首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Genomic selection is increasingly widely practised, particularly in dairy cattle. However, the accuracy of current predictions using GBLUP (genomic best linear unbiased prediction) decays rapidly across generations, and also as selection candidates become less related to the reference population. This is likely caused by the effects of causative mutations being dispersed across many SNPs (single nucleotide polymorphisms) that span large genomic intervals. In this paper, we hypothesise that the use of a nonlinear method (BayesR), combined with a multi-breed (Holstein/Jersey) reference population will map causative mutations with more precision than GBLUP and this, in turn, will increase the accuracy of genomic predictions for selection candidates that are less related to the reference animals.

Results

BayesR improved the across-breed prediction accuracy for Australian Red dairy cattle for five milk yield and composition traits by an average of 7% over the GBLUP approach (Australian Red animals were not included in the reference population). Using the multi-breed reference population with BayesR improved accuracy of prediction in Australian Red cattle by 2 – 5% compared to using BayesR with a single breed reference population. Inclusion of 8478 Holstein and 3917 Jersey cows in the reference population improved accuracy of predictions for these breeds by 4 and 5%. However, predictions for Holstein and Jersey cattle were similar using within-breed and multi-breed reference populations. We propose that the improvement in across-breed prediction achieved by BayesR with the multi-breed reference population is due to more precise mapping of quantitative trait loci (QTL), which was demonstrated for several regions. New candidate genes with functional links to milk synthesis were identified using differential gene expression in the mammary gland.

Conclusions

QTL detection and genomic prediction are usually considered independently but persistence of genomic prediction accuracies across breeds requires accurate estimation of QTL effects. We show that accuracy of across-breed genomic predictions was higher with BayesR than with GBLUP and that BayesR mapped QTL more precisely. Further improvements of across-breed accuracy of genomic predictions and QTL mapping could be achieved by increasing the size of the reference population, including more breeds, and possibly by exploiting pleiotropic effects to improve mapping efficiency for QTL with small effects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0074-4) contains supplementary material, which is available to authorized users.  相似文献   

2.
Accuracy of genomic breeding values in multi-breed dairy cattle populations   总被引:1,自引:0,他引:1  

Background

Two key findings from genomic selection experiments are 1) the reference population used must be very large to subsequently predict accurate genomic estimated breeding values (GEBV), and 2) prediction equations derived in one breed do not predict accurate GEBV when applied to other breeds. Both findings are a problem for breeds where the number of individuals in the reference population is limited. A multi-breed reference population is a potential solution, and here we investigate the accuracies of GEBV in Holstein dairy cattle and Jersey dairy cattle when the reference population is single breed or multi-breed. The accuracies were obtained both as a function of elements of the inverse coefficient matrix and from the realised accuracies of GEBV.

Methods

Best linear unbiased prediction with a multi-breed genomic relationship matrix (GBLUP) and two Bayesian methods (BAYESA and BAYES_SSVS) which estimate individual SNP effects were used to predict GEBV for 400 and 77 young Holstein and Jersey bulls respectively, from a reference population of 781 and 287 Holstein and Jersey bulls, respectively. Genotypes of 39,048 SNP markers were used. Phenotypes in the reference population were de-regressed breeding values for production traits. For the GBLUP method, expected accuracies calculated from the diagonal of the inverse of coefficient matrix were compared to realised accuracies.

Results

When GBLUP was used, expected accuracies from a function of elements of the inverse coefficient matrix agreed reasonably well with realised accuracies calculated from the correlation between GEBV and EBV in single breed populations, but not in multi-breed populations. When the Bayesian methods were used, realised accuracies of GEBV were up to 13% higher when the multi-breed reference population was used than when a pure breed reference was used. However no consistent increase in accuracy across traits was obtained.

Conclusion

Predicting genomic breeding values using a genomic relationship matrix is an attractive approach to implement genomic selection as expected accuracies of GEBV can be readily derived. However in multi-breed populations, Bayesian approaches give higher accuracies for some traits. Finally, multi-breed reference populations will be a valuable resource to fine map QTL.  相似文献   

3.

Background

All progeny-tested bucks from the two main French dairy goat breeds (Alpine and Saanen) were genotyped with the Illumina goat SNP50 BeadChip. The reference population consisted of 677 bucks and 148 selection candidates. With the two-step approach based on genomic best linear unbiased prediction (GBLUP), prediction accuracy of candidates did not outperform that of the parental average. We investigated a GBLUP method based on a single-step approach, with or without blending of the two breeds in the reference population.

