首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weaponry in ungulates may be costly to grow and maintain, and different selective pressures in males and females may lead to sex‐biased natural survival. Sexual differences in the relationship between weapon growth and survival may increase under anthropogenic selection through culling, for example because of trophy hunting. Selection on weaponry growth under different scenarios has been largely investigated in males of highly dimorphic ungulates, for which survival costs (either natural or hunting related) are thought to be greatest. Little is known, however, about the survival costs of weaponry in males and females of weakly dimorphic species. We collected information on horn length and age at death/shooting of 407 chamois Rupicapra rupicapra in a protected population and in two hunted populations with different hunting regimes, to explore sexual differences in the selection on early horn growth under contrasting selective pressures. We also investigated the variation of horn growth and body mass in yearling males (= 688) and females (= 539) culled in one of the hunted populations over 14 years. The relationship between horn growth and survival showed remarkable sexual differences under different evolutionary scenarios. Within the protected population, under natural selection, we found no significant trade‐off in either males or females. Under anthropogenic pressure, selection on early horn growth of culled individuals showed diametrically opposed sex‐biased patterns, depending on the culling regime and hunters’ preferences. Despite the selective bias between males and females in one of the hunted populations, we did not detect significant sex‐specific differences in the long‐term pattern of early growth. The relationship between early horn growth and natural survival in either sex might suggest stabilizing selection on horn size in chamois. Selection through culling can be strongly sex‐biased also in weakly dimorphic species, depending on hunters’ preferences and hunting regulations, and long‐term data are needed to reveal potential undesirable evolutionary consequences.  相似文献   

2.
While all models of sexual selection assume that the development and expression of enlarged secondary sexual traits are costly, males with larger ornaments or weapons generally show greater survival or longevity. These studies have mostly been performed in species with high sexual size dimorphism, subject to intense sexual selection. Here, we examined the relationships between horn growth and several survival metrics in the weakly dimorphic Pyrenean chamois (Rupicapra pyrenaica). In this unhunted population living at high density, males and females were able to grow long horns without any apparent costs in terms of longevity. However, we found a negative relationship between horn growth and survival during prime age in males. This association reduces the potential evolutionary consequences of trophy hunting in male chamois. We also found that females with long horns tended to have lower survival at old ages. Our results illustrate the contrasting conclusions that may be drawn when different survival metrics are used in analyses. The ability to detect trade‐off between the expression of male secondary sexual traits and survival may depend more on environmental conditions experienced by the population than on the strength of sexual selection.  相似文献   

3.
The expression of sexually selected traits in highly dimorphic ungulates may be influenced by environmental quality. Variations in habitat conditions can impose different constraints on the allocation of energy resources to male life‐history traits, and possibly alter the female preferences for specific features. Here, we compared the horn growth patterns in male European mouflon Ovis aries musimon living in different habitats (Mediterranean vs. continental) but sharing a common genetic origin. We hypothesized that the expression of sexually selected traits such as horn development should be promoted in more favorable habitat conditions (i.e., Mediterranean). Using linear mixed models on data retrieved from individuals harvested under the same hunting regime, we found longer horns and greater individual variance in horn segment length in the Mediterranean population than in the continental one. Furthermore, Mediterranean rams showed no evidence of compensatory horn growth, as opposed to the continental rams. Unexpectedly, horn base circumference was greater in the continental habitat than in the Mediterranean one. The overall results suggest different patterns of investment in horns in the two populations, with seemingly stronger pressure and consequences of sexual selection on mouflon rams living in more favorable environments. Although the role of hunters' selectivity cannot be excluded a priori, our data suggest that the differences in the expression of sexually selected traits in our study populations may be influenced by environmental conditions. Because sexual selection can impose substantial fitness costs on individuals, further investigations on the trade‐offs between reproduction and survival would improve our understanding of the dynamics of mouflon populations living in different environmental conditions.  相似文献   

