首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

French wheat grains may be of little value on world markets because they have low and highly variable grain protein concentrations (GPC). This nitrogen-yield to yield ratio depends on crop nitrogen (N) fertilization as well as on crop capacity to use N, which is known to vary with climate and disease severity. Here an examination is made of the respective roles that N remobilization and post-anthesis N uptake play in N yield variations; in particular, when wheat crops (Triticum aestivum) are affected by leaf rust (Puccinia triticina) and Septoria tritici blotch (teleomorph Mycosphaerella graminicola).

Methods

Data from a 4-year field experiment was used to analyse N yield variations in wheat crops grown either with a third or no late N fertilization. Natural aerial epidemics ensured a range of disease severity, and fungicide ensured disease-free control plots. The data set of Gooding et al. (2005, Journal of Agricultural Science 143: 503–518) was incorporated in order to enlarge the range of conditions.

Key Results

Post-anthesis N uptake accounted for a third of N yield whilst N remobilization accounted for two-thirds in all crops whether affected by diseases or not. However, variations in N yield were highly correlated with post-anthesis N uptake, more than with N remobilization, in diseased and also healthy crops. Furthermore, N remobilization did not significantly correlate with N yield in healthy crops. These findings matched data from studies using various wheat genotypes under various management and climatic conditions. Leaf area duration (LAD) accurately predicted N remobilization whether or not crops were diseased; in diseased crops, LAD also accurately predicted N uptake.

Conclusions

Under the experimental conditions, N yield variations were closely associated with post-anthesis N uptake in diseased but also in healthy crops. Understanding the respective roles of N uptake and N remobilization in the case of diseased and healthy crops holds the promise of better modelling of variations in N yield, and thus in GPC.Key words: Triticum aestivum, Puccinia triticina, leaf rust, Mycosphaerella graminicola, Septoria tritici blotch, N uptake, N remobilization, N yield, Leaf area duration  相似文献   

2.

Background

Microsporidia (Fungi) have been repeatedly identified as the cause of opportunistic infections predominantly in immunodeficient individuals such as AIDS patients. However, the global epidemiology of human microsporidiosis is poorly understood and the ability of microsporidia to survive and multiply in immunocompetent hosts remains unsolved.

Aims

To determine the presence of latent microsporidia infections in apparently healthy humans in the Czech Republic, the authors tested sera, urine and stool originating from fifteen persons within a three month period examined on a weekly basis.

Methods

Sera, stool and urine samples originating from fifteen HIV-negative people at risk with occupational exposure to animals, aged 22–56 years, living in the Czech Republic were tested by indirect immunofluorescence assay (IFA) for the presence of specific anti-microsporidial antibodies, standard Calcofluor M2R staining for the detection of microsporidian spores in all urine sediments and stool smears and molecular methods for the microsporidial species determination.

Results

Specific anti-microsporidial antibodies were detected in fourteen individuals, asymptomatic Encephalitozoon spp. infection was found in thirteen and E. bieneusi infection was detected in seven of those examined. While E. hellem 1A and E. cuniculi II were the major causative agents identified, seven different genotypes of E. bieneusi were recorded.

Conclusions

These findings clearly show that exposure to microsporidia is common and chronic microsporidiosis is not linked to any clinical manifestation in healthy population. Moreover, our results indicate much higher incidence of microsporidial infections among an apparently healthy population than previously reported. These results open the question about the potential risk of reactivation of latent microsporidiosis in cases of immunosupression causing life-threatening disease.  相似文献   

3.
4.

Background

Despite the considerable progress made in understanding the molecular bases of mitochondrial diseases, no effective treatments have been developed to date. Faithful animal models would be extremely helpful for designing such treatments. We showed previously that the Harlequin mouse phenotype was due to a specific mitochondrial complex I deficiency resulting from the loss of the Apoptosis Inducing Factor (Aif) protein.

Methodology/Principal Findings

Here, we conducted a detailed evaluation of the Harlequin mouse phenotype, including the biochemical abnormalities in various tissues. We observed highly variable disease expression considering both severity and time course progression. In each tissue, abnormalities correlated with the residual amount of the respiratory chain complex I 20 kDa subunit, rather than with residual Aif protein. Antioxidant enzyme activities were normal except in skeletal muscle, where they were moderately elevated.

