首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1∶1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.  相似文献   

2.
IntroductionA number of plant species, including Cymbopogon schoenanthus, are traditionally used for the treatment of various diseases. C. schoenanthus is currently, traded in the Saudi markets, and thought to have medicinal value. This study aimed at investigating the biological activities of C. schoenanthus against both Gram-positive and Gram-negative bacteria and to identify its chemical ingredients.Materials and methodsThe inhibitory effects of water extracts of C. schoenanthus essential oils were evaluated against ten isolates of both Gram-positive and Gram-negative bacteria using the agar well diffusion and dilution methods. The minimum inhibitory concentration (MIC) was assayed using the Broth microdilution test on five of the ten isolates. The death rates were determined by the time kill assay, done according to the Clinical Laboratory Standards Institute (CLSI) guidelines. The chemical composition of the essential oils of the plant was performed using GC/MS.ResultsThe C. schoenanthus essential oil was effective against Escherichia coli, Staphylococcus aureus, methicillin-sensitive (MSSA) S. aureus (MRSA) and Klebsiella pneumoniae. The essential oil was not effective against Staphylococcus saprophyticus at the highest concentration applied of >150 μg/ml. The MIC values were as follows: 9.37 μg/ml for E. coli 4.69 μg/ml for S. aureus (MRSA), 2.34 mg/ml for MSSA and 2.34 μg/ml for K. pneumoniae. The time-kill assay indicated that there was a sharp time dependent decline in K. pneumoniae counts in the presence of the oil. This is in contrast to a gradual decline in the case of S. aureus under the same conditions. The eight major components of the essential oil were: piperitone (14.6%), cyclohexanemethanol (11.6%), β-elemene (11.6%), α-eudesmol (11.5%), elemol (10.8%), β-eudesmol (8.5%), 2-naphthalenemethanol (7.1%) and γ-eudesmol (4.2%).ConclusionThe results of the present study provide a scientific validation for the traditional use of C. schoenanthus as an antibacterial agent. Future work is needed to investigate and explore its application in the environmental and medical fields. In addition, to evaluating the efficacy of the individual ingredients separately to better understand the underlying mechanism.  相似文献   

3.
Aim of the studyThe aerial parts of Thymus kotschyanus Boiss. and Hohen. (Lamiaceae) and flower buds of Dianthus caryophyllus L. (Caryophyllaceae) have been traditionally implemented in the treatment of wounds, throat and gum infections and gastro-intestinal disorder by the indigenous people of northern Iraq, although the compounds responsible for the medicinal properties have not been identified. In this study, antibacterial compounds from both plants were isolated and characterized, and the biological activity of each compound was assessed individually and combined.Materials and methodsCompounds were isolated and characterized from the extracted essential oils of both plants using different spectral techniques: TLC, FTIR spectra and HPLC. The minimum inhibitory concentrations MIC values for the compounds were assessed individually and combined based on a microdilution and the checkerboard method in 96 multi-well microtiter plates.ResultsTwo known compounds were isolated from the essential oils of both plants and were identified as thymol and eugenol. The isolated compounds were investigated for their single and combined antibacterial activities against seven selected pathogenic bacteria; Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Thymol MIC values ranged from 15.6 to 250.0 μg/ml and B. cereus was found to be the most sensitive pathogen with a MIC value of 15.6 μg/ml. Eugenol achieved stronger MIC values against most tested pathogens and the best MIC value (15.6 μg/ml) was observed against B. cereus, L. monocytogenes and K. pneumoniae whereas, S. aureus, P. mirabilis and E. coli were inhibited with a MIC value of 31.2 μg/ml. Combination results had antibacterial enhancement against most pathogens and the best synergistic result was seen against P. mirabilis and E. coli.ConclusionsThe isolation of two antibacterial compounds from Thymus kotschyanus aerial parts and Dianthus caryophyllus flower buds validates the use of these species in the treatment of throat and gum infections, wound-healing and gastro-intestinal disorder.  相似文献   