4.
ABSTRACT In ungulates, big males with large weapons typically outcompete other males over access to estrous females. In many species, rapid early growth leads to large adult mass and weapon size. We compared males in one hunted and one protected population of Alpine chamois (Rupicapra rupicapra) to examine the relationship between horn length and body mass. We assessed whether early development and hunter selectivity affected age-specific patterns of body and horn size and whether sport hunting could be an artificial selection pressure favoring smaller horns. Adult horn length was mostly independent of body mass. For adult males, the coefficient of variation of horn length (0.06) was <50% of that for body mass (0.16), suggesting that horn length presents a lower potential for selection and may be less important for male mating success than is body mass. Surprisingly, early development did not affect adult mass because of apparent compensatory growth. We found few differences in body and horn size between hunted and protected populations, suggesting the absence of strong effects of hunting on male phenotype. If horn length has a limited role in male reproductive success, hunter selectivity for males with longer horns is unlikely to lead to an artificial selective pressure on horn size. These results imply that the potential evolutionary effects of selective hunting depend on how the characteristics selected by hunters affect individual reproductive success.  相似文献   

5.
6.
Wildlife agencies typically attempt to manage carnivore numbers in localized game management units through hunting, and do not always consider the potential influences of immigration and emigration on the outcome of those hunting practices. However, such a closed population structure may not be an appropriate model for management of carnivore populations where immigration and emigration are important population parameters. The closed population hypothesis predicts that high hunting mortality will reduce numbers and densities of carnivores and that low hunting mortality will increase numbers and densities. By contrast, the open population hypothesis predicts that high hunting mortality may not reduce carnivore densities because of compensatory immigration, and low hunting mortality may not result in more carnivores because of compensatory emigration. Previous research supported the open population hypothesis with high immigration rates in a heavily hunted (hunting mortality rate=0.24) cougar population in northern Washington. We test the open population hypothesis and high emigration rates in a lightly hunted (hunting mortality rate=0.11) cougar population in central Washington by monitoring demography from 2002 to 2007. We used a dual sex survival/fecundity Leslie matrix to estimate closed population growth and annual census counts to estimate open population growth. The observed open population growth rate of 0.98 was lower than the closed survival/fecundity growth rates of 1.13 (deterministic) and 1.10 (stochastic), and suggests a 12–15% annual emigration rate. Our data support the open population hypothesis for lightly hunted populations of carnivores. Low hunting mortality did not result in increased numbers and densities of cougars, as commonly believed because of compensatory emigration.  相似文献   

7.
Compensatory growth is an organism's reaction to buffer deviations from targeted trajectories. We explored the compensatory patterns of juvenile brown trout under field and laboratory conditions. Divergence of size and condition trajectories was induced by manipulating food levels in the laboratory and then releasing the trout into a river. In the stream, the length trajectories of food-restricted and control fish were parallel, but food-restricted fish exhibited partial compensation for mass and rapid recovery of condition. A laboratory experiment on similar sized fish did not provide evidence for compensatory growth in length or mass. In contrast, data matched the compensatory patterns shown in the stream: length trajectories were parallel and the convergence of mass trajectories ceased as soon as food-restricted fish recovered condition to the level of controls. These results show that (i) brown trout did not compensate for depression in structural growth and (ii) mass recovery was targeted to reinstate condition or energy reserves, but not size at a given age. This does not support the common view that compensatory growth can be a general response to growth depression. Rather, compensation in other salmonids could be related to size thresholds associated with developmental switches at the onset of sexual maturation and migration.  相似文献   

