首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Leucine-rich repeat (LRR) is a versatile motif widely present in adhesive proteins and signal-transducing receptors. The concave structure formed by a group of LRRs is thought to facilitate binding to globular protein domains with increased affinities. However, little is known about the conformational dynamics of LRRs in such a structure, e.g., whether and how force induces conformational changes in LRRs to regulate protein binding and signal transduction. Here we investigated the platelet glycoprotein Ibα (GPIbα), a demonstrated mechanoreceptor with known crystal structures for the N-terminal domain (GPIbαN), as a model for LRR-containing proteins using a combined method of steered molecular dynamics simulations and single-molecule force spectroscopy with a biomembrane force probe. We found that force-induced unfolding of GPIbαN starts with LRR2–4 and propagates to other LRRs. Importantly, force-dependent lifetimes of individual VWF-A1 bonds with GPIbα are prolonged after LRR unfolding. Enhancement of protein-protein interactions by force-induced LRR unfolding may be a phenomenon of interest in biology.  相似文献   

2.
The von Willebrand factor (VWF) A1 and A3 domains are structurally isomorphic yet exhibit distinct mechanisms of unfolding. The A1 domain, responsible for platelet adhesion to VWF in hemostasis, unfolds through a molten globule intermediate in an apparent three-state mechanism, while A3 unfolds by a classical two-state mechanism. Inspection of the sequences or structures alone does not elucidate the source of this thermodynamic conundrum; however, the three-state character of the A1 domain suggests that it has more than one cooperative substructure yielding two separate unfolding transitions not present in A3. We investigate the extent to which structural elements contributing to intermediate conformations can be identified using a residue-specific implementation of the structure-energy-equivalence-of-domains algorithm (SEED), which parses proteins of known structure into their constituent thermodynamically cooperative components using protein-group-specific, transfer free energies. The structural elements computed to contribute to the non-two-state character coincide with regions where Von Willebrand disease mutations induce misfolded molten globule conformations of the A1 domain. This suggests a mechanism for the regulation of rheological platelet adhesion to A1 based on cooperative flexibility of the α2 and α3 helices flanking the platelet GPIbα receptor binding interface.  相似文献   

3.
The large multimeric glycoprotein von Willebrand Factor (VWF) plays a pivotal adhesive role during primary hemostasis. VWF is cleaved by the protease ADAMTS13 as a down-regulatory mechanism to prevent excessive VWF-mediated platelet aggregation. For each VWF monomer, the ADAMTS13 cleavage site is located deeply buried inside the VWF A2 domain. External forces in vivo or denaturants in vitro trigger the unfolding of this domain, thereby leaving the cleavage site solvent-exposed and ready for cleavage. Mutations in the VWF A2 domain, facilitating the cleavage process, cause a distinct form of von Willebrand disease (VWD), VWD type 2A. In particular, the VWD type 2A Gly1629Glu mutation drastically accelerates the proteolytic cleavage activity, even in the absence of forces or denaturants. However, the effect of this mutation has not yet been quantified, in terms of kinetics or thermodynamics, nor has the underlying molecular mechanism been revealed. In this study, we addressed these questions by using fluorescence correlation spectroscopy, molecular dynamics simulations, and free energy calculations. The measured enzyme kinetics revealed a 20-fold increase in the cleavage rate for the Gly1629Glu mutant compared with the wild-type VWF. Cleavage was found cooperative with a cooperativity coefficient n = 2.3, suggesting that the mutant VWF gives access to multiple cleavage sites of the VWF multimer at the same time. According to our simulations and free energy calculations, the Gly1629Glu mutation causes structural perturbation in the A2 domain and thereby destabilizes the domain by ~10 kJ/mol, promoting its unfolding. Taken together, the enhanced proteolytic activity of Gly1629Glu can be readily explained by an increased availability of the ADAMTS13 cleavage site through A2-domain-fold thermodynamic destabilization. Our study puts forward the Gly1629Glu mutant as a very efficient enzyme substrate for ADAMTS13 activity assays.  相似文献   

4.
The binding of Von Willebrand Factor to platelets is dependent on the conformation of the A1 domain which binds to platelet GPIbα. This interaction initiates the adherence of platelets to the subendothelial vasculature under the high shear that occurs in pathological thrombosis. We have developed a thermodynamic strategy that defines the A1:GPIbα interaction in terms of the free energies (ΔG values) of A1 unfolding from the native to intermediate state and the binding of these conformational states to GPIbα. We have isolated the intermediate conformation of A1 under nondenaturing conditions by reduction and carboxyamidation of the disulfide bond. The circular dichroism spectrum of reduction and carboxyamidation A1 indicates that the intermediate has ∼10% less α-helical structure that the native conformation. The loss of α-helical secondary structure increases the GPIbα binding affinity of the A1 domain ∼20-fold relative to the native conformation. Knowledge of these ΔG values illustrates that the A1:GPIbα complex exists in equilibrium between these two thermodynamically distinct conformations. Using this thermodynamic foundation, we have developed a quantitative allosteric model of the force-dependent catch-to-slip bonding that occurs between Von Willebrand Factor and platelets under elevated shear stress. Forced dissociation of GPIbα from A1 shifts the equilibrium from the low affinity native conformation to the high affinity intermediate conformation. Our results demonstrate that A1 binding to GPIbα is thermodynamically coupled to A1 unfolding and catch-to-slip bonding is a manifestation of this coupling. Our analysis unites thermodynamics of protein unfolding and conformation-specific binding with the force dependence of biological catch bonds and it encompasses the effects of two subtypes of mutations that cause Von Willebrand Disease.  相似文献   