Methods

Three models were used: (1) a multi-breed model, in which Alpine and Saanen breeds were considered as a single breed; (2) a within-breed model, with separate genomic evaluation per breed; and (3) a multiple-trait model, in which a trait in the Alpine was assumed to be correlated to the same trait in the Saanen breed, using three levels of between-breed genetic correlations (ρ): ρ = 0, ρ = 0.99, or estimated ρ. Quality of genomic predictions was assessed on progeny-tested bucks, by cross-validation of the Pearson correlation coefficients for validation accuracy and the regression coefficients of daughter yield deviations (DYD) on genomic breeding values (GEBV). Model-based estimates of average accuracy were calculated on the 148 candidates.

Results

The genetic correlations between Alpine and Saanen breeds were highest for udder type traits, ranging from 0.45 to 0.76. Pearson correlations with the single-step approach were higher than previously reported with a two-step approach. Correlations between GEBV and DYD were similar for the three models (within-breed, multi-breed and multiple traits). Regression coefficients of DYD on GEBV were greater with the within-breed model and multiple-trait model with ρ = 0.99 than with the other models. The single-step approach improved prediction accuracy of candidates from 22 to 37% for both breeds compared to the two-step method.

Conclusions

Using a single-step approach with GBLUP, prediction accuracy of candidates was greater than that based on parent average of official evaluations and accuracies obtained with a two-step approach. Except for regression coefficients of DYD on GEBV, there were no significant differences between the three models.  相似文献   

4.

Background

Differences in linkage disequilibrium and in allele substitution effects of QTL (quantitative trait loci) may hinder genomic prediction across populations. Our objective was to develop a deterministic formula to estimate the accuracy of across-population genomic prediction, for which reference individuals and selection candidates are from different populations, and to investigate the impact of differences in allele substitution effects across populations and of the number of QTL underlying a trait on the accuracy.

Methods

A deterministic formula to estimate the accuracy of across-population genomic prediction was derived based on selection index theory. Moreover, accuracies were deterministically predicted using a formula based on population parameters and empirically calculated using simulated phenotypes and a GBLUP (genomic best linear unbiased prediction) model. Phenotypes of 1033 Holstein-Friesian, 105 Groninger White Headed and 147 Meuse-Rhine-Yssel cows were simulated by sampling 3000, 300, 30 or 3 QTL from the available high-density SNP (single nucleotide polymorphism) information of three chromosomes, assuming a correlation of 1.0, 0.8, 0.6, 0.4, or 0.2 between allele substitution effects across breeds. The simulated heritability was set to 0.95 to resemble the heritability of deregressed proofs of bulls.

Results

Accuracies estimated with the deterministic formula based on selection index theory were similar to empirical accuracies for all scenarios, while accuracies predicted with the formula based on population parameters overestimated empirical accuracies by ~25 to 30%. When the between-breed genetic correlation differed from 1, i.e. allele substitution effects differed across breeds, empirical and deterministic accuracies decreased in proportion to the genetic correlation. Using a multi-trait model, it was possible to accurately estimate the genetic correlation between the breeds based on phenotypes and high-density genotypes. The number of QTL underlying the simulated trait did not affect the accuracy.

Conclusions

The deterministic formula based on selection index theory estimated the accuracy of across-population genomic predictions well. The deterministic formula using population parameters overestimated the across-population genomic accuracy, but may still be useful because of its simplicity. Both formulas could accommodate for genetic correlations between populations lower than 1. The number of QTL underlying a trait did not affect the accuracy of across-population genomic prediction using a GBLUP method.  相似文献   

5.

Background

Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized to predict genetic merit in differing breeds based on simulation studies have been reported, as have the efficacies of predictors trained using data from multiple breeds to predict the genetic merit of purebreds. However, comparable studies using beef cattle field data have not been reported.

Methods

Molecular breeding values for weaning and yearling weight were derived and evaluated using a database containing BovineSNP50 genotypes for 7294 animals from 13 breeds in the training set and 2277 animals from seven breeds (Angus, Red Angus, Hereford, Charolais, Gelbvieh, Limousin, and Simmental) in the evaluation set. Six single-breed and four across-breed genomic predictors were trained using pooled data from purebred animals. Molecular breeding values were evaluated using field data, including genotypes for 2227 animals and phenotypic records of animals born in 2008 or later. Accuracies of molecular breeding values were estimated based on the genetic correlation between the molecular breeding value and trait phenotype.