8.
The development of male secondary sexual characters such as antlers or horns has substantial biological and socio‐economic importance because in many species these traits affect male fitness positively through sexual selection and negatively through trophy hunting. Both environmental conditions and selective hunting can affect horn growth but their relative importance remains unexplored. We first examined how a large‐scale climate index, the Pacific Decadal Oscillation (PDO), local weather and population density influenced both absolute and relative annual horn growth from birth to three years of male bighorn sheep Ovis canadensis over 42 years. We then examined the relative influence of environmental conditions and evolution mainly driven by trophy hunting on male horn length at three years of age. Horn growth was positively influenced by low population density and warm spring temperature, suggesting that ongoing climate change should lead to larger horns. Seasonal values of PDO were highly correlated. Horn growth increased with PDO in spring or summer at low density, but was weak at high density regardless of PDO. The interaction between population density and PDO in spring or summer accounted for a similar proportion of the observed annual variation in horn growth (32% or 37%) as did the additive effects of spring temperature and density (34%). When environmental conditions deteriorated, males allocated relatively more resources to summer mass gain than to horn growth, suggesting a conservative strategy favoring maintenance of condition over allocation to secondary sexual characters. Population density explained 27% of the variation in horn length, while evolutionary effects explained 9% of the variance. Thus, our study underlines the importance of both evolution and phenotypic plasticity on the development of a secondary sexual trait.  相似文献   

9.
Uptake and use of energy are of key importance for animals living in temperate environments that undergo strong seasonal changes in forage quality and quantity. In ungulates, energy intake strongly affects body mass gain, an important component of individual fitness. Energy allocation among life‐history traits can be affected by internal and external factors. Here, we investigate large‐scale variation in body growth patterns of Alpine chamois Rupicapra rupicapra rupicapra, in relation to sex, age, temperature, and habitat variations across 31 (sub)populations in the Central European Alps. Taking advantage of an exceptionally large dataset (n = 178,175) of chamois hunted over 27 consecutive years between 1993 and 2019 in mountain ranges with different proportions of forest cover, we found that (i) patterns of body mass growth differ between mountain ranges, with lower body mass but faster mass growth with increasing proportion of forest cover and that (ii) the effect of spring and summer temperatures on changes in body growth patterns are larger in mountain ranges with lower forest cover compared to mountain ranges with higher forest cover. Our results show that patterns of body mass growth within a species are more plastic than expected and depend on environmental and climatic conditions. The recent decline in body mass observed in Alpine chamois populations may have greater impacts on populations living above the treeline than in forests, which may buffer against the effects of increasing temperatures on life‐history traits.  相似文献   

10.
Ecological factors such as environmental and climatic conditions affect the growth of ornaments in ungulates. Studies about their influence can reveal key information on individual life histories and detect the events that can have important evolutionary consequences. Among the ecological factors commonly thought to play a role in such ecological processes, researches have so far neglected the possible influence of the geological feature which may either promote or restrain the early investment in horn growth. This study takes into consideration a broad range of ecological factors that are expected to affect horn growth and analyses how the substrate (calcareous versus siliceous) could modify the horn size in 1,685 yearling Alpine chamois (Rupicapra rupicapra) which were legally shot during 5 consecutive years in Central-Eastern Italian Alps. Interestingly, we found shorter horns in chamois shot on siliceous than on calcareous substrate, irrespective of the sex, showing how the substrate (and related ecological conditions) may affect horn growth. The substrate interacted with two ecological factors in shaping the horn size, i.e. aspect and snow cover. Differences between horn lengths recorded for chamois shot on these two substrates were less pronounced where South-facing slopes prevailed. During an average winter (about 100 days with more than 10 cm of snow on the ground) chamois horns were longer in individuals using calcareous areas, although the increase of number of days with more than 10 cm of snow on the ground had a stronger impact in reducing horn length in calcareous environment. We demonstrated that substrate, and related ecological conditions, influence horn growth. In ungulate species where ornament size is related to reproductive success, environmental factors, such as geological feature, can thus cause evolutionary consequences in the expression of ornaments and individual fitness.  相似文献   

