首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundThe COVID-19 pandemic has induced unprecedented reductions in human mobility and social contacts throughout the world. Because dengue virus (DENV) transmission is strongly driven by human mobility, behavioral changes associated with the pandemic have been hypothesized to impact dengue incidence. By discouraging human contact, COVID-19 control measures have also disrupted dengue vector control interventions, the most effective of which require entry into homes. We sought to investigate how and why dengue incidence could differ under a lockdown scenario with a proportion of the population sheltered at home.Methodology & principal findingsWe used an agent-based model with a realistic treatment of human mobility and vector control. We found that a lockdown in which 70% of the population sheltered at home and which occurred in a season when a new serotype invaded could lead to a small average increase in cumulative DENV infections of up to 10%, depending on the time of year lockdown occurred. Lockdown had a more pronounced effect on the spatial distribution of DENV infections, with higher incidence under lockdown in regions with higher mosquito abundance. Transmission was also more focused in homes following lockdown. The proportion of people infected in their own home rose from 54% under normal conditions to 66% under lockdown, and the household secondary attack rate rose from 0.109 to 0.128, a 17% increase. When we considered that lockdown measures could disrupt regular, city-wide vector control campaigns, the increase in incidence was more pronounced than with lockdown alone, especially if lockdown occurred at the optimal time for vector control.Conclusions & significanceOur results indicate that an unintended outcome of lockdown measures may be to adversely alter the epidemiology of dengue. This observation has important implications for an improved understanding of dengue epidemiology and effective application of dengue vector control. When coordinating public health responses during a syndemic, it is important to monitor multiple infections and understand that an intervention against one disease may exacerbate another.  相似文献   

2.
BackgroundNo vaccine is currently available for dengue virus (DENV), therefore control programmes usually focus on managing mosquito vector populations. Entomological surveys provide the most common means of characterising vector populations and predicting the risk of local dengue virus transmission. Despite Indonesia being a country strongly affected by DENV, only limited information is available on the local factors affecting DENV transmission and the suitability of available survey methods for assessing risk.Conclusions/significanceOur data suggested that the utility of traditional larvae indices, which continue to be used in many dengue endemic countries, should be re-evaluated locally. The results highlight the need for validation of risk indicators and control strategies across DENV affected areas here and perhaps elsewhere in SE Asia.  相似文献   

3.
BackgroundThe transmission patterns and genetic diversity of dengue virus (DENV) circulating in Africa remain poorly understood. Circulation of the DENV serotype 1 (DENV1) in Angola was detected in 2013, while DENV serotype 2 (DENV2) was detected in 2018. Here, we report results from molecular and genomic investigations conducted at the Ministry of Health national reference laboratory (INIS) in Angola on suspected dengue cases detected between January 2017 and February 2019.MethodsA total of 401 serum samples from dengue suspected cases were collected in 13 of the 18 provinces in Angola. Of those, 351 samples had complete data for demographic and epidemiological analysis, including age, gender, province, type of residence, clinical symptoms, as well as dates of onset of symptoms and sample collection. RNA was extracted from residual samples and tested for DENV-RNA using two distinct real time RT-PCR protocols. On-site whole genome nanopore sequencing was performed on RT-PCR+ samples. Bayesian coalescent models were used to estimate date and origin of outbreak emergence, as well as population growth rates.ResultsMolecular screening showed that 66 out of 351 (19%) suspected cases were DENV-RNA positive across 5 provinces in Angola. DENV RT-PCR+ cases were detected more frequently in urban sites compared to rural sites. Of the DENV RT-PCR+ cases most were collected within 6 days of symptom onset. 93% of infections were confirmed by serotype-specific RT-PCR as DENV2 and 1 case (1.4%) was confirmed as DENV1. Six CHIKV RT-PCR+ cases were also detected during the study period, including 1 co-infection of CHIKV with DENV1. Most cases (87%) were detected in Luanda during the rainy season between April and October. Symptoms associated with severe dengue were observed in 11 patients, including 2 with a fatal outcome. On-site nanopore genome sequencing followed by genetic analysis revealed an introduction of DENV2 Cosmopolitan genotype (also known as DENV2-II genotype) possibly from India in or around October 2015, at least 1 year before its detection in the country. Coalescent models suggest relatively moderately rapid epidemic growth rates and doubling times, and a moderate expansion of DENV2 in Angola during the studied period.ConclusionThis study describes genomic, epidemiological and demographic characteristic of predominately urban transmission of DENV2 in Angola. We also find co-circulation of DENV2 with DENV1 and CHIKV and report several RT-PCR confirmed severe dengue cases in the country. Increasing dengue awareness in healthcare professional, expanding the monitorization of arboviral epidemics across the country, identifying most common mosquito breeding sites in urban settings, implementing innovative vector control interventions and dengue vaccination campaigns could help to reduce vector presence and DENV transmission in Angola.  相似文献   

4.

