共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ikari A Okude C Sawada H Yamazaki Y Sugatani J Miwa M 《Biochemical and biophysical research communications》2008,369(4):1129-1133
Transient receptor potential melastatin 6 (TRPM6) is a magnesium channel and expressed in the intestine and renal distal tubules. Little is known about the regulatory mechanism of TRPM6 expression and the role of magnesium influx. EGF increased the phosphorylation of ERK1/2 and TRPM6 expression that were inhibited by U0126 in renal epithelial NRK-52E cells. Furthermore, EGF enhanced the influx of magnesium, whereas U0126 and TRPM6 siRNA inhibited it. EGF increased the proportion of cells in S phase, whereas U0126 and TRPM6 siRNA increased the proportion in G1 phase. The phosphorylation of ERK1/2 may up-regulate TRPM6 expression and magnesium influx, resulting in an increase in cell proliferation with a shift from G1 to S phase. 相似文献
3.
4.
Yu-Fen Li Yi-Hsiu Hsiao Yi-Hui Lai Yi-Chen Chen Ying-Ju Chen Jian-Liang Chou Michael W Y Chan Yu-Hsing Lin Yung-An Tsou Ming-Hsui Tsai Chien-Kuo Tai 《Epigenetics》2015,10(3):229-236
Oral squamous cell carcinoma (OSCC) constitutes >90% of oral cancers and is the sixth most common malignancy among males worldwide and the fourth leading cause of death due to cancer among males in Taiwan. However, most patients do not receive a diagnosis of OSCC until the late stages, which have a lower survival rate. The use of molecular marker analysis to identify early-stage OSCC would permit optimal timing for treatments and consequently prolong survival. The aim of this study was to identify biomarkers of OSCC using the Illumina GoldenGate Methylation Cancer Panel, which comprised a total of 1,505 CpG sites covering 807 genes. Samples of buccal mucosa resected from 40 OSCC patients and normal tissue samples obtained from 15 patients (normal mucosa from OSCC patients or from patients undergoing surgery unrelated to OSCC) were analyzed. Fms-related tyrosine kinase 4 (FLT4) methylation exhibited a perfect specificity for detecting OSCC, with an area under the receiver operating characteristic curve of 0.91 for both all-stage and early-stage OSCC. Methylation of 7 genes (ASCL1, FGF3, FLT4, GAS7, KDR, TERT, and TFPI2) constitutes the top-20 panels for detecting OSCC. The top-20 panels for detecting early-stage OSCC contain 8 genes: ADCYAP1, EPHA7, FLT4, GSTM2, KDR, MT1A, NPY, and TFPI2. FLT4 RNA expression and methylation level were validated using RT-PCR and a pyrosequencing methylation assay. The median level of FLT4 expression was 2.14-fold for normal relative to OSCC tissue samples (P < 0.0001). Among the 8 pyrosequenced FLT4 CpG sites, methylation level was much higher in the OSCC samples. In conclusion, methylation statuses of selected genes, and especially FLT4, KDR, and TFPI2, might be of great potential as biomarkers for early detection of buccal OSCC. 相似文献
5.
6.
Background and Aims
Gynodioecy is a phylogenetically widespread and important sexual system where females coexist with hermaphrodites. Because dioecy can arise from gynodioecy, characterization of gynodioecy in close relatives of dioecious and sub-dioecious species can provide insight into this transition. Thus, we sought to determine whether Fragaria vesca ssp. bracteata, a close relative to F. chiloensis and F. virginiana, exhibits the functional and population genetic hallmarks of a gynodioecious species.Methods
We compared reproductive allocation of females and hermaphrodites grown in the greenhouse and estimated genetic diversity (allelic diversity, heterozygosity) and inbreeding coefficients for field-collected adults of both sexes using simple sequence repeat (SSR) markers. We estimated mating system and early seed fitness from open-pollinated families of both sex morphs.Key Results
Under greenhouse conditions, females and hermaphrodites allocated similarly to all reproductive traits except flower number, and, as a consequence, females produced 30 % fewer seeds per plant than hermaphrodites. Under natural conditions, hermaphrodites produce seeds by self-fertilization approx. 75 % of the time, and females produced outcrossed seeds with very little biparental inbreeding. Consistent with inbreeding depression, seeds from open-pollinated hermaphrodites were less likely to germinate than those from females, and family-level estimates of hermaphrodite selfing rates were negatively correlated with germination success and speed. Furthermore, estimates of inbreeding depression based on genetic markers and population genetic theory indicate that inbreeding depression in the field could be high.Conclusions
The joint consideration of allocation and mating system suggests that compensation may be sufficient to maintain females given the current understanding of sex determination. Fragaria vesca ssp. bracteata exhibited similar sex morph-dependent patterns of mating system and genetic diversity, but less reproductive trait dimorphism, than its sub-dioecious and dioecious congeners. 相似文献7.
