首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Casuarinin is a naturally occurring tannin that is isolated from the leaves of Hippophae rhamnoides. It has been shown to have anti-oxidant, anti-cancer, anti-viral, and anti-inflammatory activities. The aim of this study was to investigate the possible mechanism by which casuarinin inhibits TNF-α/IFN-γ-induced Th2 chemokines expression in the human keratinocytes cell line HaCaT. We found that casuarinin suppressed TNF-α/IFN-γ-induced expression of TARC and MDC mRNA and protein in HaCaT cells. Casuarinin significantly inhibited TNF-α/IFN-γ-induced activation of NF-κB, STAT1, and p38 MAPK. Furthermore, we observed that p38 MAPK contributes to inhibition of TNF-α/IFN-γ-induced TARC and MDC production by blocking NF-κB and STAT1 activation in HaCaT cells. Taken together, these results suggest that casuarinin may exert anti-inflammatory responses by suppressing TNF-α/IFN-γ-induced expression of TARC and MDC via blockage of p38 MAPK activation and subsequent activation of NF-κB and STAT1. We propose that it could therefore be used as a therapeutic agent against inflammatory skin diseases.  相似文献   

2.
Autophagy is a lysosomal degradation pathway that is essential for survival, differentiation, development and homeostasis. There is growing evidence that impaired autophagy leads to the pathogenesis of diverse diseases. However, the role of autophagy in intestinal epithelium is not clearly understood, although previous studies have pointed out the possibility for the relationships of autophagy with bowel inflammation. In this study, we investigated the involvement of autophagy in intestinal epithelium with inflammatory responses. We generated the mice with a conditional deletion of Atg7, which is one of the autophagy regulated gene, in intestinal epithelium. In Atg7-deficient small intestinal epithelium, LPS-induced production of TNF-α and IL-1β mRNA was enhanced in comparison to the control small intestinal tissues. In addition, the degree of LPS-induced activation of NF-κB was promoted in Atg7-deficient intestinal epithelium. These results demonstrate that autophagy can attenuate endotoxin-induced inflammatory responses in intestinal epithelium resulting in the maintenance of intestinal homeostasis.  相似文献   

3.
4.
Keratinocytes, one of major cell types in the skin, can be induced by TNF-α and IFN-γ to express thymus- and activation-regulated chemokine (TARC/CCL17), which is considered to be a pivotal mediator in the inflammatory responses during the development of inflammatory skin diseases, such as atopic dermatitis (AD). In this study, we examined the effect of 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG), isolated from the barks of Juglans mandshurica, on TNF-α/IFN-γ induced CCL17 expression in the human keratinocyte cell line HaCaT. Pretreatment of HaCaT cells with PGG suppressed TNF-α/IFN-γ-induced protein and mRNA expression of CCL17. PGG significantly inhibited TNF-α/IFN-γ-induced NF-κB activation as well as STAT1 activation. Furthermore, pretreatment with PGG resulted in significant reduction in expression of CXCL9, 10, and 11 in the HaCaT cells treated with IFN-γ. These results suggest that PGG may exert anti-inflammatory responses by suppressing TNF-α and/or IFN-γ-induced activation of NF-κB and STAT1 in the keratinocytes and might be a useful tool in therapy of skin inflammatory diseases.  相似文献   

5.
Lipopolysaccharide (LPS) is the major structural component of Gram-negative bacteria cell wall and a highly pro-inflammatory toxin. Naringenin is found in Citrus fruits and exhibits antioxidant and anti-inflammatory properties through inhibition of NF-κB activation but its effects in LPS-induced inflammatory pain and leukocyte recruitment were not investigated yet. We investigated the effects of naringenin in mechanical hyperalgesia, thermal hyperalgesia and leukocyte recruitment induced by intraplantar injection of LPS in mice. We found that naringenin reduced hyperalgesia to mechanical and thermal stimuli, myeloperoxidase (MPO, a neutrophil and macrophage marker) and N-acetyl-β-D-glucosaminidase (NAG, a macrophage marker) activities, oxidative stress and cytokine (TNF-α, IL-1β, IL-6, and IL-12) production in the paw skin. In the peritoneal cavity, naringenin reduced neutrophil and mononuclear cell recruitment, and abrogated MPO and NAG activity, cytokine and superoxide anion production, and lipid peroxidation. In vitro, pre-treatment with naringenin inhibited superoxide anion and cytokine (TNF-α, IL-1β, IL-6, and IL-12) production by LPS-stimulated RAW 264.7 macrophages. Finally, we demonstrated that naringenin inhibited NF-κB activation in vitro and in vivo. Therefore, naringenin is a promising compound to treat LPS-induced inflammatory pain and leukocyte recruitment.  相似文献   