11.
In sexually dimorphic ungulates, sexual selection favoring rapid horn growth in males may be counterbalanced by a decrease in longevity if horns are costly to produce and maintain. Alternatively, if early horn growth varied with individual quality, it may be positively correlated with longevity. We studied Alpine ibex Capra ibex in the Gran Paradiso National Park, Italy, to test these alternatives by comparing early horn growth and longevity of 383 males that died from natural causes. After accounting for age at death, total horn length after age 5 was positively correlated with horn growth from two to four years. Individuals with the fastest horn growth as young adults also had the longest horns later in life. Annual horn growth increments between two and six years of age were independent of longevity for ibex whose age at death ranged from 8 to 16 years. Our results suggest that growing long horns does not constrain longevity. Of the variability in horn length, 22% could be explained by individual heterogeneity, suggesting persistent differences in phenotypic quality among males. Research on unhunted populations of sexually dimorphic ungulates documents how natural mortality varies according to horn or antler size, and can help reduce the impact of sport hunting on natural processes.  相似文献   

12.
1.?Environmental conditions during early development can affect the growth patterns of vertebrates, influencing future survival and reproduction. In long-lived mammals, females that experience poor environmental conditions early in life may delay primiparity. In female bovids, annual horn growth increments may provide a record of age-specific reproduction and body growth. Horn length, however, may also be a criterion used by hunters in selecting animals to harvest, possibly leading to artificial selection. 2.?We studied three populations of chamois (Rupicapra rupicapra) in the western Alps to explore the relationships between female horn length and early growth, age of primiparity and age-specific reproduction. We also compared the risk of harvest to reproductive status and horn length. 3.?Early horn growth was positively correlated with body mass in pre-reproductive females and with reproduction in very young and senescent adults. Females with strong early horn growth attained primiparity at an earlier age than those with weak early growth. Horn length did not affect hunter selection, but we found a strong hunter preference for nonlactating females. 4.?Our research highlights the persistent effects of early development on reproductive performance in mammals. Moderate sport harvests are unlikely to affect the evolution of phenotypic traits and reproductive strategies in female chamois. A policy of penalizing hunters that harvest lactating females, however, may increase the harvest of 2-year-old females, which have high reproductive potential.  相似文献   

13.
In polygynous mating systems, reproductive skew depends on the ability of males to monopolize females, which in turn may promote the development of contrasting traits in the two sexes. Although dominant individuals normally enjoy a higher reproductive success (RS) than subordinates, the use of genetic markers has shown that behavioural observations of male mating success may not provide reliable clues of RS. We report the preliminary results of the first DNA‐based paternity analysis on the Northern chamois (Rupicapra rupicapra), a scarcely dimorphic mountain ungulate described as highly polygynous, in relation to mating tactic and age. Because of sampling difficulties, the success in parentage assignment was low, and the interpretation of results requires caution. Territorial males had a greater RS than nonterritorial ones but they were unable to monopolize mating events. Age had a weak effect on paternity outcome but only males ≥ 6 years showed siring success. Although future studies are needed to assess the opportunity for sexual selection in male chamois, the concurrence of limited sexual size dimorphism, compensatory growth, unbiased sex‐specific survival, RS of alternative mating tactics and, possibly, long breeding tenure, may hint at the adoption of a conservative mating strategy in this species.  相似文献   

14.
Males may allocate a greater proportion of metabolic resourcesto maintenance than to the development of secondary sexual characterswhen food is scarce, to avoid compromising their probabilityof survival. We assessed the effects of resource availabilityon body mass and horn growth of bighorn rams (Ovis canadensis)at Ram Mountain, Alberta, Canada over 30 years. The number ofadult ewes in the population tripled during our study, and theaverage mass of yearling females decreased by 13%. We used theaverage mass of yearling females as an index of resource availability.Yearling female mass was negatively correlated with the bodymass of rams of all ages, but it affected horn growth only duringthe first three years of life. Yearly horn growth was affectedby a complex interaction of age, body mass, and resource availability.Among rams aged 2–4 years, the heaviest individuals hadsimilar horn growth at high and at low resource availability,but as ram mass decreased, horn growth for a given body massbecame progressively smaller with decreasing resource availability.For rams aged 5–9 years, horn growth was weakly but positivelycorrelated with body mass, and rams grew slightly more hornfor a given body mass as resource availability decreased. Whenfood is limited, young rams may direct more resources to bodygrowth than to horn growth, possibly trading long-term reproductivesuccess for short-term survival. Although horn growth of olderrams appeared to be greater at low than at high resource availability,we found no correlation between early and late growth in hornlength for the same ram, suggesting that compensatory horn growthdoes not occur in our study population. Young rams with longerhorns were more likely to be shot by sport hunters than thosewith shorter horns. Trophy hunting could select against ramswith fast-growing horns.  相似文献   