Background

Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes.

Methods

To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution.

Results

Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus.

Conclusions

This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs.  相似文献   

5.
In October 2013, a locally-acquired case of dengue virus (DENV) infection was reported in Western Australia (WA) where local dengue transmission has not occurred for over 70 years. Laboratory testing confirmed recent DENV infection and the case demonstrated a clinically compatible illness. The infection was most likely acquired in the Pilbara region in the northwest of WA. Follow up investigations did not detect any other locally-acquired dengue cases or any known dengue vector species in the local region, despite intensive adult and larval mosquito surveillance, both immediately after the case was notified in October 2013 and after the start of the wet season in January 2014. The mechanism of infection with DENV in this case cannot be confirmed. However, it most likely followed a bite from a single infected mosquito vector that was transiently introduced into the Pilbara region but failed to establish a local breeding population. This case highlights the public health importance of maintaining surveillance efforts to ensure that any incursions of dengue vectors into WA are promptly identified and do not become established, particularly given the large numbers of viraemic dengue fever cases imported into WA by travellers returning from dengue-endemic regions.  相似文献   

6.
近年来福建省登革热(Dengue fever,DF)输入性病例持续存在,且登革热的主要传播媒介白纹伊蚊在全省内广泛分布,为了解福建省福州市登革热的媒介白纹伊蚊携带登革病毒(Dengue virus,DENV)状况,2017年10月7日在福州市台江区元一花园小区内开展伊蚊监测,采用双层叠帐法捕获255只白纹伊蚊蚊体研磨液上清提取核酸后用实时荧光RT-PCR法检测DENV特异性核酸,将检测阳性的蚊体研磨液上清接种C6/36细胞进行病毒分离,成功分离到1株DENV病毒株mosquito13/Fujian/2017;经实时荧光RT-PCR法鉴定所分离病毒株的血清型为I型;利用型特异性引物通过RT-PCR扩增病毒E基因并测序进行分子遗传特性分析;E基因核苷酸和氨基酸同源性分析显示,该毒株与2017年10月17日同小区本地登革热病例血清中分离得到的登革毒株E基因序列完全一致,与越南2014年分离株KT825033/Vietnam/2014核苷酸(99.7%)和氨基酸(99.8%)同源性最高;系统进化树分析表明所分离登革病毒毒株的基因型为I型,与东南亚地区的越南,泰国,柬埔寨等国家进化关系相近,可能输入来源于东南亚国家。本研究证实了登革热外潜伏期的存在以及白纹伊蚊在登革热疫情传播过程中的媒介作用,提示在登革热的防控工作中媒介登革病毒监测、检测的重要性,也提示福建省需要加强输入来源监测,特别是东南亚入境人员的监测。  相似文献   

7.
Dengue fever is the most important vector‐borne viral disease. Four serotypes of dengue virus, DENV1 to DENV4, coexist. Secondary infection by a different serotype is a risk factor for severe dengue. Monoclonal antibody mAb4E11 neutralizes the four serotypes of DENV with varying efficacies by recognizing an epitope located within domain‐III (ED3) of the viral envelope (E) protein. To better understand the cross‐reactivities between mAb4E11 and the four serotypes of DENV, we constructed mutations in both Fab4E11 fragment and ED3, and we searched for indirect interactions in the crystal structures of the four complexes. According to the serotype, 7 to 12 interactions are mediated by one water molecule, 1 to 10 by two water molecules, and several of these interactions are conserved between serotypes. Most interfacial water molecules make hydrogen bonds with both antibody and antigen. Some residues or atomic groups are engaged in both direct and water‐mediated interactions. The doubly‐indirect interactions are more numerous in the complex of lowest affinity. The third complementarity determining region of the light chain (L‐CDR3) of mAb4E11 does not contact ED3. The structures and double‐mutant thermodynamic cycles showed that the effects of (hyper)‐mutations in L‐CDR3 on affinity were caused by conformational changes and indirect interactions with ED3 through other CDRs. Exchanges of residues between ED3 serotypes showed that their effects on affinity were context dependent. Thus, conformational changes, structural context, and indirect interactions should be included when studying cross‐reactivity between antibodies and different serotypes of viral antigens for a better design of diagnostics, vaccine, and therapeutic tools against DENV and other Flaviviruses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ~19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here are valuable for testing hypotheses on genetic determinants of DENV-3 immunopathogenesis.  相似文献   