Chuen Chin Wei-Chung Lai Tai-Lin Lee Tzu-Ling Tseng Jia-Ching Shieh 《Journal of biomedical science》2013,20(1):97
Background
CDC4, which encodes an F-box protein that is a member of the Skp1-Cdc53/Cul1-F-box (SCF) ubiquitin E3 ligase, was initially identified in the budding yeast Saccharomyces cerevisiae as an essential gene for progression through G1-S transition of the cell cycle. Although Candida albicans CDC4 (CaCDC4) can release the mitotic defect caused by the loss of CDC4 in S. cerevisiae, CaCDC4 is nonessential and suppresses filamentation.Results
To further elucidate the function of CaCDC4, a C. albicans strain, with one CaCDC4 allele deleted and the other under the repressible C. albicans MET3 promoter (CaMET3p) control, was made before introducing cassettes capable of doxycycline (Dox)-induced expression of various C. albicans Cdc4 (CaCdc4) domains. Cells from each strain could express a specific CaCdc4 domain under Dox-induced, but CaMET3-CaCDC4 repressed conditions. Cells expressing domains without either the F-box or WD40-repeat exhibited filamentation and flocculation similarly to those lacking CaCDC4 expression, indicating the functional essentiality of the F-box and WD40-repeat. Notably, cells expressing the N-terminal 85-amino acid truncated CaCdc4 partially reverse the filament-to-yeast and weaken the ability to flocculate compared to those expressing the full-length CaCdc4, suggesting that N-terminal 85-amino acid of CaCdc4 regulates both morphogenesis and flocculation.Conclusions
The F-box and the WD40-repeat of CaCdc4 are essential in inhibiting yeast-to-filament transition and flocculation. The N-terminal region (1–85) of CaCdc4 also has a positive role for its function, lost of which impairs both the ability to flocculate and to reverse filamentous growth in C. albicans. 相似文献8.
Plant-parasitic cyst nematodes form a specialized feeding site, termed a syncytium, in the roots of host plants. Monoclonal antibodies to defined glycans, in addition to a cellulose-binding module, were used to characterize the cell walls of a functioning syncytia in situ. Cell walls of syncytia were found to contain cellulose, xyloglucan and mannan. Analysis of the pectin network revealed syncytial cell walls are abundant in homogalacturonan, which was heavily methyl-esterified. Arabinan was also detected and the results suggest the cell walls of syncytia are highly flexible. 相似文献
9.
10.
The DNA-damaging agent camptothecin (CPT) and its analogs demonstrate clinical utility for the treatment of advanced solid tumors, and CPT-based nanopharmaceuticals are currently in clinical trials for advanced kidney cancer; however, little is known regarding the effects of CPT on hypoxia-inducible factor-2α (HIF-2α) accumulation and activity in clear cell renal cell carcinoma (ccRCC). Here we assessed the effects of CPT on the HIF/p53 pathway. CPT demonstrated striking inhibition of both HIF-1α and HIF-2α accumulation in von Hippel–Lindau (VHL)-defective ccRCC cells, but surprisingly failed to inhibit protein levels of HIF-2α-dependent target genes (VEGF, PAI-1, ET-1, cyclin D1). Instead, CPT induced DNA damage-dependent apoptosis that was augmented in the presence of pVHL. Further analysis revealed CPT regulated endothelin-1 (ET-1) in a p53-dependent manner: CPT increased ET-1 mRNA abundance in VHL-defective ccRCC cell lines that was significantly augmented in their VHL-expressing counterparts that displayed increased phosphorylation and accumulation of p53; p53 siRNA suppressed CPT-induced increase in ET-1 mRNA, as did an inhibitor of ataxia telangiectasia mutated (ATM) signaling, suggesting a role for ATM-dependent phosphorylation of p53 in the induction of ET-1. Finally, we demonstrate that p53 phosphorylation and accumulation is partially dependent on mTOR activity in ccRCC. Consistent with this result, pharmacological inhibition of mTORC1/2 kinase inhibited CPT-mediated ET-1 upregulation, and p53-dependent responses in ccRCC. Collectively, these data provide mechanistic insight into the action of CPT in ccRCC, identify ET-1 as a p53-regulated gene and demonstrate a requirement of mTOR for p53-mediated responses in this tumor type. 相似文献
11.
12.
13.
Mineo Shibasaka Sizuka Sasano Sigeko Utsugi Maki Katsuhara 《Plant signaling & behavior》2012,7(12):1648-1652
Water homeostasis is crucial to the growth and survival of plants. Plasma membrane intrinsic proteins (PIPs) have been shown to be primary channels mediating water uptake in plant cells. We characterized a novel PIP2 gene, HvPIP2;8 in barley (Hordeum vulgare). HvPIP2;8 shared 72–76% identity with other HvPIP2s and 74% identity with rice OsPIP2;8. The gene was expressed in all organs including the shoots, roots and pistil at a similar level. When HvPIP2;8 was transiently expressed in onion epidermal cells, it was localized to the plasma membrane. HvPIP2;8 showed transport activity for water in Xenopus oocytes, however its interaction with HvPIP1;2 was not observed. These results suggest that HvPIP2;8 plays a role in water homeostasis although further functional analysis is required in future. 相似文献
14.