Conclusions/Significance

Thus, the Harlequin mouse phenotype appears to result from mitochondrial respiratory chain complex I deficiency. Its features resemble those of human complex I deficiency syndromes. The Harlequin mouse holds promise as a model for developing treatments for complex I deficiency syndromes.  相似文献   

5.

Background

The Western honey bee (Apis mellifera L.) is a critical component of human agriculture through its pollination activities. For years, beekeepers have controlled deadly pathogens such as Paenibacillus larvae, Nosema spp. and Varroa destructor with antibiotics and pesticides but widespread chemical resistance is appearing and most beekeepers would prefer to eliminate or reduce the use of in-hive chemicals. While such treatments are likely to still be needed, an alternate management strategy is to identify and select bees with heritable traits that allow them to resist mites and diseases. Breeding such bees is difficult as the tests involved to identify disease-resistance are complicated, time-consuming, expensive and can misidentify desirable genotypes. Additionally, we do not yet fully understand the mechanisms behind social immunity. Here we have set out to discover the molecular mechanism behind hygienic behavior (HB), a trait known to confer disease resistance in bees.

Results

After confirming that HB could be selectively bred for, we correlated measurements of this behavior with protein expression over a period of three years, at two geographically distinct sites, using several hundred bee colonies. By correlating the expression patterns of individual proteins with HB scores, we identified seven putative biomarkers of HB that survived stringent control for multiple hypothesis testing. Intriguingly, these proteins were all involved in semiochemical sensing (odorant binding proteins), nerve signal transmission or signal decay, indicative of the series of events required to respond to an olfactory signal from dead or diseased larvae. We then used recombinant versions of two odorant-binding proteins to identify the classes of ligands that these proteins might be helping bees detect.

Conclusions

Our data suggest that neurosensory detection of odors emitted by dead or diseased larvae is the likely mechanism behind a complex and important social immunity behavior that allows bees to co-exist with pathogens.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-014-1193-6) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Serum creatine kinase (CK) levels are reported to be around 70% higher in healthy black people, as compared to white people (median value 88 IU/L in white vs 149 IU/L in black people). As serum CK in healthy people is thought to occur from a proportional leak from normal tissues, we hypothesized that the black population subgroup has a generalized higher CK activity in tissues.

Methodology/Principal Findings

We compared CK activity spectrophotometrically in tissues with high and fluctuating energy demands including cerebrum, cerebellum, heart, renal artery, and skeletal muscle, obtained post-mortem in black and white men. Based on serum values, we conservatively estimated to find a 50% greater CK activity in black people compared with white people, and calculated a need for 10 subjects of one gender in each group to detect this difference. We used mixed linear regression models to assess the possible influence of ethnicity on CK activity in different tissues, with ethnicity as a fixed categorical subject factor, and CK of different tissues clustered within one person as the repeated effect response variable. We collected post-mortem tissue samples from 17 white and 10 black males, mean age 62 y (SE 4). Mean tissue CK activity was 76% higher in tissues from black people (estimated marginal means 107.2 [95% CI, 76.7 to 137.7] mU/mg protein in white, versus 188.6 [148.8 to 228.4] in black people, p = 0.002).

Conclusion

We found evidence that black people have higher CK activity in all tissues with high and fluctuating energy demands studied. This finding may help explain the higher serum CK levels found in this population subgroup. Furthermore, our data imply that there are differences in CK-dependent ATP buffer capacity in tissue between the black and the white population subgroup, which may become apparent with high energy demands.  相似文献   

7.

Background

Multiple microarray analyses of multiple sclerosis (MS) and its experimental models have been published in the last years.

Objective

Meta-analyses integrate the information from multiple studies and are suggested to be a powerful approach in detecting highly relevant and commonly affected pathways.

Data sources

ArrayExpress, Gene Expression Omnibus and PubMed databases were screened for microarray gene expression profiling studies of MS and its experimental animal models.

Study eligibility criteria

Studies comparing central nervous system (CNS) samples of diseased versus healthy individuals with n >1 per group and publically available raw data were selected.