Results

With one exception, the estimated genetic correlations of within-breed molecular breeding values with trait phenotype were greater than 0.28 when evaluated in the breed used for training. Most estimated genetic correlations for the across-breed trained molecular breeding values were moderate (> 0.30). When molecular breeding values were evaluated in breeds that were not in the training set, estimated genetic correlations clustered around zero.

Conclusions

Even for closely related breeds, within- or across-breed trained molecular breeding values have limited prediction accuracy for breeds that were not in the training set. For breeds in the training set, across- and within-breed trained molecular breeding values had similar accuracies. The benefit of adding data from other breeds to a within-breed training population is the ability to produce molecular breeding values that are more robust across breeds and these can be utilized until enough training data has been accumulated to allow for a within-breed training set.  相似文献   

6.

Background

Genomic predictions can be applied early in life without impacting selection candidates. This is especially useful for meat quality traits in sheep. Carcass and novel meat quality traits were predicted in a multi-breed sheep population that included Merino, Border Leicester, Polled Dorset and White Suffolk sheep and their crosses.

Methods

Prediction of breeding values by best linear unbiased prediction (BLUP) based on pedigree information was compared to prediction based on genomic BLUP (GBLUP) and a Bayesian prediction method (BayesR). Cross-validation of predictions across sire families was used to evaluate the accuracy of predictions based on the correlation of predicted and observed values and the regression of observed on predicted values was used to evaluate bias of methods. Accuracies and regression coefficients were calculated using either phenotypes or adjusted phenotypes as observed variables.

Results and conclusions

Genomic methods increased the accuracy of predicted breeding values to on average 0.2 across traits (range 0.07 to 0.31), compared to an average accuracy of 0.09 for pedigree-based BLUP. However, for some traits with smaller reference population size, there was no increase in accuracy or it was small. No clear differences in accuracy were observed between GBLUP and BayesR. The regression of phenotypes on breeding values was close to 1 for all methods, indicating little bias, except for GBLUP and adjusted phenotypes (regression = 0.78). Accuracies calculated with adjusted (for fixed effects) phenotypes were less variable than accuracies based on unadjusted phenotypes, indicating that fixed effects influence the latter. Increasing the reference population size increased accuracy, indicating that adding more records will be beneficial. For the Merino, Polled Dorset and White Suffolk breeds, accuracies were greater than for the Border Leicester breed due to the smaller sample size and limited across-breed prediction. BayesR detected only a few large marker effects but one region on chromosome 6 was associated with large effects for several traits. Cross-validation produced very similar variability of accuracy and regression coefficients for BLUP, GBLUP and BayesR, showing that this variability is not a property of genomic methods alone. Our results show that genomic selection for novel difficult-to-measure traits is a feasible strategy to achieve increased genetic gain.  相似文献   

7.

Background

The major obstacles for the implementation of genomic selection in Australian beef cattle are the variety of breeds and in general, small numbers of genotyped and phenotyped individuals per breed. The Australian Beef Cooperative Research Center (Beef CRC) investigated these issues by deriving genomic prediction equations (PE) from a training set of animals that covers a range of breeds and crosses including Angus, Murray Grey, Shorthorn, Hereford, Brahman, Belmont Red, Santa Gertrudis and Tropical Composite. This paper presents accuracies of genomically estimated breeding values (GEBV) that were calculated from these PE in the commercial pure-breed beef cattle seed stock sector.

Methods

PE derived by the Beef CRC from multi-breed and pure-breed training populations were applied to genotyped Angus, Limousin and Brahman sires and young animals, but with no pure-breed Limousin in the training population. The accuracy of the resulting GEBV was assessed by their genetic correlation to their phenotypic target trait in a bi-variate REML approach that models GEBV as trait observations.

Results

Accuracies of most GEBV for Angus and Brahman were between 0.1 and 0.4, with accuracies for abattoir carcass traits generally greater than for live animal body composition traits and reproduction traits. Estimated accuracies greater than 0.5 were only observed for Brahman abattoir carcass traits and for Angus carcass rib fat. Averaged across traits within breeds, accuracies of GEBV were highest when PE from the pooled across-breed training population were used. However, for the Angus and Brahman breeds the difference in accuracy from using pure-breed PE was small. For the Limousin breed no reasonable results could be achieved for any trait.