15.
Teeth in Cervidae are permanent structures that are not replaceable or repairable; consequently their rate of wear, due to the grinding effect of food and dental attrition, affects their duration and can determine an animal''s lifespan. Tooth wear is also a useful indicator of accumulative life energy investment in intake and mastication and their interactions with diet. Little is known regarding how natural and sexual selection operate on dental structures within a species in contrasting environments and how these relate to life history traits to explain differences in population rates of tooth wear and longevity. We hypothesised that populations under harsh environmental conditions should be selected for more hypsodont teeth while sexual selection may maintain similar sex differences within different populations. We investigated the patterns of tooth wear in males and females of Iberian red deer (Cervus elaphus hispanicus) in Southern Spain and Scottish red deer (C. e. scoticus) across Scotland, that occur in very different environments, using 10343 samples from legal hunting activities. We found higher rates of both incisor and molar wear in the Spanish compared to Scottish populations. However, Scottish red deer had larger incisors at emergence than Iberian red deer, whilst molars emerged at a similar size in both populations and sexes. Iberian and Scottish males had earlier tooth depletion than females, in support of a similar sexual selection process in both populations. However, whilst average lifespan for Iberian males was 4 years shorter than that for Iberian females and Scottish males, Scottish males only showed a reduction of 1 year in average lifespan with respect to Scottish females. More worn molars were associated with larger mandibles in both populations, suggesting that higher intake and/or greater investment in food comminution may have favoured increased body growth, before later loss of tooth efficiency due to severe wear. These results illustrate how independent selection in both subspecies, that diverged 11,700 years BP, has resulted in the evolution of different longevity, although sexual selection has maintained a similar pattern of relative sex differences in tooth depletion. This study opens interesting questions on optimal allocation in life history trade-offs and the independent evolution of allopatric populations.  相似文献   

16.
How alternative reproductive tactics (ARTs) are maintained in wildlife populations is one of the major questions in evolutionary biology. As a dominant status, territoriality is typically linked to increased mating opportunities, and one explanation why this behaviour coexists with other tactics is that dominance implies survival costs. Such a trade-off may occur in the Northern chamois Rupicapra rupicapra, as reproductive advantages of territorial males over non-territorial males could be counterbalanced by a reduction in survival mediated through energy expenditure, stress and parasitic infections, ultimately favouring ART coexistence. Here, we analysed age-dependent survival probabilities of territorial (n = 15) and non-territorial (n = 16) adult chamois using information collected over 12 years between 2010 and 2021 in the Gran Paradiso National Park (Western Italian Alps). Survival rates were estimated with a CMR approach using Burnham's joint modelling of live encounter and dead recovery data. The model selection procedure, based on AICc value minimisation, supported a linear decrease of survival with age but the results did not match our predictions, as territorial chamois did not have lower survival rates than non-territorial chamois. In contrast, territorial males appeared to enjoy reproductive success at lower survival costs. This, in turn, supports the role of other factors, such as snow-dependent environmental stochasticity, in the maintenance of ARTs in chamois populations. The limited sample size, however, calls for caution in interpretation, and long-term studies of lifetime reproductive success and survival are necessary to clarify the mechanisms underlying the expression and coexistence of different reproductive behaviours in this species.  相似文献   

