was induced after incubation of synaptosomes in ascorbic acid. Taken together, these data suggest that 4-HNE is an important mediator of oxidative stress and may alter DA uptake after binding to SH groups of the DA transporter and to Na+/K+ ATPase. These toxic events may contribute to the onset and progression of Parkinsons disease.  相似文献   

13.
CGS 10746B, a benzothiadiazepine, has a behavioral profile in mice and monkeys similar to the atypical antipsychotic clozapine. Unlike clozapine, CGS 10746B suppresses dopamine neuron firing rates and, when administered at behaviorally effective doses by the oral or intraperitoneal route, decreases neostriatal dopamine release without changing dopamine metabolism or occupying D2 receptors. CGS 10746B is the first atypical antipsychotic candidate that selectively decreases dopamine release.  相似文献   

14.
Plasmalogens are a class of glycerophospholipids shown to play critical roles in membrane structure and function. Decreased plasmalogens are reported in the brain and blood of Parkinson’s disease (PD) patients. The present study investigated the hypothesis that augmenting plasmalogens could protect striatal dopamine neurons that degenerate in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in mice, a PD model. First, in a pre-treatment experiment male mice were treated for 10 days with the docosahexaenoic acid (DHA)-plasmalogen precursor PPI-1011 (10, 50 and 200 mg/kg). On day 5 mice received MPTP and were killed on day 11. Next, in a post-treatment study, male mice were treated with MPTP and then received daily for 5 days PPI-1011 (5, 10 and 50 mg/kg). MPTP treatment reduced serum plasmalogen levels, striatal contents of dopamine (DA) and its metabolites, serotonin, DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2). Pre-treatment with PPI-1011 (10 and 50 mg/kg) prevented all MPTP-induced effects. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding. Post-treatment with PPI-1011 prevented all MPTP-induced effects at 50 mg/kg but not at lower doses. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding in the post-treatment experiment. PPI-1011 treatment (10 days at 5, 10 and 50 mg/kg) of intact mice left unchanged striatal biogenic amine contents. These data demonstrate that treatment with a plasmalogen precursor is capable of protecting striatal dopamine markers in an animal model of PD.  相似文献   

15.
A series of N-phenylalkyl-substituted tropane analogs of boat conformation was synthesized, and these tropanes were evaluated for their ability to inhibit high affinity uptake of dopamine (DA) and serotonin (5-HT) into striatal nerve endings (synaptosomes). Some of these compounds exhibit high affinity for the DA transporter with a 5-HT/DA transporter selectivity ratio of >50.  相似文献   

16.
The present study was undertaken to examine the effects of the anionic glycolipids GM1 ganglioside and sulfatide on the high-affinity dopamine (DA) uptake in rat striatal synaptosomes.After 1h of incubation, GM1 stably bound to synaptosomes and modified the activity of the neuronal dopamine transporter (DAT). With 1.2 and 12 microM GM1, V(max) decreased by 13 and 23%, respectively, reflecting a slight reduction of the number of functional uptake sites and K(m) was lowered by 21 and 33%, thus showing an increase of the affinity. Treatment of synaptosomes with 1.2 microM of sulfatide, which possesses an anionic sulfated group, led to a similar decrease of V(max) (19%) than GM1, but to a significantly higher reduction of K(m) (35%). In fact, sulfatide associated to synaptosomes in a 3.5-fold higher extent than GM1. Conversely, when GM1 and sulfatide were replaced by GM1 alcohol and galactosylceramide, respectively, no modification of the DA uptake occurred, although these neutral glycolipids incorporated into the synaptosomes to the same extent as the related anionic compounds.Altogether, these results demonstrate the key role of negative charges linked to the oligosaccharide chains of glycolipids in the modulation of DA transport across the synaptosomal membrane.  相似文献   

17.
Neurotensin: dual roles in psychostimulant and antipsychotic drug responses   总被引:3,自引:0,他引:3  
Central administration of neurotensin (NT) results in a variety of neurobehavioral effects which, depending upon the administration site, resemble the effects of antipsychotic drugs (APDs) and psychostimulants. All clinically effective APDs exhibit significant affinities for dopamine D(2) receptors, supporting the hypothesis that an increase in dopaminergic tone contributes to schizophrenic symptoms. Psychostimulants increase extracellular dopamine (DA) levels and chronics administration can produce psychotic symptoms over time. APDs and psychostimulants induce Fos and NT expression in distinct striatal subregions, suggesting that changes in gene expression underlie some of their effects. To gain insight into the functions of NT, we analyzed APD and psychostimulant induction of Fos in NT knockout mice and rats pretreated with the NT antagonist SR 48692. In both NT knockout mice and rats pretreated with SR 48692, haloperidol-induced Fos expression was markedly attenuated in the dorsolateral striatum; amphetamine-induced Fos expression was reduced in the medial striatum. These results indicate that NT is required for the activation of specific subpopulations of striatal neurons in distinct striatal subregions in response to both APDs and psychostimulants. This review integrates these new findings with previous evidence implicating NT in both APD and psychostimulant responses.  相似文献   