Conclusion

Although accuracies were generally low compared to published accuracies estimated within breeds, they are in line with those derived in other multi-breed populations. Thus PE developed by the Beef CRC can contribute to the implementation of genomic selection in Australian beef cattle breeding.  相似文献   

8.

Background

Nellore cattle play an important role in beef production in tropical systems and there is great interest in determining if genomic selection can contribute to accelerate genetic improvement of production and fertility in this breed. We present the first results of the implementation of genomic prediction in a Bos indicus (Nellore) population.

Methods

Influential bulls were genotyped with the Illumina Bovine HD chip in order to assess genomic predictive ability for weight and carcass traits, gestation length, scrotal circumference and two selection indices. 685 samples and 320 238 single nucleotide polymorphisms (SNPs) were used in the analyses. A forward-prediction scheme was adopted to predict the genomic breeding values (DGV). In the training step, the estimated breeding values (EBV) of bulls were deregressed (dEBV) and used as pseudo-phenotypes to estimate marker effects using four methods: genomic BLUP with or without a residual polygenic effect (GBLUP20 and GBLUP0, respectively), a mixture model (Bayes C) and Bayesian LASSO (BLASSO). Empirical accuracies of the resulting genomic predictions were assessed based on the correlation between DGV and dEBV for the testing group.

Results

Accuracies of genomic predictions ranged from 0.17 (navel at weaning) to 0.74 (finishing precocity). Across traits, Bayesian regression models (Bayes C and BLASSO) were more accurate than GBLUP. The average empirical accuracies were 0.39 (GBLUP0), 0.40 (GBLUP20) and 0.44 (Bayes C and BLASSO). Bayes C and BLASSO tended to produce deflated predictions (i.e. slope of the regression of dEBV on DGV greater than 1). Further analyses suggested that higher-than-expected accuracies were observed for traits for which EBV means differed significantly between two breeding subgroups that were identified in a principal component analysis based on genomic relationships.

Conclusions

Bayesian regression models are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions. Recurrent updates of the training population would be required to enable accurate prediction of the genetic merit of young animals. The technical feasibility of applying genomic prediction in a Bos indicus (Nellore) population was demonstrated. Further research is needed to permit cost-effective selection decisions using genomic information.  相似文献   

9.

Background

The accuracy of genomic prediction depends largely on the number of animals with phenotypes and genotypes. In some industries, such as sheep and beef cattle, data are often available from a mixture of breeds, multiple strains within a breed or from crossbred animals. The objective of this study was to compare the accuracy of genomic prediction for several economically important traits in sheep when using data from purebreds, crossbreds or a combination of those in a reference population.

Methods

The reference populations were purebred Merinos, crossbreds of Border Leicester (BL), Poll Dorset (PD) or White Suffolk (WS) with Merinos and combinations of purebred and crossbred animals. Genomic breeding values (GBV) were calculated based on genomic best linear unbiased prediction (GBLUP), using a genomic relationship matrix calculated based on 48 599 Ovine SNP (single nucleotide polymorphisms) genotypes. The accuracy of GBV was assessed in a group of purebred industry sires based on the correlation coefficient between GBV and accurate estimated breeding values based on progeny records.

Results

The accuracy of GBV for Merino sires increased with a larger purebred Merino reference population, but decreased when a large purebred Merino reference population was augmented with records from crossbred animals. The GBV accuracy for BL, PD and WS breeds based on crossbred data was the same or tended to decrease when more purebred Merinos were added to the crossbred reference population. The prediction accuracy for a particular breed was close to zero when the reference population did not contain any haplotypes of the target breed, except for some low accuracies that were obtained when predicting PD from WS and vice versa.

Conclusions

This study demonstrates that crossbred animals can be used for genomic prediction of purebred animals using 50 k SNP marker density and GBLUP, but crossbred data provided lower accuracy than purebred data. Including data from distant breeds in a reference population had a neutral to slightly negative effect on the accuracy of genomic prediction. Accounting for differences in marker allele frequencies between breeds had only a small effect on the accuracy of genomic prediction from crossbred or combined crossbred and purebred reference populations.  相似文献   

10.

