首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The origin of prokaryotic life is discussed with an emphasis on the self-assembly of early life in a microscale environment where ordered cellular structures and integrated functions evolved from disorder. Early molecular evolution may have been due to both molecular chaos and evolving molecular order.  相似文献   

2.
In attempting to understand how life originated, we search for a detailed sequence of experimentally testable physico-chemical steps in an appropriately structured system. This goal is approached in two stages. First we search for the organizational structure of processes leading to systems with the basic features of living organisms. This is an engineering problem: finding a certain construct by taking care of logical requirements and restrictions from physics. Then we face this construct with the chemical and geophysical reality, and this leads to the view that systems with the essential features of early living organisms evolve following a distinct pathway. Energy supply and the presence of a particular structure in space and time are necessary to induce and drive the processes triggered by stochastic events; but if these particular conditions are given, the broad line of the evolutionary processes is determined by logical requirements and by chemical and geophysical constrains and invariants. The genetic machinery considered to evolve in this manner agrees, in its organizational structure and in many details, with the actual genetic machinery of biosystems. A surprising simplicity and transparency is observed in the logic of the basic processes involved in the origin of life.In the present view, the processes leading to the origin of life begin in a very particular, highly structured, small region where the relevant chemistry can be quite different from overall prebiotic chemistry. Energy-rich compounds are present in ample amounts and a succession of physico-chemical processes, which are per se thermodynamically allowed, takes place. This is in contrast to popular views that the origin of life is connected with fundamental thermodynamic questions related to the problem of getting order out of chaos.  相似文献   

3.
An explanation is given as to why membrane-spanning peptides must have been the first “information-rich” molecules in the development of life. These peptides are stabilised in a lipid bilayer membrane environment and they are preferentially made from the simplest, and likewise oldest, of the amino acids1 that survive today. Transmembrane peptides can exercise functions that are essential for biological systems such as signal transduction and material transport across membranes. More complex peptides possessing catalytic properties could later develop on either side of the membrane as independently folding functional units formed by extension of the protruding ends of the transmembrane peptides within an aqueous environment and thereby give rise to more of the functions that are necessary for life. But the membrane was the cradle for the development of the first information-rich biomolecules.  相似文献   

4.
Summary A simple statistical model is constructed, describing the transition from disorder to order in a population of mutually catalytic molecules undergoing random mutations. The consequences of the model are calculated, and its possible relevance to the problem of the origin of life is discussed. The main conclusion of the analysis is that the model allows populations of several thousand molecular units to make the transition from disorder to order with reasonable probability.  相似文献   

5.
6.
遗传密码子进化的阶段性   总被引:3,自引:0,他引:3  
密码子的起源与进化可划分为4个阶段,即:前密码子期,tRNA形成期,原密码子与有序肽同步起源期,以及密码子进化期。不同的观点,大都能在不同时期找到自己的位置,从而是互补的。在此基础上,首次将主要理论的主旨整合为一个进化过程的理论框架,基本上协调了持续了近半个世纪的确定论和偶然论之争,并且解释了密码子设定的多态性的由来。  相似文献   

7.
Application of physical and chemical concepts, complemented by studies of prokaryotes in ice cores and permafrost, has led to the present understanding of how microorganisms can metabolize at subfreezing temperatures on Earth and possibly on Mars and other cold planetary bodies. The habitats for life at subfreezing temperatures benefit from two unusual properties of ice. First, almost all ionic impurities are insoluble in the crystal structure of ice, which leads to a network of micron-diameter veins in which microorganisms may utilize ions for metabolism. Second, ice in contact with mineral surfaces develops a nanometre-thick film of unfrozen water that provides a second habitat that may allow microorganisms to extract energy from redox reactions with ions in the water film or ions in the mineral structure. On the early Earth and on icy planets, prebiotic molecules in veins in ice may have polymerized to RNA and polypeptides by virtue of the low water activity and high rate of encounter with each other in nearly one-dimensional trajectories in the veins. Prebiotic molecules may also have utilized grain surfaces to increase the rate of encounter and to exploit other physicochemical features of the surfaces.  相似文献   