9.
10.
Dengue virus(DENV) has four distinct serotypes. DENV infection can result in classic dengue fever and life-threatening dengue hemorrhagic fever/dengue shock syndrome. In recent decades, DENV infection has become an important public health concern in epidemic-prone areas. Vaccination is the most effective measure to prevent and control viral infections. However, several challenges impede the development of effective DENV vaccines, such as the lack of suitable animal models and the antibody-dependent enhancement phenomenon. Although no licensed DENV vaccine is available, significant progress has been made. This review summarizes candidate DENV vaccines from recent investigations.  相似文献   

11.
The dengue viruses (DENVs) exist as numerous genetic strains that are grouped into four antigenically distinct serotypes. DENV strains from each serotype can cause severe disease and threaten public health in tropical and subtropical regions worldwide. No licensed antiviral agent to treat DENV infections is currently available, and there is an acute need for the development of novel therapeutics. We found that a synthetic small interfering RNA (siRNA) (DC-3) targeting the highly conserved 5' cyclization sequence (5'CS) region of the DENV genome reduced, by more than 100-fold, the titers of representative strains from each DENV serotype in vitro. To determine if DC-3 siRNA could inhibit DENV in vivo, an "in vivo-ready" version of DC-3 was synthesized and tested against DENV-2 by using a mouse model of antibody-dependent enhancement of infection (ADE)-induced disease. Compared with the rapid weight loss and 5-day average survival time of the control groups, mice receiving the DC-3 siRNA had an average survival time of 15 days and showed little weight loss for approximately 12 days. DC-3-treated mice also contained significantly less virus than control groups in several tissues at various time points postinfection. These results suggest that exogenously introduced siRNA combined with the endogenous RNA interference processing machinery has the capacity to prevent severe dengue disease. Overall, the data indicate that DC-3 siRNA represents a useful research reagent and has potential as a novel approach to therapeutic intervention against the genetically diverse dengue viruses.  相似文献   

12.
Development of a serotyping-capable dengue detection test is hampered by the absence of an identified unique marker that can detect specific dengue virus (DENV) serotype. In the current commercially available antibody-capture diagnostic methods, immobilized nonstructural 1 (NS1) antigen indiscriminately binds and detects immunoglobulin M or immunoglobulin G against any serotype, thus limiting its capability to distinguish existing serotypes of dengue. Identification of dengue serotype is important because certain serotypes are associated with severe forms of dengue as well as dengue hemorrhagic fever. In this study, we aimed to identify an immunogenic epitope unique to DENV2 NS1 antigen and determine the binding specificity of its synthetic peptide mimotope to antibodies raised in animal models. Selection of a putative B-cell epitope from the reported DENV2 NS1 antigen was done using Kolaskar and Tongaonkar Antigenicity prediction, Emini surface accessibility prediction, and Parker hydrophilicity prediction available at the immune epitope database and analysis resource. Uniqueness of the B-cell epitope to DENV2 was analyzed by BLASTp. Immunogenicity of the synthetic peptide analog of the predicted immunogenic epitope was tested in rabbits. The binding specificity of the antibodies raised in animals and the synthetic peptide mimotope was tested by indirect ELISA. A synthetic peptide analog comprising the unique epitope of DENV2 located at the 170th–183rd position of DENV2 NS1 was found to be immunogenic in animal models. The antipeptide antibody produced in rabbits showed specific binding to the synthetic peptide mimotope of the predicted unique DENV2 NS1 immunogenic epitope.  相似文献   

13.
14.
The currently spreading arbovirus epidemic is having a severe impact on human health worldwide. The two most common flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), are transmitted through the same viral vector, Aedes spp. mosquitoes. Since the discovery of DENV in 1943, this virus has been reported to cause around 390 million human infections per year, approximately 500,000 of which require hospitalization and over 20,000 of which are lethal. The present DENV epidemic is primarily concentrated in Southeast Asia. ZIKV, which was discovered in 1952, is another important arthropod-borne flavivirus. The neurotropic role of ZIKV has been reported in infected newborns with microcephaly and in adults with Guillain-Barre syndrome. Despite DENV and ZIKV sharing the same viral vector, their complex pathogenic natures are poorly understood, and the infections they cause do not have specific treatments or effective vaccines. Therefore, this review will describe what is currently known about the clinical characteristics, pathogenesis mechanisms, and transmission of these two viruses. Better understanding of the interrelationships between DENV and ZIKV will provide a useful perspective for developing an effective strategy for controlling both viruses in the future.  相似文献   