Background

Genomic best linear unbiased prediction (GBLUP) is a statistical method used to predict breeding values using single nucleotide polymorphisms for selection in animal and plant breeding. Genetic effects are often modeled as additively acting marker allele effects. However, the actual mode of biological action can differ from this assumption. Many livestock traits exhibit genomic imprinting, which may substantially contribute to the total genetic variation of quantitative traits. Here, we present two statistical models of GBLUP including imprinting effects (GBLUP-I) on the basis of genotypic values (GBLUP-I1) and gametic values (GBLUP-I2). The performance of these models for the estimation of variance components and prediction of genetic values across a range of genetic variations was evaluated in simulations.

Results

Estimates of total genetic variances and residual variances with GBLUP-I1 and GBLUP-I2 were close to the true values and the regression coefficients of total genetic values on their estimates were close to 1. Accuracies of estimated total genetic values in both GBLUP-I methods increased with increasing degree of imprinting and broad-sense heritability. When the imprinting variances were equal to 1.4% to 6.0% of the phenotypic variances, the accuracies of estimated total genetic values with GBLUP-I1 exceeded those with GBLUP by 1.4% to 7.8%. In comparison with GBLUP-I1, the superiority of GBLUP-I2 over GBLUP depended strongly on degree of imprinting and difference in genetic values between paternal and maternal alleles. When paternal and maternal alleles were predicted (phasing accuracy was equal to 0.979), accuracies of the estimated total genetic values in GBLUP-I1 and GBLUP-I2 were 1.7% and 1.2% lower than when paternal and maternal alleles were known.

Conclusions

This simulation study shows that GBLUP-I1 and GBLUP-I2 can accurately estimate total genetic variance and perform well for the prediction of total genetic values. GBLUP-I1 is preferred for genomic evaluation, while GBLUP-I2 is preferred when the imprinting effects are large, and the genetic effects differ substantially between sexes.  相似文献   

11.

Background

Genomic selection and estimation of genomic breeding values (GBV) are widely used in cattle and plant breeding. Several studies have attempted to detect population subdivision by investigating the structure of the genomic relationship matrix G. However, the question of how these effects influence GBV estimation using genomic best linear unbiased prediction (GBLUP) has received little attention.

Methods

We propose a simple method to decompose G into two independent covariance matrices, one describing the covariance that results from systematic differences in allele frequencies between groups at the pedigree base (GA*) and the other describing genomic relationships (GS) corrected for these differences. Using this decomposition and Fst statistics, we examined whether observed genetic distances between genotyped subgroups within populations resulted from the heterogeneous genetic structure present at the base of the pedigree and/or from breed divergence. Using this decomposition, we tested three models in a forward prediction validation scenario on six traits using Brown Swiss and dual-purpose Fleckvieh cattle data. Model 0 (M0) used both components and is equivalent to the model using the standard G-matrix. Model 1 (M1) used GS only and model 2 (M2), an extension of M1, included a fixed genetic group effect. Moreover, we analyzed the matrix of contributions of each base group (Q) and estimated the effects and prediction errors of each base group using M0 and M1.

Results

The proposed decomposition of G helped to examine the relative importance of the effects of base groups and segregation in a given population. We found significant differences between the effects of base groups for each breed. In forward prediction, differences between models in terms of validation reliability of estimated direct genomic values were small but predictive power was consistently lowest for M1. The relative advantage of M0 or M2 in prediction depended on breed, trait and genetic composition of the validation group. Our approach presents a general analogy with the use of genetic groups in conventional animal models and provides proof that standard GBLUP using G yields solutions equivalent to M0, where base groups are considered as correlated random effects within the additive genetic variance assigned to the genetic base.  相似文献   

12.

Background

In contrast to currently used single nucleotide polymorphism (SNP) panels, the use of whole-genome sequence data is expected to enable the direct estimation of the effects of causal mutations on a given trait. This could lead to higher reliabilities of genomic predictions compared to those based on SNP genotypes. Also, at each generation of selection, recombination events between a SNP and a mutation can cause decay in reliability of genomic predictions based on markers rather than on the causal variants. Our objective was to investigate the use of imputed whole-genome sequence genotypes versus high-density SNP genotypes on (the persistency of) the reliability of genomic predictions using real cattle data.

Methods

Highly accurate phenotypes based on daughter performance and Illumina BovineHD Beadchip genotypes were available for 5503 Holstein Friesian bulls. The BovineHD genotypes (631,428 SNPs) of each bull were used to impute whole-genome sequence genotypes (12,590,056 SNPs) using the Beagle software. Imputation was done using a multi-breed reference panel of 429 sequenced individuals. Genomic estimated breeding values for three traits were predicted using a Bayesian stochastic search variable selection (BSSVS) model and a genome-enabled best linear unbiased prediction model (GBLUP). Reliabilities of predictions were based on 2087 validation bulls, while the other 3416 bulls were used for training.