6.
Hippophae rhamnoides has been extensively used in oriental traditional medicines for treatment of asthma, skin diseases, gastric ulcers, and lung disorders. In this study, we isolated casuarinin from the leaves of H.rhamnoides and examined the effect of casuarinin on the TNF-α-induced ICAM-1 expression in a human keratinocytes cell line HaCaT. Pretreatment with casuarinin inhibited TNF-α-induced protein and mRNA expression of ICAM-1 and subsequent monocyte adhesiveness in HaCaT cells. Casuarinin significantly inhibited TNF-α-induced NF-κB activation. In addition, casuarinin inhibited activation of ERK and p38 MAPK in a dose-dependent manner. Furthermore, pretreatment with casuarinin decreased TNF-α-induced pro-inflammatory mediators, such as IL-1β, IL-6, IL-8, and MCP-1. These results demonstrated that casuarinin exerts its anti-inflammatory activity by suppressing TNF-α-induced expression of ICAM-1 and pro-inflammatory cytokines/chemokines via blockage of activation of NF-κB and ERK/p38 MAPK and can be used as a therapeutic agent against inflammatory skin diseases.  相似文献   

7.
The GRB2 associated binder 1 (GAB1) is an essential docking/adaptor protein for transmitting intracellular signals of the MET tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). We found that in response to hours of HGF/SF treatment, the GAB1 protein level is degraded by a mechanism involving MET activity and the proteasomal machinery. We also showed that GAB1 is both multi- and poly-ubiquitinated in a CBL-dependent manner. A long term exposure to HGF/SF caused a more sustained down-regulation of GAB1 than of MET, associated with a loss of reactivation of the ERK MAP kinases to subsequent acute ligand treatment. These data demonstrate that GAB1 is ubiquitinated by CBL and degraded by the proteasome, and plays a role in negative-feedback regulation of HGF/SF–MET signaling.  相似文献   

8.
1α,25-dihydroxyvitamin D(3) (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human na?ve B cells. Na?ve B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human na?ve B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in na?ve B cells, namely by reducing CD40 signaling.  相似文献   

9.
10.

Background

Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases.

Methods

Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE−/−) mice fed BGA.

Results

When macrophages pretreated with 100 μg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1β in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE−/− fed an atherogenic diet containing 5% NO or SP for 12 weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1β and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels.

Conclusion

NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition.

General significance

This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation.  相似文献   

11.
12.
Zhu C  Xiong Z  Chen X  Peng F  Hu X  Chen Y  Wang Q 《PloS one》2012,7(4):e35125
Microglial activation plays an important role in neuroinflammation, which contributes to neuronal damage, and inhibition of microglial activation may have therapeutic benefits that could alleviate the progression of neurodegeneration. Recent studies have indicated that the antimalarial agent artemisinin has the ability to inhibit NF-κB activation. In this study, the inhibitory effects of artemisinin on the production of proinflammatory mediators were investigated in lipopolysaccharide (LPS)-stimulated primary microglia. Our results show that artemisinin significantly inhibited LPS-induced production of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1) and nitric oxide (NO). Artemisinin significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) and increased the protein levels of IκB-α, which forms a cytoplasmic inactive complex with the p65-p50 heterodimeric complex. Artemisinin treatment significantly inhibited basal and LPS-induced migration of BV-2 microglia. Electrophoretic mobility shift assays revealed increased NF-κB binding activity in LPS-stimulated primary microglia, and this increase could be prevented by artemisinin. The inhibitory effects of artemisinin on LPS-stimulated microglia were blocked after IκB-α was silenced with IκB-α siRNA. Our results suggest that artemisinin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The data provide direct evidence of the potential application of artemisinin for the treatment of neuroinflammatory diseases.  相似文献   

13.
14.
Vascular endothelial growth inhibitor (VEGI) is an endogenous inhibitor of endothelial cell growth and a promising candidate for cancer therapy. VEGI is able to inhibit tumor growth by specifically targeting the tumor neovasculature. Increasing the anti-angiogenic potential of this cytokine is of great interest for its therapeutic potential. NF-κB is known to have an integral role in TNF superfamily signaling, acting as a pro-survival factor. A role of VEGI-induced NF-κB activation in endothelial cells has yet to be described. Here we show that suppression of the NF-κB pathway can increase the apoptotic potential of VEGI. We used siRNA to deplete NF-κB or its activator IKK2 from adult bovine aortic endothelial cells. The siRNA treatments diminished VEGI-induced NF-κB activation, evidenced from a reduced extent of NF-κB nuclear translocation and diminished expression of NF-κB-target genes such as interleukins-6 and -1β. The siRNA-treated endothelial cells when exposed to VEGI exhibited a marked decrease in cell viability and a significant increase in apoptosis. These results confirm that VEGI utilizes NF-κB as a pro-survival role factor in endothelial cells. We then examined whether a combination of VEGI with NF-κB inhibitors would constitute a more potential therapeutic regiment. We found that in the presence of the NF-κB inhibitors curcumin or BMS-345541 there was a marked increase in the apoptotic potential of VEGI on endothelial cells. These findings indicate that a combination therapy using VEGI and NF-κB inhibitors could be a potent approach for cancer treatment.  相似文献   

15.
16.