8.
We propose that life emerged from growing aggregates of iron sulphide bubbles containing alkaline and highly reduced hydrothermal solution. These bubbles were inflated hydrostatically at sulphidic submarine hot springs sited some distance from oceanic spreading centers four billion years ago. The membrane enclosing the bubbles was precipitated in response to contact between the spring waters and the mildly oxidized, acidic and iron-bearing Hadean ocean water. As the gelatinous sulphide bubbles aged and were inflated beyond their strength they budded, producing contiguous daughter bubbles by the precipitation of new membrane. [Fe2S2]+/0 or [Fe4S4]2+/+ clusters, possibly bonded by hydrothermal thiolate ligands as proferredoxins, could have catalyzed oxidation of thiolates to disulphides, thereby modifying membrane properties.We envisage the earliest iron sulphide bubbles (pro botryoids) first growing by hydrostatic inflation with hydrothermal fluid, but evolving to grow mainly by osmosis (the protocellular stage), driven by (1) catabolism of hydrothermal abiogenic organics trapped on the inner walls of the membrane, catalyzed by the iron sulphide clusters; and (2) cleavage of hydrophobic compounds dissolved in the membrane to hydrophilic moieties which were translocated, by the proton motive force inherent in the acidic Hadean ocean, to the alkaline interior of the protocell. The organics were generated first within the hydrothermal convective system feeding the hot springs operating in the oceanic crust and later in the pyritizing mound developing on the sea floor, as a consequence of the reduction of CO, CO2, and formaldehyde by Fe2+- and S2–-bearing minerals.We imagine the physicochemical interactions in and on the membrane to have been sufficiently complex to have engendered auto- and cross-catalytic replication. The membrane may have been constructed in such a way that a successful parent could have informed the daughters of membrane characteristics functional for the then-current level of evolution.Correspondence to: M. J. RussellGlossary: Hollow pyrite botryoids: hollow hemispheres of cryptocrystalline pyrite (FeS2) 0.1–1 mm across. Fischer-Tropsch syntheses: the highly exothermic catalytic hydrogenation of CO to hydrocarbons and aliphatic oxygenated compounds using finely divided iron. Greigite (Fe3S4): metastable iron sulphide precipitated from aqueous solution in a gel at 100°C and containing two-thirds of its iron as the high-spin ferric ion. Haber-Bosch process: the exothermic catalytic hydrogenation of nitrogen to yield ammonia. Probotryoid: a hydrostatically inflated colloidal iron monosulphide bubble; precursor to hollow botryoids and the progenitor to protocells. Proferredoxins: [Fe2S2] and [Fe3MS4] clusters (M = Fe, Mo, W, Ni, etc.) ligated by abiogenic thiols and thiolates. Protocell: a cell comprised mainly of abiogenic organics including thiols with subordinate iron sulphides, partly as proferredoxins; growth results from catabolism and osmotic pressure  相似文献   

9.
How life emerged from simple non-life chemicals on the ancient Earth is one of the greatest mysteries in biology. The gene expression system of extant life is based on the interdependence between multiple molecular species (DNA, RNA, and proteins). While DNA is mainly used as genetic material and proteins as functional molecules in modern biology, RNA serves as both genetic material and enzymes (ribozymes). Thus, the evolution of life may have begun with the birth of a ribozyme that replicated itself (the RNA world hypothesis), and proteins and DNA joined later. However, the complete self-replication of ribozymes from monomeric substrates has not yet been demonstrated experimentally, due to their limited activity and stability. In contrast, peptides are more chemically stable and are considered to have existed on the ancient Earth, leading to the hypothesis of RNA–peptide co-evolution from the very beginning. Our group and collaborators recently demonstrated that (1) peptides with both hydrophobic and cationic moieties (e.g., KKVVVVVV) form β-amyloid aggregates that adsorb RNA and enhance RNA synthesis by an artificial RNA polymerase ribozyme and (2) a simple peptide with only seven amino acid types (especially rich in valine and lysine) can fold into the ancient β-barrel conserved in various enzymes, including the core of cellular RNA polymerases. These findings, together with recent reports from other groups, suggest that simple prebiotic peptides could have supported the ancient RNA-based replication system, gradually folded into RNA-binding proteins, and eventually evolved into complex proteins like RNA polymerase.  相似文献   

10.
We review a recent paper20 in which a specific enhancement factor (i.e., a phase transition into a condensed Bose mode) is proposed to account for the observed amplification of the ground state energies of the L - and D -amino acid enantiomers; the difference between these energies is assumed to be due to the neutral parity-violating electroweak interaction. This physical effect initially shifts the enantiomer energies by about 3 × 10?19 eV. The proposed phase transition is characterized by a critical temperature Tc, which may be studied theoretically by enlarging the standard electroweak theory to include either the top quark or supersymmetry21. Possible experimental means of finding Tc are discussed.  相似文献   