Material and Methods

Included conditions for re-analysis of differentially expressed genes (DEGs) were MS, myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) in rats, proteolipid protein-induced EAE in mice, Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), and a transgenic tumor necrosis factor-overexpressing mouse model (TNFtg). Since solely a single MS raw data set fulfilled the inclusion criteria, a merged list containing the DEGs from two MS-studies was additionally included. Cross-study analysis was performed employing list comparisons of DEGs and alternatively Gene Set Enrichment Analysis (GSEA).

Results

The intersection of DEGs in MS, EAE, TMEV-IDD, and TNFtg contained 12 genes related to macrophage functions. The intersection of EAE, TMEV-IDD and TNFtg comprised 40 DEGs, functionally related to positive regulation of immune response. Over and above, GSEA identified substantially more differentially regulated pathways including coagulation and JAK/STAT-signaling.

Conclusion

A meta-analysis based on a simple comparison of DEGs is over-conservative. In contrast, the more experimental GSEA approach identified both, a priori anticipated as well as promising new candidate pathways.  相似文献   

8.

Background

To discover novel markers for improving the efficacy of pancreatic cancer (PC) diagnosis, the secretome of two PC cell lines (BxPC-3 and MIA PaCa-2) was profiled. UL16 binding protein 2 (ULBP2), one of the proteins identified in the PC cell secretome, was selected for evaluation as a biomarker for PC detection because its mRNA level was also found to be significantly elevated in PC tissues.

Methods

ULBP2 expression in PC tissues from 67 patients was studied by immunohistochemistry. ULBP2 serum levels in 154 PC patients and 142 healthy controls were measured by bead-based immunoassay, and the efficacy of serum ULBP2 for PC detection was compared with the widely used serological PC marker carbohydrate antigen 19-9 (CA 19-9).

Results

Immunohistochemical analyses revealed an elevated expression of ULPB2 in PC tissues compared with adjacent non-cancerous tissues. Meanwhile, the serum levels of ULBP2 among all PC patients (n = 154) and in early-stage cancer patients were significantly higher than those in healthy controls (p<0.0001). The combination of ULBP2 and CA 19-9 outperformed each marker alone in distinguishing PC patients from healthy individuals. Importantly, an analysis of the area under receiver operating characteristic curves showed that ULBP2 was superior to CA 19-9 in discriminating patients with early-stage PC from healthy controls.

Conclusions

Collectively, our results indicate that ULBP2 may represent a novel and useful serum biomarker for pancreatic cancer primary screening.  相似文献   

9.

Background and Aims

This study is a first step in a multi-stage project aimed at determining allometric relationships among the tropical tree organs, and carbon fluxes between the various tree parts and their environment. Information on canopy–root interrelationships is needed to improve understanding of above- and below-ground processes and for modelling of the regional and global carbon cycle. Allometric relationships between the sizes of different plant parts will be determined.

Methods

Two tropical forest species were used in this study: Ceiba pentandra (kapok), a fast-growing tree native to South and Central America and to Western Africa, and Khaya anthotheca (African mahogany), a slower-growing tree native to Central and Eastern Africa. Growth and allometric parameters of 12-month-old saplings grown in a large-scale aeroponic system and in 50-L soil containers were compared. The main advantage of growing plants in aeroponics is that their root systems are fully accessible throughout the plant life, and can be fully recovered for harvesting.

Key Results

The expected differences in shoot and root size between the fast-growing C. pentandra and the slower-growing K. anthotheca were evident in both growth systems. Roots were recovered from the aeroponically grown saplings only, and their distribution among various diameter classes followed the patterns expected from the literature. Stem, branch and leaf allometric parameters were similar for saplings of each species grown in the two systems.

Conclusions

The aeroponic tree growth system can be utilized for determining the basic allometric relationships between root and shoot components of these trees, and hence can be used to study carbon allocation and fluxes of whole above- and below-ground tree parts.  相似文献   

10.

Background

Monogenic dementias represent a great opportunity to trace disease progression from preclinical to symptomatic stages. Frontotemporal Dementia related to Granulin (GRN) mutations presents a specific framework of brain damage, involving fronto-temporal regions and long inter-hemispheric white matter bundles. Multimodal resting-state functional MRI (rs-fMRI) is a promising tool to carefully describe disease signature from the earliest disease phase.