Results

Prediction reliabilities ranged from 0.37 to 0.52. BSSVS performed better than GBLUP in all cases. Reliabilities of genomic predictions were slightly lower with imputed sequence data than with BovineHD chip data. Also, the reliabilities tended to be lower for both sequence data and BovineHD chip data when relationships between training animals were low. No increase in persistency of prediction reliability using imputed sequence data was observed.

Conclusions

Compared to BovineHD genotype data, using imputed sequence data for genomic prediction produced no advantage. To investigate the putative advantage of genomic prediction using (imputed) sequence data, a training set with a larger number of individuals that are distantly related to each other and genomic prediction models that incorporate biological information on the SNPs or that apply stricter SNP pre-selection should be considered.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0149-x) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16 traits in the Nordic Holstein population.

Methods

The data consisted of de-regressed proofs (DRP) for 5 214 genotyped and 9 374 non-genotyped bulls. The bulls were divided into a training and a validation population by birth date, October 1, 2001. Five approaches for genomic prediction were used: 1) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted for the difference of scale between the genomic and the pedigree relationship matrices. A set of weights on the pedigree relationship matrix (ranging from 0.05 to 0.40) was used to build the combined relationship matrix in the single-step blending method and the GBLUP method with a polygenetic effect.

Results

Averaged over the 16 traits, reliabilities of genomic breeding values predicted using the GBLUP method with a polygenic effect (relative weight of 0.20) were 0.3% higher than reliabilities from the simple GBLUP method (without a polygenic effect). The adjusted single-step blending and original single-step blending methods (relative weight of 0.20) had average reliabilities that were 2.1% and 1.8% higher than the simple GBLUP method, respectively. In addition, the GBLUP method with a polygenic effect led to less bias of genomic predictions than the simple GBLUP method, and both single-step blending methods yielded less bias of predictions than all GBLUP methods.

Conclusions

The single-step blending method is an appealing approach for practical genomic prediction in dairy cattle. Genomic prediction from the single-step blending method can be improved by adjusting the scale of the genomic relationship matrix.  相似文献   

14.

Background

Genomic BLUP (GBLUP) can predict breeding values for non-phenotyped individuals based on the identity-by-state genomic relationship matrix (G). The G matrix can be constructed from thousands of markers spread across the genome. The strongest assumption of G and consequently of GBLUP is that all markers contribute equally to the genetic variance of a trait. This assumption is violated for traits that are controlled by a small number of quantitative trait loci (QTL) or individual QTL with large effects. In this paper, we investigate the performance of using a weighted genomic relationship matrix (wG) that takes into consideration the genetic architecture of the trait in order to improve predictive ability for a wide range of traits. Multiple methods were used to calculate weights for several economically relevant traits in US Holstein dairy cattle. Predictive performance was tested by k-means cross-validation.

Results

Relaxing the GBLUP assumption of equal marker contribution by increasing the weight that is given to a specific marker in the construction of the trait-specific G resulted in increased predictive performance. The increase was strongest for traits that are controlled by a small number of QTL (e.g. fat and protein percentage). Furthermore, bias in prediction estimates was reduced compared to that resulting from the use of regular G. Even for traits with low heritability and lower general predictive performance (e.g. calving ease traits), weighted G still yielded a gain in accuracy.

Conclusions

Genomic relationship matrices weighted by marker realized variance yielded more accurate and less biased predictions for traits regulated by few QTL. Genome-wide association analyses were used to derive marker weights for creating weighted genomic relationship matrices. However, this can be cumbersome and prone to low stability over generations because of erosion of linkage disequilibrium between markers and QTL. Future studies may include other sources of information, such as functional annotation and gene networks, to better exploit the genetic architecture of traits and produce more stable predictions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0100-1) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

The one-step blending approach has been suggested for genomic prediction in dairy cattle. The core of this approach is to incorporate pedigree and phenotypic information of non-genotyped animals. The objective of this study was to investigate the improvement of the accuracy of genomic prediction using the one-step blending method in Chinese Holstein cattle.