4.
BackgroundPharmacological screening and usage of natural products for the treatment of human diseases has had a long history from traditional medicine to modern drugs. The majority of modern drugs are reported to be mostly from natural products.ObjectiveThe aim of the present study was to evaluate the inhibitory activity of 5-(2,4-dimethylbenzyl) pyrrolidin-2-one (DMBPO) extracted from marine Streptomyces VITSVK5 spp. isolated from sediment samples collected at Marakkanam coast of Bay of Bengal, India.MethodsThe lead compound was isolated by bioactive guided extraction and purified by silica gel column chromatography. Structural elucidation of the lead compound was carried out by using UV, FT-IR, 1H NMR, 13C NMR, DEPT and HR-MS spectral data.ResultsSystematic screening of isolates for antimicrobial activity lead to identification of a potential strain, Streptomyces VITSVK5 spp. (GQ848482). Bioactivity guided extraction yielded a compound DMBPO and its inhibitory activity was tested against selected bacterial and fungal strains. DMBPO showed maximal activity against Escherichia coli with a MIC value of 187 μg/ml, followed by Klebsiella pneumoniae (MIC of 220 μg/ml and 10.3 mm zone of inhibition), Staphylococcus aureus (MIC of >1000 μg/ml and 4.4 mm zone of inhibition) and Bacillus subtilis (MIC of 850 μg/ml and 2.6 mm zone of inhibition). Furthermore, DMBPO was found to be a potent inhibitor of opportunistic fungal pathogens too. It showed a maximum activity against Aspergillus niger with a MIC value of 1 μg/ml and 28 mm zone of inhibition.ConclusionThe result of this study indicates that DMBPO possess antibiotic activity to selected bacterial and fungal pathogens and exhibited better activity against fungi than bacteria.  相似文献   

5.
A highly sensitive electrochemical DNA biosensor made of polyaniline (PANI) and gold nanoparticles (AuNPs) nanocomposite (AuNPs@PANI) has been used for the detection of trace concentration of Ag+. In the presence of Ag+, with the interaction of cytosine–Ag+–cytosine (C–Ag+–C), cytosine-rich DNA sequence immobilized onto the surface of AuNPs@PANI has a self-hybridization and then forms a duplex-like structure. The whole detection procedure of Ag+ based on the developed biosensor was evaluated by electrochemical impedance spectroscopy. On semi-logarithmic plots of the log Ag+ concentration versus peak current, the results show that the prepared biosensor can detect silver ions at a wide linear range of 0.01–100 nM (R = 0.9828) with a detection limit of 10 pM (signal/noise = 3). Moreover, the fabricated sensor exhibits good selectivity and repeatability. The detection of Ag+ was determined by Ag+ self-induced conformational change of DNA scaffold that involved only one oligonucleotide, showing its convenience and availability.  相似文献   

6.
Cytotoxic T cells (CTLs) constitute an important component of the specific effector mechanism in killing against microbial-infected or transformed cells. In addition to these activities, recent studies in mammals have suggested that CTLs can exhibit direct antimicrobial activity. Therefore, the present investigation was conducted to find out the microbicidal activity of CD8α+ T cells of ginbuna crucian carp, Carassius auratus langsdorfii. The CD8α+ T cells from immunised ginbuna exhibited the antibacterial activity against both facultative intracellular bacteria and extracellular bacteria. The maximum reduction of viable count of pathogens was recorded with effector (sensitized) cells and target (bacteria) ratio of 10:1 co-incubated for a period of 1–2 h at 26 °C when effector cells were derived from ginbuna 7 days after one booster dose at 15th day of primary sensitization/immunisation. Sensitized CD8α+ T cells are found to kill 92.1 and 98.9% of Lactococcus garvieae and Edwardsiella tarda, respectively. No significant difference in the bacterial killing activity could be recorded against facultative intracellular bacteria and extracellular bacteria. The specificity study indicated the non-specific killing of bacteria. CD8α+ T cells from E. tarda immunised ginbuna exhibited 40% of non-specific killing activity against L. garvieae and those from L. garvieae immunised ginbuna showed 42.7% of non-specific killing activity against E. tarda. Furthermore, CD4+ T cells also killed 88% and 95.7% of L. garvieae and E. tarda, respectively. In addition to T cell subsets, surface IgM+ cells also killed both types of pathogens. Therefore, the present study demonstrated the direct antibacterial activity of CD8α+, CD4+ T-cells and surface IgM+ cells in fish.  相似文献   