18.
E Eriksson 《Life sciences》1990,47(23):2111-2117
The effects of amperozide (a diphenylbutylpiperazinecarboxamide derivative) on the uptake and release of 3H-dopamine in vitro were investigated. Amperozide inhibited the amphetamine-stimulated release of dopamine from perfused rat striatal tissue in a dose-dependent manner. With 1 and 10 microM amperozide there was significant inhibition of the amphetamine-stimulated release of dopamine, to 44 and 36% of control. In contrast, 10 microM amperozide significantly strengthened the electrically stimulated release of dopamine from perfused striatal slices. Amperozide 1-10 microM had no significant effect on the potassium-stimulated release of dopamine. 10 microM amperozide also slightly increased the basal release of 3H-dopamine from perfused striatal tissue. These effects on various types of release are similar to those reported for uptake inhibitors (Bowyer et al, 1984). The uptake of dopamine in striatal tissue was inhibited by amperozide with IC50 values of 18 microM for uptake in chopped tissue and 1.0 microM for uptake in synaptosomes. Amperozide also inhibited the uptake of serotonin in synaptosomes from frontal cortex, IC50 = 0.32 microM and the uptake of noradrenaline in cortical synaptosomes, IC50 = 0.78 microM. In conclusion, amperozide shows uptake-inhibiting properties in both release and uptake studies done in vitro on the rat. In the in vivo studies, however, amperozide differs from dopamine uptake inhibitors.  相似文献   

19.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 30 mg/kg i.p. daily for 7 days, was administered to mice. This dosage regimen resulted in an approximately 50% reduction of striatal dopamine (DA) level. Chronic administration of GM1 ganglioside (II3NeuAc-GgOse Cer), beginning between 1 to 4 days after terminating MPTP dosing, resulted in partial restoration of the striatal DA level. From dose- and time-response studies, it appeared that 30 mg/kg i.p. of GM1 administered daily for approximately 23 days resulted in an approximately 80% restoration of the DA level and complete restoration of the 3,4-dihydroxyphenylacetic acid (DOPAC) content. This dosage of GM1 also restored the turnover rate of DA in the striatum to near normal. Discontinuing GM1 treatment resulted in a fall of DA and DOPAC levels to values found in mice treated with MPTP alone. There was no evidence for regeneration of nerve terminal amine reuptake in the GM1-treated mice as evaluated by DA uptake into synaptosomes. Our biochemical findings in animals suggest that early GM1 ganglioside treatment of individuals with degenerative diseases of dopaminergic nigrostriatal neurons might be fruitful.  相似文献   

20.
A number of studies have found that the chronic administration of nicotine causes an increase in the density of nicotinic binding sites in the brain, but it is not known whether these additional binding sites are functionally active receptors. In this study, the effects of 1-week administration of the potent nicotinic agonist, (+)-anatoxin-a (96 nmol/day via osmotic minipumps), was assessed on [3H]nicotine binding and [3H]dopamine uptake and release in rat striatal synaptosomes. Chronic (+)-anatoxin-a treatment resulted in a 32% increase in the Bmax of [3H]nicotine binding in anatoxin-treated animals compared to control. There was a 43% increase in the activity of 3 microM nicotine to release [3H]dopamine from synaptosomes of anatoxin-treated animals, but the release induced by 20 mM K+ depolarization was unaffected. There was no effect of chronic (+)-anatoxin-a treatment on the uptake of [3H]dopamine. A strong positive correlation (r = 0.64) was found between the density of [3H]nicotine binding sites and the nicotine-induced stimulation of [3H]dopamine release in individual animals. These results indicate that (+)-anatoxin-a, like nicotine, produces an up-regulation of nicotine binding sites following chronic administration, and that these additional sites are functional receptors capable of mediating the release of dopamine from striatal synaptosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号