Findings

Three methods, GBLUP (genomic best linear unbiased prediction), original one-step blending with a genomic relationship matrix, and adjusted one-step blending with an adjusted genomic relationship matrix, were compared with respect to the accuracy of genomic prediction for five milk production traits in Chinese Holstein. For the two one-step blending methods, de-regressed proofs of 17 509 non-genotyped cows, including 424 dams and 17 085 half-sisters of the validation cows, were incorporated in the prediction model. The results showed that, averaged over the five milk production traits, the one-step blending increased the accuracy of genomic prediction by about 0.12 compared to GBLUP. No further improvement in accuracies was obtained from the adjusted one-step blending over the original one-step blending in our situation. Improvements in accuracies obtained with both one-step blending methods were almost completely contributed by the non-genotyped dams.

Conclusions

Compared with GBLUP, the one-step blending approach can significantly improve the accuracy of genomic prediction for milk production traits in Chinese Holstein cattle. Thus, the one-step blending is a promising approach for practical genomic selection in Chinese Holstein cattle, where the reference population mainly consists of cows.  相似文献   

16.

Background

While several studies have examined the accuracy of direct genomic breeding values (DGV) within and across purebred cattle populations, the accuracy of DGV in crossbred or multi-breed cattle populations has been less well examined. Interest in the use of genomic tools for both selection and management has increased within the hybrid seedstock and commercial cattle sectors and research is needed to determine their efficacy. We predicted DGV for six traits using training populations of various sizes and alternative Bayesian models for a population of 3240 crossbred animals. Our objective was to compare alternate models with different assumptions regarding the distributions of single nucleotide polymorphism (SNP) effects to determine the optimal model for enhancing feasibility of multi-breed DGV prediction for the commercial beef industry.

Results

Realized accuracies ranged from 0.40 to 0.78. Randomly assigning 60 to 70% of animals to training (n ≈ 2000 records) yielded DGV accuracies with the smallest coefficients of variation. Mixture models (BayesB95, BayesCπ) and models that allow SNP effects to be sampled from distributions with unequal variances (BayesA, BayesB95) were advantageous for traits that appear or are known to be influenced by large-effect genes. For other traits, models differed little in prediction accuracy (~0.3 to 0.6%), suggesting that they are mainly controlled by small-effect loci.

Conclusions

The proportion (60 to 70%) of data allocated to training that optimized DGV accuracy and minimized the coefficient of variation of accuracy was similar to large dairy populations. Larger effects were estimated for some SNPs using BayesA and BayesB95 models because they allow unequal SNP variances. This substantially increased DGV accuracy for Warner-Bratzler Shear Force, for which large-effect quantitative trait loci (QTL) are known, while no loss in accuracy was observed for traits that appear to follow the infinitesimal model. Large decreases in accuracy (up to 0.07) occurred when SNPs that presumably tag large-effect QTL were over-regressed towards the mean in BayesC0 analyses. The DGV accuracies achieved here indicate that genomic selection has predictive utility in the commercial beef industry and that using models that reflect the genomic architecture of the trait can have predictive advantages in multi-breed populations.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0106-8) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

Genomic selection has become an important tool in the genetic improvement of animals and plants. The objective of this study was to investigate the impacts of breeding value estimation method, reference population structure, and trait genetic architecture, on long-term response to genomic selection without updating marker effects.

Methods

Three methods were used to estimate genomic breeding values: a BLUP method with relationships estimated from genome-wide markers (GBLUP), a Bayesian method, and a partial least squares regression method (PLSR). A shallow (individuals from one generation) or deep reference population (individuals from five generations) was used with each method. The effects of the different selection approaches were compared under four different genetic architectures for the trait under selection. Selection was based on one of the three genomic breeding values, on pedigree BLUP breeding values, or performed at random. Selection continued for ten generations.

Results

Differences in long-term selection response were small. For a genetic architecture with a very small number of three to four quantitative trait loci (QTL), the Bayesian method achieved a response that was 0.05 to 0.1 genetic standard deviation higher than other methods in generation 10. For genetic architectures with approximately 30 to 300 QTL, PLSR (shallow reference) or GBLUP (deep reference) had an average advantage of 0.2 genetic standard deviation over the Bayesian method in generation 10. GBLUP resulted in 0.6% and 0.9% less inbreeding than PLSR and BM and on average a one third smaller reduction of genetic variance. Responses in early generations were greater with the shallow reference population while long-term response was not affected by reference population structure.