7.
IntroductionThe use of chemical products to neutralize microorganisms has always been a subject of discussion and research for alternative solutions, indeed, the use of essential oils has been a promising natural methodology.MethodsIn our study we used the essential oils from different parts of Thapsia transtagana (Apiaceae), obtained by hydrodistillation, were identified and using Gas chromatography–mass spectrometry (GC–MS) and Gas Chromatography-Flame Ionization Detection (GC/FID) methods and evaluated against several bacteria of Gram- and Gram + bacteria. Disk diffusion, Minimum Inhibitory Concentration (MIC) and Minimum Microbicidal Concentration (MMC) methods have been used. Free radical-scavenging activity and insecticidal activity of Thapsia transtagana essential oils were also identified.ResultsMajority products from different parts of Thapsia transtagana essential oil identified by GC–MS and GC/FID methods are 2,6-Dimethylnaphthalene, Pinane and Hexahydrofarnesyl acetone. The highest activity was found against Staphylococcus aureus using inflorescence essential oil with minimal inhibitory concentration value for 0,56 μg/μL. Insecticidal activity was also the subject of this study, roots and inflorescence essential oils demonstrated to have a remarkable potent against Acanthoscelides obtectus and Sitophilus oryzae using contact assessment, inhalation assessment and ingestion assessment tests. Insecticidal activity assay results showed a significant enhancement of mortality in both test insect pest on increasing the dose and exposure period. In the other hand, the different essential oils of Thapsia transtagana were evaluated for their radical scavenging activities by means of the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay. The strongest scavenging activity was observed in inflorescences essential oil fraction scavenged radicals effectively at 100% using 500 mgL-1 concentration.ConclusionIts essential oils were proved to have strong antimicrobial, insecticidal and antioxidant activities that allows it to be used by the pharmaceutical and cosmetic industries as natural preservative.  相似文献   

8.
BackgroundThe worldwide emergence of antibiotic resistance represents a serious medical threat. The ability of these resistant pathogens to form biofilms that are highly tolerant to antibiotics further aggravates the situation and leads to recurring infections. Thus, new therapeutic approaches that adopt novel mechanisms of action are urgently needed. To address this significant problem, we conjugated the antibiotic kanamycin with a novel antimicrobial peptide (P14LRR) to develop a kanamycin peptide conjugate (P14KanS).MethodsAntibacterial activities were evaluated in vitro and in vivo using a Caenorhabditis elegans model. Additionally, the mechanism of action, antibiofilm activity and anti-inflammatory effect of P14KanS were investigated.ResultsP14KanS exhibited potent antimicrobial activity against ESKAPE pathogens. P14KanS demonstrated a ≥ 128-fold improvement in MIC relative to kanamycin against kanamycin-resistant strains. Mechanistic studies confirmed that P14KanS exerts its antibacterial effect by selectively disrupting the bacterial cell membrane. Unlike many antibiotics, P14KanS demonstrated rapid bactericidal activity against stationary phases of both Gram-positive and Gram-negative pathogens. Moreover, P14KanS was superior in disrupting adherent bacterial biofilms and in killing intracellular pathogens as compared to conventional antibiotics. Furthermore, P14KanS demonstrated potent anti-inflammatory activity via the suppression of LPS-induced proinflammatory cytokines. Finally, P14KanS protected C. elegans from lethal infections of both Gram-positive and Gram-negative pathogens.ConclusionsThe potent in vitro and in vivo activity of P14KanS warrants further investigation as a potential therapeutic agent for bacterial infections.General significanceThis study demonstrates that equipping kanamycin with an antimicrobial peptide is a promising method to tackle bacterial biofilms and address bacterial resistance to aminoglycosides.  相似文献   

9.
In the current study, both the essential oil composition and biological activity of Saussurea lappa and Ligusticum sinensis were investigated by means of microwave-assisted hydrodistillation (MAHD) and characterized by Gas chromatography/mass spectrometry (GC/MS), whereas the antimicrobial efficiency of MAHD essential oils was examined against four pathogens: Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Candida albicans responsible for microbial infections. The goal was to spot synergy and a favorable method that gives essential oils to possibly use as alternatives to common antimicrobial agents for the treatment of bacterial infections using a microdilution assay. S. lappa's 21 compounds were characterized by MAHD extraction. Sesquiterpene lactones (39.7 % MAHD) represented the major components, followed by sesquiterpene dialdehyde (25.50 % MAHD), while L. sinensis's 14 compounds were identified by MAHD extraction. Tetrahydroisobenzofurans (72.94 % MAHD) was the predominant compound class. S. lappa essential oil collection showed the strongest antimicrobial activity with MIC values of 16 μg/ml against all pathogens tested, while L. sinensis showed strong antibacterial activity and moderate antifungal activity with MIC values of 32 μg/ml and 500 μg/ml, respectively. The principal components of both oils, (velleral, eremanthin and neocnidilide), were docked into the bacterial histidine kinase (HK) and the fungal heat shock protein 90 (Hsp90).  相似文献   