Objectives

To identify the protective effect of DJ-1 protein against oxidative stress-induced HepG2 cell death, we used cell-permeable wild type (WT) and a mutant (C106A Tat-DJ-1) protein.

Results

By using western blotting and fluorescence microscopy, we observed WT and C106A Tat-DJ-1 proteins were efficiently transduced into HepG2 cells. Transduced WT Tat-DJ-1 proteins increased cell survival and protected against DNA fragmentation and intracellular ROS generation levels in H2O2-exposed HepG2 cells. At the same time, transduced WT Tat-DJ-1 protein significantly inhibited NF-κB and MAPK (JNK and p38) activation as well as regulated the Bcl-2 and Bax expression levels. However, C106A Tat-DJ-1 protein did not show any protective effect against cell death responses in H2O2-exposed HepG2 cells.

Conclusions

Oxidative stress-induced HepG2 cell death was significantly reduced by transduced WT Tat-DJ-1 protein, not by C106A Tat-DJ-1 protein. Thus, transduction of WT Tat-DJ-1 protein could be a novel strategy for promoting cell survival in situations of oxidative stress-induced HepG2 cell death.
  相似文献   

17.
18.
The treatment of inflammatory diseases today is largely based on interrupting the synthesis or action of the mediators that drive the host's response to injury. It is on the basis of this concept that most of the anti-inflammatory drugs have been developed. In our continuous search for novel anti-inflammatory agents from traditional medicinal plants, Saposhnikovia divaricata has been a focus of our investigations. Anomalin, a pyranocoumarin constituent of S. divaricata, exhibits potent anti-inflammatory activity. To clarify the cellular signaling mechanisms underlying the anti-inflammatory action of anomalin, we investigated the effect of anomalin on the production of inflammatory molecules in LPS-stimulated murine macrophages. The anomalin dose-dependently inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA and protein expression in LPS-stimulated RAW 264.7 macrophage. Molecular analysis using quantitative real time polymerase chain reaction (qRT-PCR) revealed that several pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were reduced by anomalin, and this reduction correlated with the down-regulation of the NF-κB signaling pathway. In addition, anomalin suppressed the LPS-induced phosphorylation and degradation of IκBα. To further study the mechanisms underlying its anti-inflammatory activity, an electrophoretic mobility shift assay (EMSA) using a (32) P-labeled NF-κB probe was conducted. LPS-induced NF-κB DNA binding was drastically abolished by anomalin. The present data suggest that anomalin is a major anti-inflammatory agent and may be a potential therapeutic candidate for the treatment of inflammatory disorders.  相似文献   

19.
Oxidative stress is a major cause in neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and cerebral ischemia. Ginsenoside Rg1, a natural product extracted from Panax ginseng C.A. Meyer, has been reported to exert notable neuroprotective activities, which partly ascribed to its antioxidative activity. However, its molecular mechanism against oxidative stress induced by exogenous hydrogen peroxide (H(2)O(2)) remained unclear. In this study, we investigated its effect on H(2)O(2)-induced cell death and explored possible signaling pathway in PC12 cells. We proved that pretreatment with Rg1 at concentrations of 0.1-10 μM remarkably reduced the cytotoxicity induced by 400 μM of H(2)O(2) in PC12 cells by MTT and Hoechst and PI double staining assay. Of note, we demonstrated the activation of NF-κB signaling pathway induced by H(2)O(2) thoroughly in PC12 cells, and Rg1 suppressed phosphorylation and nuclear translocation of NF-κB/p65, phosphorylation and degradation of inhibitor protein of κB (IκB) as well as the phosphorylation of IκB-kinase complex (IKK) by western blotting or indirect immunofluorescence assay. Besides, Rg1 also inhibited the activation of Akt and the extracellular signal-regulated kinase 1/2 (ERK1/2). Furthermore, the protection of Rg1 on H(2)O(2)-injured PC12 cells was attenuated by pretreatment with two NF-κB pathway inhibitors (JSH-23 or BOT-64). In conclusion, our results suggest that Rg1 could rescue the cell injury by H(2)O(2) via down-regulation NF-κB signaling pathway as well as Akt and ERK1/2 activation, which put new evidence on the neuroprotective mechanism of Rg1 against the oxidative stress and the regulatory role of H(2)O(2) in NF-κB pathway in PC12 cells.  相似文献   

20.
1α,25-dihydroxyvitamin D3 (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human naïve B cells. Naïve B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naïve B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naïve B cells, namely by reducing CD40 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号