Objective

To define local connectivity alterations in GRN related pathology moving from the presymptomatic (asymptomatic GRN mutation carriers) to the clinical phase of the disease (GRN- related Frontotemporal Dementia).

Methods

Thirty-one GRN Thr272fs mutation carriers (14 patients with Frontotemporal Dementia and 17 asymptomatic carriers) and 38 healthy controls were recruited. Local connectivity measures (Regional Homogeneity (ReHo), Fractional Amplitude of Low Frequency Fluctuation (fALFF) and Degree Centrality (DC)) were computed, considering age and gender as nuisance variables as well as the influence of voxel-level gray matter atrophy.

Results

Asymptomatic GRN carriers had selective reduced ReHo in the left parietal region and increased ReHo in frontal regions compared to healthy controls. Considering Frontotemporal Dementia patients, all measures (ReHo, fALFF and DC) were reduced in inferior parietal, frontal lobes and posterior cingulate cortex. Considering GRN mutation carriers, an inverse correlation with age in the posterior cingulate cortex, inferior parietal lobule and orbitofrontal cortex was found.

Conclusions

GRN pathology is characterized by functional brain network alterations even decades before the clinical onset; they involve the parietal region primarily and then spread to the anterior regions of the brain, supporting the concept of molecular nexopathies.  相似文献   

11.
Sun L  Hu FB  Yu Z  Li H  Liu H  Wang X  Yu D  Wu H  Zhang G  Zong G  Liu Y  Lin X 《PloS one》2011,6(3):e18104

Objective

We aimed to investigate how lean body mass is related to circulating Interleukin 18 (IL-18) and its association with metabolic syndrome (MetS) among apparently healthy Chinese.

Methods

A population-based sample of 1059 Chinese men and women aged 35–54 years was used to measure plasma IL-18, glucose, insulin, lipid profile, inflammatory markers and high-molecular-weight (HMW)-adiponectin. Fat mass index (FMI) and lean mass index (LMI) were measured by dual-energy X-ray absorptiometry. MetS was defined by the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asian-Americans.

Results

Circulating IL-18 was positively correlated with LMI after adjustment for FMI (correlation coefficient = 0.11, P<0.001). The association with the MetS (odds ratio 3.43, 95% confidence interval 2.01–5.85) was substantially higher in the highest than the lowest quartile of IL-18 after multiple adjustments including body mass index. In the stratified multivariable regression analyses, the positive association between IL-18 and MetS was independent of tertiles of FMI, inflammatory markers and HMW-adiponectin, but significantly interacted with tertile of LMI (P for interaction = 0.010).

Conclusion

Elevated plasma IL-18 was associated with higher MetS prevalence in apparently healthy Chinese, independent of traditional risk factors, FMI, inflammatory markers and HMW-adiponectin. More studies are needed to clarify the role of lean mass in IL-18 secretion and its associated cardio-metabolic disorders.  相似文献   

12.

OBJECTIVES

This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods.

METHODS

Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods.

RESULTS

CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not.

CONCLUSIONS

DSC-MRI is highly repeatable in high-grade glioma patients.  相似文献   

13.

Background

Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore it is important to understand the pathology underlying the development of CM and SMA, as opposed to uncomplicated malaria (UM). Different host responses to infection are likely to be reflected in plasma proteome-patterns that associate with clinical status and therefore provide indicators of the pathogenesis of these syndromes.

Methods and Findings

Plasma and comprehensive clinical data for discovery and validation cohorts were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, an urban and densely populated holoendemic malaria area in Nigeria. A total of 946 children participated in this study. Plasma was subjected to high-throughput proteomic profiling. Statistical pattern-recognition methods were used to find proteome-patterns that defined disease groups. Plasma proteome-patterns accurately distinguished children with CM and with SMA from those with UM, and from healthy or severely ill malaria-negative children.

Conclusions

We report that an accurate definition of the major childhood malaria syndromes can be achieved using plasma proteome-patterns. Our proteomic data can be exploited to understand the pathogenesis of the different childhood severe malaria syndromes.  相似文献   

14.