10.
Colloidal silver has been known to have unique antimicrobial activity that may be useful in the construction of antibacterial materials (self-cleaning materials) to aid in the fight against bacteria-related infections. In this study, silver-coated TiO2 (Ag/TiO2) particles prepared through the photo-reduction of Ag+ were investigated as an antibacterial agent against Escherichia coli and Staphylococcus aureus. The deposition of Ag onto the surface was confirmed with SEM and EDS analysis of the post-reaction particles. It was also determined that the initial concentration of Ag+ in solution played a significant role in the effective size of the post-irradiation particles. The antibacterial effectiveness of the Ag/TiO2 was evaluated through the determination of the minimum inhibitory concentration (MIC) of AgTiO2 for each species of bacteria. The MIC values for the Ag/TiO2, on both E. coli and S. aureus, were much lower than the MIC values for Ag metal, and quite comparable to the MIC values for AgNO3. A disc diffusion/antibiotic sensitivity test was also performed using the Ag/TiO2 particles and the results compared with the results obtained for Ag metal, AgNO3 and common antibacterial agents; tetracycline, chloramphenicol, erythromycin, and neomycin. The zone of inhibition diameters for the Ag/TiO2 particles were found to be comparable with those of the other antimicrobial agents.  相似文献   

11.
Waterborne free silver can cause osmo- and ionoregulatory disturbances in freshwater organisms. The effects of a short-term exposure to extracellular Ag+ ions on membrane currents were investigated in voltage-clamped defolliculated Xenopus oocytes. At a holding potential of − 60 mV, ionic silver (1 μM Ag+) increased inward currents (=IAg) from − 8 ± 2 nA to − 665 ± 41 nA (n = 74; N = 27). IAg activated within 2 min of silver exposure and then rose impetuously. This current was largely reversible by washout and repeatable. IAg reversed around − 30 mV and rectified slightly at more positive potentials. Na+-free bath conditions reduced the silver-induced current to a smaller but sustained current. The response to silver was abolished by the Cl channel blockers DIDS and SITS, whereas niflumic acid strongly potentiated IAg. Intraoocyte injection of AgNO3 to about 1 mM [Ag]i strongly potentiated IAg. Extracellular application of either dithiothreitol (DTT), a compound known to reduce disulfide bridges, or l-cysteine abolished Ag+-activated increase of membrane current. In contrast, n-ethylmaleimide (NEM) which oxidizes SH-groups potentiated IAg. Hypoosmotic bath solution significantly increased IAg whereas hyperosmolar conditions attenuated IAg. The activation of IAg was largely preserved after chelation of cytosolic Ca2+ ions with BAPTA/AM. Taken together, these data suggest that Xenopus oocytes are sensitive to short-term exposure to waterborne Ag+ ions and that the elicited membrane currents result from extra- and intracellular action of Ag+ ions on peptide moieties at the oocyte membrane but may also affect conductances after internalization.  相似文献   

12.
Pre-treatment of brewer's yeast (Saccharomyces cerevisiae) cells with silver acetate or nitrate at concentrations of 20 nmol/l or higher caused a dramatic increase in the number of cells which rotated in the same direction as the field (‘Co-field rotation’). The change in rotation of single cells correlated very well with the chemically observed loss of potassium induced by Ag+. The sensitivity to Ag+ was lowered by increasing the cell concentration, and the extent of this change can be used to estimate the binding of Ag+ per cell and the limiting sensitivity of the method. The Ag+ concentration required to induce a response was found to be increased significantly in the presence of alkali ions (especially K+) during the Ag+ incubation. The Ag+ sensitivity was, therefore, observed to be a function of the type and strength of buffer used in the incubation. Under certain conditions, 1 mM Ca2+ increased the Ag+ sensitivity. These observations show that the presence or absence of ions that are so common that they are often overlooked may have interesting consequences for the bio-assay of heavy metals.  相似文献   