11.
Attempts to draft plausible scenarios for the origin of life have in the past mainly built upon palaeogeochemical boundary conditions while, as detailed in a companion article in this issue, frequently neglecting to comply with fundamental thermodynamic laws. Even if demands from both palaeogeochemistry and thermodynamics are respected, then a plethora of strongly differing models are still conceivable. Although we have no guarantee that life at its origin necessarily resembled biology in extant organisms, we consider that the only empirical way to deduce how life may have emerged is by taking the stance of assuming continuity of biology from its inception to the present day. Building upon this conviction, we have assessed extant types of energy and carbon metabolism for their appropriateness to conditions probably pertaining in those settings of the Hadean planet that fulfil the thermodynamic requirements for life to come into being. Wood–Ljungdahl (WL) pathways leading to acetyl CoA formation are excellent candidates for such primordial metabolism. Based on a review of our present understanding of the biochemistry and biophysics of acetogenic, methanogenic and methanotrophic pathways and on a phylogenetic analysis of involved enzymes, we propose that a variant of modern methanotrophy is more likely than traditional WL systems to date back to the origin of life. The proposed model furthermore better fits basic thermodynamic demands and palaeogeochemical conditions suggested by recent results from extant alkaline hydrothermal seeps.  相似文献   

12.
A sudden transition in a system from an inanimate state to the living state—defined on the basis of present day living organisms—would constitute a highly unlikely event hardly predictable from physical laws. From this uncontroversial idea, a self-consistent representation of the origin of life process is built up, which is based on the possibility of a series of intermediate stages. This approach requires a particular kind of stability for these stages—dynamic kinetic stability (DKS)—which is not usually observed in regular chemistry, and which is reflected in the persistence of entities capable of self-reproduction. The necessary connection of this kinetic behaviour with far-from-equilibrium thermodynamic conditions is emphasized and this leads to an evolutionary view for the origin of life in which multiplying entities must be associated with the dissipation of free energy. Any kind of entity involved in this process has to pay the energetic cost of irreversibility, but, by doing so, the contingent emergence of new functions is made feasible. The consequences of these views on the studies of processes by which life can emerge are inferred.  相似文献   

13.
A simulation model of the evolution of a free-living bilayered animal is proposed. The model object developed two layers of cells. The inner layer was able to produce digestive enzymes, to split and absorb organic substances. The evolution of these model objects was accompanied by mutations resembling real adaptations in some coelenterates and placozoans. It was observed that the outer layer of the model produced cells capable of secretion of digestive ferments. This mutation was a principal apomorphy leading to the appearance of organisms with extraorganismal digestion. Visual Basic and STELLA modeling software were used for simulations.  相似文献   

14.
The peptidoglycan wall is a defining feature of bacterial cells and was probably already present in their last common ancestor. L-forms are bacterial variants that lack a cell wall and divide by a variety of processes involving membrane blebbing, tubulation, vesiculation and fission. Their unusual mode of proliferation provides a model for primitive cells and is reminiscent of recently developed in vitro vesicle reproduction processes. Invention of the cell wall may have underpinned the explosion of bacterial life on the Earth. Later innovations in cell envelope structure, particularly the emergence of the outer membrane of Gram-negative bacteria, possibly in an early endospore former, seem to have spurned further major evolutionary radiations. Comparative studies of bacterial cell envelope structure may help to resolve the early key steps in evolutionary development of the bacterial domain of life.  相似文献   

15.
A possible circular RNA at the origin of life   总被引:1,自引:0,他引:1  
The increasing volume of sequenced genomes and the recent techniques for performing in vitro molecular evolution have rekindled the interest for questions on the origin of life. Nevertheless, a gap continues to exist between the research on prebiotic chemistry and molecule generation, on one hand, and the study of molecular fossils preserved in genomes, on the other. Here we attempt to fill this gap by using some assumptions about the prebiotic scenario (including a strong stereochemical basis for the genetic code) to determine the RNA sequences more likely to appear and subsist. A set of minimal RNA rings is exhaustively determined; a subset of them is then selected through stability arguments, and a particular ring ("AL ring") is finally singled out as the most likely winner of this prebiotic game. The rings happen to have several structural and statistical properties of modern genes: a repeated AUG codon appears spontaneously (and is thus made available for becoming a start signal), the form AUG/STOP emerges, and frequency patterns resemble those of present genes. The whole set of rings was also compared to a database of tRNAs, considering the conserved positions (located in the free parts of the molecule, essentially the loops); the ring that most closely matched tRNA sequences-and matched, in fact, the consensus of tRNA at all the aligned positions-was AL, the same ring independently selected before. The unselected emergence of gene-like features through two simple selection steps and the close similarity between the finally selected ring and tRNA (including some remarkable features of the resulting alignment) suggest a possible link between the prebiotic world and the first biological molecules, which is amenable for experimental testing. Even if our scenario is partially wrong, the unlikely coincidences should provide useful hints for other efforts.  相似文献   