15.
16.
The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.  相似文献   

17.
The possibility of using variable domain heavy-chain antibodies (VHH antibodies) as diagnostic tools for dengue virus (DENV) type 2 NS1 protein was investigated and compared with the use of conventional monoclonal antibodies. After successful expression of DENV type 2 NS1 protein, the genes of VHH antibodies against NS1 protein were biopanned from a non-immune llama library by phage display. VHH antibodies were then expressed and purified from Escherichia coli. Simultaneously, monoclonal antibodies were obtained by the conventional route. Sequence analysis of the VHH antibodies revealed novel and long complementarity determining regions 3 (CDR3). Epitope mapping was performed via a phage display peptide library using purified VHH and monoclonal antibodies as targets. Interestingly, the same region of NS1, which comprises amino acids 224HWPKPHTLW232, was conserved for both kinds of antibodies displaying the consensus motif histidine-tryptophan-tryptophan or tryptophan-proline-tryptophan. The two types of antibodies were used to prepare rapid diagnostic kits based on immunochromatographic assay. The VHH antibody immobilized rapid diagnostic kit showed better sensitivity and specificity than the monoclonal antibody immobilized rapid diagnostic kit, which might be due to the long CDR3 regions of the VHH antibodies and their ability to bind to the pocket and cleft of the targeted antigen. This demonstrates that VHH antibodies are likely to be an option for developing point-of-care tests against DENV infection.  相似文献   

18.
Dengue virus transmission occurs in both epidemic and endemic cycles across tropical and sub-tropical regions of the world. Incidence is particularly high in much of Southeast Asia, where hyperendemic transmission plagues both urban and rural populations. However, endemicity has not been established in some areas with climates that may not support year-round viral transmission. An understanding of how dengue viruses (DENV) enter these environments and whether the viruses persist in inapparent local transmission cycles is central to understanding how dengue emerges in areas at the margins of endemic transmission. Dengue is highly endemic in tropical southern Vietnam, while increasingly large seasonal epidemics have occurred in northern Viet Nam over the last decade. We have investigated the spread of DENV-1 throughout Vietnam to determine the routes by which the virus enters northern and central regions of the country. Phylogeographic analysis of 1,765 envelope (E) gene sequences from Southeast Asia revealed frequent movement of DENV between neighboring human populations and strong local clustering of viral lineages. Long-distance migration of DENV between human population centers also occurred regularly and on short time-scales, indicating human-mediated viral invasion into northern Vietnam. Human populations in southern Vietnam were found to be the primary source of DENV circulating throughout the country, while central and northern Vietnam acted as sink populations, likely due to reduced connectedness to other populations in the case of the central regions and to the influence of temperature variability on DENV replication and vector survival and competence in the north. Finally, phylogeographic analyses suggested that viral movement follows a gravity model and indicates that population immunity and physical and economic connections between populations may play important roles in shaping patterns of DENV transmission.  相似文献   

19.
In the latest World Health Organization (WHO) recommendation for Dengvaxia implementation, either serological testing or a person’s history of prior dengue illness may be used as supporting evidence to identify dengue virus (DENV)-immune individuals eligible for vaccination, in areas with limited capacity for laboratory confirmation. This analysis aimed to estimate the concordance between self-reported dengue illness histories and seropositivity in a prospective cohort study for dengue virus infection in Kamphaeng Phet province, a dengue-endemic area in northern Thailand. The study enrolled 2,076 subjects from 516 multigenerational families, with a median age of 30.6 years (range 0–90 years). Individual and family member dengue illness histories were obtained by questionnaire. Seropositivity was defined based on hemagglutination inhibition (HAI) assays. Overall seropositivity for DENV was 86.5% among those aged 9–45 years, which increased with age. 18.5% of participants reported a history of dengue illness prior to enrollment; 30.1% reported a previous DENV infection in the family, and 40.1% reported DENV infection in either themselves or a family member. Relative to seropositivity by HAI in the vaccine candidate group, the sensitivity and specificity of individual prior dengue illness history were 18.5% and 81.6%, respectively; sensitivity and specificity of reported dengue illness in a family member were 29.8% and 68.0%, and of either the individual or a family member were 40.1% and 60.5%. Notably, 13.4% of individuals reporting prior dengue illness were seronegative. Given the high occurrence of asymptomatic and mild DENV infection, self-reported dengue illness history is poorly sensitive for prior exposure and may misclassify individuals as ‘exposed’ when they were not. This analysis highlights that a simple, highly sensitive, and highly specific test for determining serostatus prior to Dengvaxia vaccination is urgently needed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号