Background

Non-invasive monitoring of disease progression in kidney disease is still a major challenge in clinical practice. In vivo near-infrared (NIR) imaging provides a new tool for studying disease mechanisms and non-invasive monitoring of disease development, even in deep organs. The LI-COR IRDye® 800CW RGD optical probe (RGD probe) is a NIR fluorophore, that can target integrin alpha v beta 3 (αvβ3) in tissues.

Objective

This study aims to monitor renal disease progression in an anti-glomerular basement membrane (GBM) nephritis mouse model.

Methods

Anti-GBM nephritis was induced in 129x1/svJ mice by anti-GBM serum challenge. The expression of integrin αvβ3 in the diseased kidney was examined by immunohistochemistry and quantitative polymerase chain reaction. The RGD probe and control fluorophores, the 800CW dye, and the BSA-conjugated 800CW dye, were administered into anti-GBM nephritic mice. LI-COR Pearl® Impulse imaging system was used for in vivo imaging; while ex vivo organ imaging was acquired using the MaestroTM imaging system.

Results

Kidney tissue from anti-GBM nephritic mice showed higher levels of integrin αvβ3 expression at both the protein and the mRNA level compared to normal mice. The RGD probe allowed in vivo renal imaging and the fluorescent signal could be specifically captured in the diseased kidneys up to 14 days, reflecting longitudinal changes in renal function.

Conclusion

The infrared RGD molecular probe that tracks integrin expression can be successfully used to monitor renal disease progression following immune-mediated nephritis.  相似文献   

15.

Objective

To establish a simple two-compartment model for glomerular filtration rate (GFR) and renal plasma flow (RPF) estimations by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).

Materials and Methods

A total of eight New Zealand white rabbits were included in DCE-MRI. The two-compartment model was modified with the impulse residue function in this study. First, the reliability of GFR measurement of the proposed model was compared with other published models in Monte Carlo simulation at different noise levels. Then, functional parameters were estimated in six healthy rabbits to test the feasibility of the new model. Moreover, in order to investigate its validity of GFR estimation, two rabbits underwent acute ischemia surgical procedure in unilateral kidney before DCE-MRI, and pixel-wise measurements were implemented to detect the cortical GFR alterations between normal and abnormal kidneys.

Results

The lowest variability of GFR and RPF measurements were found in the proposed model in the comparison. Mean GFR was 3.03±1.1 ml/min and mean RPF was 2.64±0.5 ml/g/min in normal animals, which were in good agreement with the published values. Moreover, large GFR decline was found in dysfunction kidneys comparing to the contralateral control group.

Conclusion

Results in our study demonstrate that measurement of renal kinetic parameters based on the proposed model is feasible and it has the ability to discriminate GFR changes in healthy and diseased kidneys.  相似文献   

16.

Background

Neurologic Post Treatment Lyme disease (nPTLS) and Chronic Fatigue (CFS) are syndromes of unknown etiology. They share features of fatigue and cognitive dysfunction, making it difficult to differentiate them. Unresolved is whether nPTLS is a subset of CFS.

Methods and Principal Findings

Pooled cerebrospinal fluid (CSF) samples from nPTLS patients, CFS patients, and healthy volunteers were comprehensively analyzed using high-resolution mass spectrometry (MS), coupled with immunoaffinity depletion methods to reduce protein-masking by abundant proteins. Individual patient and healthy control CSF samples were analyzed directly employing a MS-based label-free quantitative proteomics approach. We found that both groups, and individuals within the groups, could be distinguished from each other and normals based on their specific CSF proteins (p<0.01). CFS (n = 43) had 2,783 non-redundant proteins, nPTLS (n = 25) contained 2,768 proteins, and healthy normals had 2,630 proteins. Preliminary pathway analysis demonstrated that the data could be useful for hypothesis generation on the pathogenetic mechanisms underlying these two related syndromes.

Conclusions

nPTLS and CFS have distinguishing CSF protein complements. Each condition has a number of CSF proteins that can be useful in providing candidates for future validation studies and insights on the respective mechanisms of pathogenesis. Distinguishing nPTLS and CFS permits more focused study of each condition, and can lead to novel diagnostics and therapeutic interventions.  相似文献   

17.