16.
Amino acid homochirality, as a unique behavior of life, could have originated synchronously with the genetic code. In this paper, phosphoryl amino-acid -5′-nucleosides with P-N bond are postulated to be a chiral origin model in prebiotic molecular evolution. The enthalpy change in the intramolecular interaction between the nucleotide base and the amino-acid side-chain determines the sta-bility of the particular complex, resulting in a preferred conformation associated with the chirality of amino acids. Based on the theoretical model, our experiments and calculations show that the chiral selection of the earliest amino acids for L-enantiomers seems to be a strict stereochemi-cal/physicochemical determinism. As other amino acids developed biosynthetically from the earliest amino acids, we infer that the chirality of the later amino acids was inherited from the precursor amino acids. This idea probably goes far back in history, but it is hoped that it will be a guide for further ex-periments in this area.  相似文献   

17.
Amino acid homochirality, as a unique behavior of life, could have originated synchronously with the genetic code. In this paper, phosphoryl amino-acid-5′-nucleosides with P-N bond are postulated to be a chiral origin model in prebiotic molecular evolution. The enthalpy change in the intramolecular interaction between the nucleotide base and the amino-acid side-chain determines the stability of the particular complex, resulting in a preferred conformation associated with the chirality of amino acids. Based on the theoretical model, our experiments and calculations show that the chiral selection of the earliest amino acids for L-enantiomers seems to be a strict stereochemical/physicochemical determinism. As other amino acids developed biosynthetically from the earliest amino acids, we infer that the chirality of the later amino acids was inherited from the precursor amino acids. This idea probably goes far back in history, but it is hoped that it will be a guide for further experiments in this area.  相似文献   

18.
The origin of life (OOL) problem remains one of the more challenging scientific questions of all time. In this essay, we propose that following recent experimental and theoretical advances in systems chemistry, the underlying principle governing the emergence of life on the Earth can in its broadest sense be specified, and may be stated as follows: all stable (persistent) replicating systems will tend to evolve over time towards systems of greater stability. The stability kind referred to, however, is dynamic kinetic stability, and quite distinct from the traditional thermodynamic stability which conventionally dominates physical and chemical thinking. Significantly, that stability kind is generally found to be enhanced by increasing complexification, since added features in the replicating system that improve replication efficiency will be reproduced, thereby offering an explanation for the emergence of life''s extraordinary complexity. On the basis of that simple principle, a fundamental reassessment of the underlying chemistry–biology relationship is possible, one with broad ramifications. In the context of the OOL question, this novel perspective can assist in clarifying central ahistoric aspects of abiogenesis, as opposed to the many historic aspects that have probably been forever lost in the mists of time.  相似文献   

19.
Although there is more and more evidence suggested the existence of an RNA World during the origin of life, the scenario concerning the origin of the RNA World remains blurry. Usually it is speculated that it originated from a prebiotic nucleotide pool, during which a self-replicating RNA synthesis ribozyme may have emerged as the first ribozyme – the RNA replicase. However, there is yet no ersuasive supposition for the mechanism for the self-favouring feature of the replicase, thus the speculation remains unconvincing. Here we suggest that intramolecular catalysis is a possible solution. Two RNA synthesis ribozymes may be integrated into one RNA molecule, as two functional domains which could catalyze the copy of each other. Thus the RNA molecule could self-replicate and be referred to as “intramolecular replicase“ here. Computational simulation to get insight into the dynamic mechanism of emergence of the intramolecular replicase from a nucleotide pool is valuable and would be included in a following work of our group.  相似文献   

20.
What was the first living molecule – RNA or protein?This question embodies the major disagreement instudies on the origin of life. The fact that incontemporary cells RNA polymerase is a protein andpeptidyl transferase consists of RNA suggests theexistence of a mutual catalytic dependence betweenthese two kinds of biopolymers. I suggest that thisdependence is a `frozen accident', a remnant from thefirst living system. This system is proposed to be acombination of an RNA molecule capable of catalyzingamino acid polymerization and the resulting proteinfunctioning as an RNA-dependent RNA polymerase. Thespecificity of the protein synthesis is thought to beachieved by the composition of the surrounding mediumand the specificity of the RNA synthesis – by Watson– Crick base pairing. Despite its apparent simplicity,the system possesses a great potential to evolve intoa primitive ribosome and further to life, as it isseen today. This model provides a possible explanationfor the origin of the interaction between nucleicacids and protein. Based on the suggested system, Ipropose a new definition of life as a system ofnucleic acid and protein polymerases with a constantsupply of monomers, energy and protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号