17.
Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world’s largest lizard the Komodo dragon (Varanus komodoensis). The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture study at ten sites on four islands in eastern Indonesia, from 2002 to 2010. Generalized Additive Mixed Models (GAMMs) and information-theoretic methods were used to examine how growth rates varied with size, age and sex, and across and within islands in relation to site-specific prey availability, lizard population density and inbreeding coefficients. Growth trajectories differed significantly with size and between sexes, indicating different energy allocation tactics and overall costs associated with reproduction. This leads to disparities in maximum body sizes and longevity. Spatial variation in growth was strongly supported by a curvilinear density-dependent growth model with highest growth rates occurring at intermediate population densities. Sex-specific trade-offs in growth underpin key differences in Komodo dragon life-history including evidence for high costs of reproduction in females. Further, inverse density-dependent growth may have profound effects on individual and population level processes that influence the demography of this species.  相似文献   

18.
We explored sex-biased mortality patterns in a species showing the most extreme sexual dimorphism among birds, the great bustard Otis tarda . Between 1991 and 2005 we studied juvenile and immature survival in a sample of 361 great bustards radio-tagged at two different populations in Spain, Villafáfila and Madrid. Mortality decreased with age, from high rates during the first year (0.70), to 0.10 in the second year. Using the known-fate model in program MARK we found that monthly survival increased throughout the first year. Offspring showing higher body mass at marking, i.e. those hatched earlier in the season and those with better body condition, survived in higher proportion. This was probably related to the earlier breeding dates of more experienced mothers, as well as to the observed decrease in food availability as the season progresses. Monthly survival estimates were higher in females than in males, which suggests that juvenile males are more vulnerable to reduced food availability and other factors due to their much faster growth rates. The proportion of non-natural deaths increased with age, and was higher in the Madrid population, where illegal hunting and collision with powerlines showed a high incidence. The male-biased mortality found in young birds in this study explains the female-biased population sex ratios observed in great bustard populations. The different degrees of incidence of human-induced causes of mortality found between both populations studied suggest that such differences may contribute to the variation observed in the adult sex ratio among populations.  相似文献   

19.
Organisms normally grow at a sub-maximal rate. After experiencing a period of arrested growth, individuals often show compensatory growth responses by modifying their life-history, behaviour and physiology. However, the strength of compensatory responses may vary across broad geographic scales as populations differ in their exposition to varying time constraints. We examined differences in compensatory growth strategies in common frog (Rana temporaria) populations from southern and northern Sweden. Tadpoles from four populations were reared in the laboratory and exposed to low temperature to evaluate the patterns and mechanisms of compensatory growth responses. We determined tadpoles’ growth rate, food intake and growth efficiency during the compensation period. In the absence of arrested growth conditions, tadpoles from all the populations showed similar (size-corrected) growth rates, food intake and growth efficiency. After being exposed to low temperature for 1 week, only larvae from the northern populations increased growth rates by increasing both food intake and growth efficiency. These geographic differences in compensatory growth mechanisms suggest that the strategies for recovering after a period of growth deprivation may depend on the strength of time constraints faced by the populations. Due to the costs of fast growth, only populations exposed to the strong time constraints are prone to develop fast recovering strategies in order to metamorphose before conditions deteriorate. Understanding how organisms balance the cost and benefits of growth strategies may help in forecasting the impact of fluctuating environmental conditions on life-history strategies of populations likely to be exposed to increasing environmental variation in the future.  相似文献   

20.
Different structures may compete during development for a shared and limited pool of resources to sustain growth and differentiation. The resulting resource allocation trade-offs have the potential to alter both ontogenetic outcomes and evolutionary trajectories. However, little is known about the evolutionary causes and consequences of resource allocation trade-offs in natural populations. Here, we explore the significance of resource allocation trade-offs between primary and secondary sexual traits in shaping early morphological divergences between four recently separated populations of the horned beetle Onthophagus taurus as well as macroevolutionary divergence patterns across 10 Onthophagus species. We show that resource allocation trade-offs leave a strong signature in morphological divergence patterns both within and between species. Furthermore, our results suggest that genital divergence may, under certain circumstances, occur as a byproduct of evolutionary changes in secondary sexual traits. Given the importance of copulatory organ morphology for reproductive isolation our findings begin to raise the possibility that secondary sexual trait evolution may promote speciation as a byproduct. We discuss the implications of our results on the causes and consequences of resource allocation trade-offs in insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号