Somphob Leetachewa Saengduen Moonsom Urai Chaisri Narumol Khomkhum Nonglak Yoonim Ping Wang Chanan Angsuthanasombat 《BMB reports》2014,47(10):546-551
The insecticidal activity of Bacillus thuringiensis (Bt) Cry toxins involves toxin stabilization, oligomerization, passage across the peritrophic membrane (PM), binding to midgut receptors and pore-formation. The residues Arg-158 and Tyr-170 have been shown to be crucial for the toxicity of Bt Cry4Ba. We characterized the biological function of these residues. In mosquito larvae, the mutants R158A/E/Q (R158) could hardly penetrate the PM due to a significantly reduced ability to alter PM permeability; the mutant Y170A, however, could pass through the PM, but degraded in the space between the PM and the midgut epithelium. Further characterization by oligomerization demonstrated that Arg-158 mutants failed to form correctly sized high-molecular weight oligomers. This is the first report that Arg-158 plays a role in the formation of Cry4Ba oligomers, which are essential for toxin passage across the PM. Tyr-170, meanwhile, is involved in toxin stabilization in the toxic mechanism of Cry4Ba in mosquito larvae. [BMB Reports 2014; 47(10): 546-551] 相似文献
15.
M Grusdat D R McIlwain H C Xu V I Pozdeev J Knievel S Q Crome C Robert-Tissot R J Dress A A Pandyra D E Speiser E Lang S K Maney A R Elford S R Hamilton S Scheu K Pfeffer J Bode H-W Mittrücker M Lohoff M Huber D H?ussinger P S Ohashi T W Mak K S Lang P A Lang 《Cell death and differentiation》2014,21(7):1050-1060
16.
Revalska M Vassileva V Goormachtig S Van Hautegem T Ratet P Iantcheva A 《Current Genomics》2011,12(2):147-152
Legumes, as protein-rich crops, are widely used for human food, animal feed and vegetable oil production. Over the past decade, two legume species, Medicago truncatula and Lotus japonicus, have been adopted as model legumes for genomics and physiological studies. The tobacco transposable element, Tnt1, is a powerful tool for insertional mutagenesis and gene inactivation in plants. A large collection of Tnt1-tagged lines of M. truncatula cv. Jemalong was generated during the course of the project 'GLIP': Grain Legumes Integrated Project, funded by the European Union (www.eugrainlegumes.org). In the project 'IFCOSMO': Integrated Functional and COmparative genomics Studies on the MOdel Legumes Medicago truncatula and Lotus japonicus, supported by a grant from the Ministry of Education, Youth and Science, Bulgaria, these lines are used for development of functional genomics platform of legumes in Bulgaria. This review presents recent advances in the evaluation of the M. truncatula Tnt1 mutant collection and outlines the steps that are taken in using the Tnt1-tagging for generation of a mutant collection of the second model legume L. japonicus. Both collections will provide a number of legume-specific mutants and serve as a resource for functional and comparative genomics research on legumes. Genomics technologies are expected to advance genetics and breeding of important legume crops (pea, faba bean, alfalfa and clover) in Bulgaria and worldwide. 相似文献
17.
18.
James S. Ruff Raed B. Saffarini Leda L. Ramoz Linda C. Morrison Shambralyn Baker Sean M. Laverty Petr Tvrdik Wayne K. Potts 《Genetics》2015,201(2):727-736
Gene targeting techniques have led to the phenotypic characterization of numerous genes; however, many genes show minimal to no phenotypic consequences when disrupted, despite many having highly conserved sequences. The standard explanation for these findings is functional redundancy. A competing hypothesis is that these genes have important ecological functions in natural environments that are not needed under laboratory settings. Here we discriminate between these hypotheses by competing mice (Mus musculus) whose Hoxb1 gene has been replaced by Hoxa1, its highly conserved paralog, against matched wild-type controls in seminatural enclosures. This Hoxb1A1 swap was reported as a genetic manipulation resulting in no discernible embryonic or physiological phenotype under standard laboratory tests. We observed a transient decline in first litter size for Hoxb1A1 homozygous mice in breeding cages, but their fitness was consistently and more dramatically reduced when competing against controls within seminatural populations. Specifically, males homozygous for the Hoxb1A1 swap acquired 10.6% fewer territories and the frequency of the Hoxb1A1 allele decreased from 0.500 in population founders to 0.419 in their offspring. The decrease in Hoxb1A1 frequency corresponded with a deficiency of both Hoxb1A1 homozygous and heterozygous offspring. These data suggest that Hoxb1 and Hoxa1 are more phenotypically divergent than previously reported and support that sub- and/or neofunctionalization has occurred in these paralogous genes leading to a divergence of gene function and incomplete redundancy. Furthermore, this study highlights the importance of obtaining fitness measures of mutants in ecologically relevant conditions to better understand gene function and evolution. 相似文献
19.
20.
Emmanuel Panteris Ioannis-Dimosthenis S Adamakis Gerasimos Daras Stamatis Rigas 《Plant signaling & behavior》2015,10(6)
Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2–4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2–4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone''s expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. 相似文献