Objective

To investigate the topological alterations of the whole-brain white-matter (WM) structural networks in patients with neuromyelitis optica (NMO).

Methods

The present study involved 26 NMO patients and 26 age- and sex-matched healthy controls. WM structural connectivity in each participant was imaged with diffusion-weighted MRI and represented in terms of a connectivity matrix using deterministic tractography method. Graph theory-based analyses were then performed for the characterization of brain network properties. A multiple linear regression analysis was performed on each network metric between the NMO and control groups.

Results

The NMO patients exhibited abnormal small-world network properties, as indicated by increased normalized characteristic path length, increased normalized clustering and increased small-worldness. Furthermore, largely similar hub distributions of the WM structural networks were observed between NMO patients and healthy controls. However, regional efficiency in several brain areas of NMO patients was significantly reduced, which were mainly distributed in the default-mode, sensorimotor and visual systems. Furthermore, we have observed increased regional efficiency in a few brain regions such as the orbital parts of the superior and middle frontal and fusiform gyri.

Conclusion

Although the NMO patients in this study had no discernible white matter T2 lesions in the brain, we hypothesize that the disrupted topological organization of WM networks provides additional evidence for subtle, widespread cerebral WM pathology in NMO.  相似文献   

18.

Background

The cardiac sodium channel (Nav1.5) controls cardiac excitability. Accordingly, SCN5A mutations that result in loss-of-function of Nav1.5 are associated with various inherited arrhythmia syndromes that revolve around reduced cardiac excitability, most notably Brugada syndrome (BrS). Experimental studies have indicated that Nav1.5 interacts with the cytoskeleton and may also be involved in maintaining structural integrity of the heart. We aimed to determine whether clinical evidence may be obtained that Nav1.5 is involved in maintaining cardiac structural integrity.

Methods

Using cardiac magnetic resonance (CMR) imaging, we compared right ventricular (RV) and left ventricular (LV) dimensions and ejection fractions between 40 BrS patients with SCN5A mutations (SCN5a-mut-positive) and 98 BrS patients without SCN5A mutations (SCN5a-mut-negative). We also studied 18 age/sex-matched healthy volunteers.

Results

SCN5a-mut-positive patients had significantly larger end-diastolic and end-systolic RV and LV volumes, and lower LV ejection fractions, than SCN5a-mut-negative patients or volunteers.

Conclusions

Loss-of-function SCN5A mutations are associated with dilatation and impairment in contractile function of both ventricles that can be detected by CMR analysis.  相似文献   

19.

Background and Aims

Adaptation to different pollinators has been hypothesized as one of the main factors promoting the formation of new species in the Cape region of South Africa. Other researchers favour alternative causes such as shifts in edaphic preferences. Using a phylogenetic framework and taking into consideration the biogeographical scenario explaining the distribution of the group as well as the distribution of pollinators, this study compares pollination strategies with substrate adaptations to develop hypotheses of the primary factors leading to speciation in Lapeirousia (Iridaceae), a genus of corm-bearing geophytes well represented in the Cape and presenting an important diversity of pollination syndromes and edaphic preferences.

Methods

Phylogenetic relationships are reconstructed within Lapeirousia using nuclear and plastid DNA sequence data. State-of-the-art methods in biogeography, divergence time estimation, character optimization and diversification rate assessments are used to examine the evolution of pollination syndromes and substrate shifts in the history of the group. Based on the phylogenetic results, ecological factors are compared for nine sister species pairs in Lapeirousia.

Key Results

Seventeen pollinator shifts and ten changes in substrate types were inferred during the evolution of the genus Lapeirousia. Of the nine species pairs examined, all show divergence in pollination syndromes, while only four pairs present different substrate types.

Conclusions

The available evidence points to a predominant influence of pollinator shifts over substrate types on the speciation process within Lapeirousia, contrary to previous studies that favoured a more important role for edaphic factors in these processes. This work also highlights the importance of biogeographical patterns in the study of pollination syndromes.  相似文献   

20.
Iridovirus and microsporidian linked to honey bee colony decline   总被引:1,自引:0,他引:1  

Background

In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses.

Methodology/Principal Findings

We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006–2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone.

Conclusions/Significance

These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号