Conclusions

The ranking of estimation methods was different with than without selection. Under selection, applying GBLUP led to lower inbreeding and a smaller reduction of genetic variance while a similar response to selection was achieved. The reference population structure had a limited effect on long-term accuracy and response. Use of a shallow reference population, most closely related to the selection candidates, gave early benefits while in later generations, when marker effects were not updated, the estimation of marker effects based on a deeper reference population did not pay off.  相似文献   

18.

Background

Genomic selection makes it possible to reduce pedigree-based inbreeding over best linear unbiased prediction (BLUP) by increasing emphasis on own rather than family information. However, pedigree inbreeding might not accurately reflect loss of genetic variation and the true level of inbreeding due to changes in allele frequencies and hitch-hiking. This study aimed at understanding the impact of using long-term genomic selection on changes in allele frequencies, genetic variation and level of inbreeding.

Methods

Selection was performed in simulated scenarios with a population of 400 animals for 25 consecutive generations. Six genetic models were considered with different heritabilities and numbers of QTL (quantitative trait loci) affecting the trait. Four selection criteria were used, including selection on own phenotype and on estimated breeding values (EBV) derived using phenotype-BLUP, genomic BLUP and Bayesian Lasso. Changes in allele frequencies at QTL, markers and linked neutral loci were investigated for the different selection criteria and different scenarios, along with the loss of favourable alleles and the rate of inbreeding measured by pedigree and runs of homozygosity.

Results

For each selection criterion, hitch-hiking in the vicinity of the QTL appeared more extensive when accuracy of selection was higher and the number of QTL was lower. When inbreeding was measured by pedigree information, selection on genomic BLUP EBV resulted in lower levels of inbreeding than selection on phenotype BLUP EBV, but this did not always apply when inbreeding was measured by runs of homozygosity. Compared to genomic BLUP, selection on EBV from Bayesian Lasso led to less genetic drift, reduced loss of favourable alleles and more effectively controlled the rate of both pedigree and genomic inbreeding in all simulated scenarios. In addition, selection on EBV from Bayesian Lasso showed a higher selection differential for mendelian sampling terms than selection on genomic BLUP EBV.

Conclusions

Neutral variation can be shaped to a great extent by the hitch-hiking effects associated with selection, rather than just by genetic drift. When implementing long-term genomic selection, strategies for genomic control of inbreeding are essential, due to a considerable hitch-hiking effect, regardless of the method that is used for prediction of EBV.  相似文献   

19.

Background

Accuracy of genomic prediction depends on number of records in the training population, heritability, effective population size, genetic architecture, and relatedness of training and validation populations. Many traits have ordered categories including reproductive performance and susceptibility or resistance to disease. Categorical scores are often recorded because they are easier to obtain than continuous observations. Bayesian linear regression has been extended to the threshold model for genomic prediction. The objective of this study was to quantify reductions in accuracy for ordinal categorical traits relative to continuous traits.

Methods

Efficiency of genomic prediction was evaluated for heritabilities of 0.10, 0.25 or 0.50. Phenotypes were simulated for 2250 purebred animals using 50 QTL selected from actual 50k SNP (single nucleotide polymorphism) genotypes giving a proportion of causal to total loci of.0001. A Bayes C π threshold model simultaneously fitted all 50k markers except those that represented QTL. Estimated SNP effects were utilized to predict genomic breeding values in purebred (n = 239) or multibreed (n = 924) validation populations. Correlations between true and predicted genomic merit in validation populations were used to assess predictive ability.

Results

Accuracies of genomic estimated breeding values ranged from 0.12 to 0.66 for purebred and from 0.04 to 0.53 for multibreed validation populations based on Bayes C π linear model analysis of the simulated underlying variable. Accuracies for ordinal categorical scores analyzed by the Bayes C π threshold model were 20% to 50% lower and ranged from 0.04 to 0.55 for purebred and from 0.01 to 0.44 for multibreed validation populations. Analysis of ordinal categorical scores using a linear model resulted in further reductions in accuracy.

Conclusions

Threshold traits result in markedly lower accuracy than a linear model on the underlying variable. To achieve an accuracy equal or greater than for continuous phenotypes with a training population of 1000 animals, a 2.25 fold increase in training population size was required for categorical scores fitted with the threshold model. The threshold model resulted in higher accuracies than the linear model and its advantage was greatest when training populations were smallest.  相似文献   

20.

Background

The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used.

Methods

Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content.

Results

In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip.

Conclusions

Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号