13.
Filamentous bacterial belonged to Streptomyces species were novel drug source for medical and industrial applications. However, the detailed identification of Streptomyces species from Saudi Arabian extreme environment for the identification novel drug source for medical and industrial applications were rarely studied. The Streptomyces strain Al-Dhabi-2 obtained from the thermophilic region kingdom of Saudi Arabia, exhibited antimicrobial potentials against the pathogenic microorganism were characterized. Biochemical and phylogenetic analysis confirmed that the strain was closely associated to the Streptomyces species. The chromatogram of GC-MS analysis of this ethyl acetate extract (EA) had diverse of chemical compounds namely benzene acetic acid (7.81%), acetic acid, methoxy-, 2-phenylethyl ester (6.01%) were the major compounds. EA of Al-Dhabi-2 showed inhibition zone ranged from 14 to 25 mm at 5 mg/well concentration against the tested microbial pathogens. Results revealed that the significant MIC values were observed against B. cereus, and E. faecalis by (less than 39 μg/ml) and against S. agalactiae with (78 μg/ml). Minimum inhibitory concentrations (MIC) for fungi: were also reported against Cryptococcus neoformans and Trichophyton mentagrophytes by (156 μg/ml), whilst Candida albicans and Aspergillus niger by (312 μg/ml). Results of this study showed that thermophilic actinobacteria could be promise source in the context of searching for unique antimicrobial agents with novel properties.  相似文献   

14.
The crude extracts of Dietes bicolor leaves, flowers and rhizomes were subjected to comparative antimicrobial screening against two Gram-positive, two Gram-negative bacteria and four fungal strains using the agar well diffusion method. The minimum inhibitory concentrations (MIC) of the tested extracts were also determined. Furthermore, the cytotoxic activity was evaluated. D. bicolor extracts generally demonstrated notable broad spectrum antimicrobial activities (MIC values  500 μg/mL) against all tested pathogens. D. bicolor leaf extract showed potent broad spectrum antimicrobial activity with MIC values ranging between 0.24 and 31.25 μg/mL against all tested pathogens. Moreover, the flowers extract exhibited promising antimicrobial activities, displaying MIC values ranging between 1.95 and 125 μg/mL against the tested bacteria and fungi. However, the rhizomes extract showed moderate antimicrobial activity with MIC values ranging between 31.25 and 500 μg/mL. Despite the potent antimicrobial activity of D. bicolor extracts, they were ineffective as cytotoxic agents against nine tested cancer cell lines, displaying 50% inhibitory concentration (IC50) values above 100 μg/mL. The reported potent antimicrobial activity along with the lack of measurable cytotoxic activity indicated that the antimicrobial activity of D. bicolor crude extracts is mediated through a mechanism other than cytotoxicity. These results suggest that D. bicolor can act as a potential source for natural antibacterial and antifungal agents with a good safety profile at a preliminary level.  相似文献   

15.
《Phytomedicine》2015,22(2):245-255
The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics.The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml).Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75–1). In time-kill assays all three-drug combinations exhibited a powerful bactericidal synergistic effect against MRSA NCTC 10442, VRE ATCC 51299, and E. coli ATCC 25922 with a reduction of more than 3log10 in the colony count after 24 h. Our findings suggest that bee venom and melittin synergistically enhanced the bactericidal effect of several antimicrobial agents when applied in combination especially when the drugs affect several and differing molecular targets. These results could lead to the development of novel or complementary antibacterial drugs against MDR pathogens.  相似文献   

16.
Enteric fever caused by Salmonella typhi has been the most crucial health issue in rural people, especially in Southeast Asia and Africa. Another disease, Salmonellosis, caused by a large group of bacteria of the genus Salmonella, cause substantial economic loss resulting from mortality and morbidity. Higher concentration and repeated use of antibiotics to treat these diseases will likely develop antibiotic resistance among the microbes. The nanoparticle has good penetration power and can kill microbes. Combining two strategies by using nanoparticles with antibiotics kills microbes and reduces the chances of the development of antibiotics resistance. Silver, Nickel, Copper, and Zinc oxide Nanoparticles were chemically synthesized and characterized in this study. Silver nanoparticles at a concentration of 10 µg/ml inhibit all the strains under study.In comparison, silver nanoparticles (16.90 µg/ml), Nickel nanoparticles (83 µg ml?1), Copper nanoparticles (249 µg ml?1), and Zinc oxide (1614 µg ml?1) along with 50 µg/ml cefixime gave maximum zone of inhibition of 35 mm, 19 mm, 31 mm and 23 mm respectively. The antimicrobial assay showed that silver nanoparticles presented good antibacterial performance against all multi-drug-resistant pathogenic Salmonella sp alone as well as in combinations. The present study proved that silver nanoparticles at the lowest concentration along with cefixime could be a possible alternative to control the multi-drug-resistant pathogens.  相似文献   

17.
The amenability of Caenorhabditis elegans against pathogen provides a valuable tool for studying host–pathogen interactions. Physiological experiments revealed that the P. aeruginosa was able to kill C. elegans efficiently. The effects of P. aeruginosa PA14, PAO1 and their isolated lipopolysaccharide (LPS) on the host system were analyzed. The LPS at higher concentrations (≥2 mg/ml) was toxic to the host animals. Kinetic studies using qPCR revealed the regulation of host-specific candidate antimicrobial genes during pathogen-mediated infections. In addition, the pathogen-specific virulent gene, exoT expression, was anlyzed and found to be varied during the interactions with the host system. Ability of the pathogens to modify their internal machinery in the presence of the host was analyzed by XRD, FTIR and PCA. LPS isolated from pathogens upon exposure to C. elegans showed modifications at their functional regions. LPS from PAO1 showed difference in d-spacing angle (Å) and °2Th position. FTIR spectra revealed alterations in polysaccharide (1,200–900 cm−1) and fatty acid (3,000–2,800 cm−1) regions of LPS from P. aeruginosa PAO1 exposed to the host system. These data provide additional insights on how the pathogens subvert its own and host machinery during interactions.  相似文献   

18.
The antimicrobial activities of garlic and other plant alliums are primarily based on allicin, a thiosulphinate present in crushed garlic bulbs. We set out to determine if pure allicin and aqueous garlic extracts (AGE) exhibit antimicrobial properties against the Burkholderia cepacia complex (Bcc), the major bacterial phytopathogen for alliums and an intrinsically multiresistant and life-threatening human pathogen. We prepared an AGE from commercial garlic bulbs and used HPLC to quantify the amount of allicin therein using an aqueous allicin standard (AAS). Initially we determined the minimum inhibitory concentrations (MICs) of the AGE against 38 Bcc isolates; these MICs ranged from 0.5 to 3% (v/v). The antimicrobial activity of pure allicin (AAS) was confirmed by MIC and minimum bactericidal concentration (MBC) assays against a smaller panel of five Bcc isolates; these included three representative strains of the most clinically important species, B. cenocepacia. Time kill assays, in the presence of ten times MIC, showed that the bactericidal activity of AGE and AAS against B. cenocepacia C6433 correlated with the concentration of allicin. We also used protein mass spectrometry analysis to begin to investigate the possible molecular mechanisms of allicin with a recombinant form of a thiol-dependent peroxiredoxin (BCP, Prx) from B. cenocepacia. This revealed that AAS and AGE modifies an essential BCP catalytic cysteine residue and suggests a role for allicin as a general electrophilic reagent that targets protein thiols. To our knowledge, we report the first evidence that allicin and allicin-containing garlic extracts possess inhibitory and bactericidal activities against the Bcc. Present therapeutic options against these life-threatening pathogens are limited; thus, allicin-containing compounds merit investigation as adjuncts to existing antibiotics.  相似文献   

19.
《Phytomedicine》2014,21(4):443-447
Combinations of two or more drugs, which affect different targets, have frequently been used as a new approach against resistant bacteria. In our work we studied the antimicrobial activity (MIC, MBC) of individual drugs (the phenolic monoterpene thymol, EDTA and vancomycin), of two-drug interactions between thymol and EDTA in comparison with three-drug interactions with vancomycin against sensitive and resistant bacteria. Thymol demonstrated moderate bactericidal activity (MBC between 60 and 4000 μg/ml) while EDTA only exhibited bacteriostatic activity over a range of 60–4000 μg/ml. MICs of vancomycin were between 0.125 and 16 μg/ml against Gram-positive and between 32 and 128 μg/ml against Gram-negative bacteria. Checkerboard dilution and time-kill curve assays were performed to evaluate the mode of interaction of several combinations against Methicillin-resistant Staphylococcus aureus (MRSA NCTC 10442) and Escherichia coli (ATCC 25922). Checkerboard data indicate indifferent interaction against Gram-positive (FICI = 1–1.3) and synergy against Gram-negative bacteria (FICI  0.4), while time kill analyses suggest synergistic effect in different combinations against both types of bacteria. It is remarkable that the combinations could enhance the sensitivity of E. coli to vancomycin 16-fold to which it is normally insensitive. We have provided proof for the concept, that combinations of known antibiotics with modern phytotherapeutics can expand the spectrum of useful therapeutics.  相似文献   

20.
The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号