5.
Binding of platelet glycoprotein Ibα (GPIbα) to von Willebrand factor (VWF) initiates platelet adhesion to disrupted vascular surface under arterial blood flow. Flow exerts forces on the platelet that are transmitted to VWF-GPIbα bonds, which regulate their dissociation. Mutations in VWF and/or GPIbα may alter the mechanical regulation of platelet adhesion to cause hemostatic defects as found in patients with von Willebrand disease (VWD). Using a biomembrane force probe, we observed biphasic force-decelerated (catch) and force-accelerated (slip) dissociation of GPIbα from VWF. The VWF A1 domain that contains the N-terminal flanking sequence Gln1238–Glu1260 (1238-A1) formed triphasic slip-catch-slip bonds with GPIbα. By comparison, using a short form of A1 that deletes this sequence (1261-A1) abolished the catch bond, destabilizing its binding to GPIbα at high forces. Importantly, shear-dependent platelet rolling velocities on these VWF ligands in a flow chamber system mirrored the force-dependent single-bond lifetimes. Adding the Gln1238–Glu1260 peptide, which interacted with GPIbα and 1261-A1 but not 1238-A1, to whole blood decreased platelet attachment under shear stress. Soluble Gln1238–Glu1260 reduced the lifetimes of GPIbα bonds with VWF and 1238-A1 but rescued the catch bond of GPIbα with 1261-A1. A type 2B VWD 1238-A1 mutation eliminated the catch bond by prolonging lifetimes at low forces, a type 2M VWD 1238-A1 mutation shifted the respective slip-catch and catch-slip transition points to higher forces, whereas a platelet type VWD GPIbα mutation enhanced the bond lifetime in the entire force regime. These data reveal the structural determinants of VWF activation by hemodynamic force of the circulation.  相似文献   

6.
The primary hemostatic von Willebrand factor (vWF) functions to sequester platelets from rheological blood flow and mediates their adhesion to damaged subendothelium at sites of vascular injury. We have surveyed the effect of 16 disease-causing mutations identified in patients diagnosed with the bleeding diathesis disorder, von Willebrand disease (vWD), on the structure and rheology of vWF A1 domain adhesiveness to the platelet GPIbα receptor. These mutations have a dynamic phenotypical range of bleeding from lack of platelet adhesion to severe thrombocytopenia. Using new rheological tools in combination with classical thermodynamic, biophysical, and spectroscopic metrics, we establish a high propensity of the A1 domain to misfold to pathological molten globule conformations that differentially alter the strength of platelet adhesion under shear flow. Rheodynamic analysis establishes a quantitative rank order between shear-rate-dependent platelet-translocation pause times that linearly correlate with clinically reported measures of patient platelet counts and the severity of thrombocytopenia. These results suggest that specific secondary structure elements remaining in these pathological conformations of the A1 domain regulate GPIbα binding and the strength of vWF-platelet interactions, which affects the vWD functional phenotype and the severity of thrombocytopenia.  相似文献   

7.
Complement factor H (fH) is a plasma protein that regulates activation of the alternative pathway, and mutations in fH are associated with a rare form of thrombotic microangiopathy (TMA), known as atypical hemolytic uremic syndrome (aHUS). A more common TMA is thrombotic thrombocytopenic purpura, which is caused by the lack of normal ADAMTS-13-mediated cleavage of von Willebrand factor (VWF). We investigated whether fH interacts with VWF and affects cleavage of VWF. We found that factor H binds to VWF in plasma, to plasma-purified VWF, and to recombinant A1 and A2 domains of VWF as detected by co-immunoprecipitation (co-IP) and surface plasmon resonance assays. Factor H enhanced ADAMTS-13-mediated cleavage of recombinant VWF-A2 as determined by quantifying the cleavage products using Western-blotting, enhanced cleavage of a commercially available fragment of VWF-A2 (FRETS-VWF73) as determined by fluorometric assay, and enhanced cleavage of ultralarge (UL) VWF under flow conditions as determined by cleavage of VWF-platelet strings attached to histamine stimulated endothelial cells. Using recombinant full-length and truncated fH molecules, we found that the presence of the C-terminal half of fH molecule is important for binding to VWF-A2 and for enhancing cleavage of the A2 domain by ADAMTS-13. We conclude that factor H binds to VWF and may modulate cleavage of VWF by ADAMTS-13.  相似文献   

8.
Von Willebrand factor (VWF), a multimeric multidomain glycoprotein secreted into the blood from vascular endothelial cells, initiates platelet adhesion at sites of vascular injury. This process requires the binding of platelet glycoprotein Ib-IX-V to the A1 domain of VWF monomeric subunits under fluid shear stress. The A2 domain of VWF monomers contains a proteolytic site specific for a circulating plasma VWF metalloprotease, A Disintegrin and Metalloprotease with Thrombospondin motifs, member #13 of the ADAMTS enzyme family (ADAMTS-13), that functions to reduce adhesiveness of newly released, unusually large (UL), hyperactive forms of VWF. Shear stress assists ADAMTS-13 proteolysis of ULVWF multimers allowing ADAMTS-13 cleavage of an exposed peptide bond in the A2 domain. Shear stress may induce conformational changes in VWF, and even unfold regions of VWF monomeric subunits. We used urea as a surrogate for shear to study denaturation of the individual VWF recombinant A domains, A1, A2, and A3, and the domain triplet, A1-A2-A3. Denaturation was evaluated as a function of the urea concentration, and the intrinsic thermodynamic stability of the domains against unfolding was determined. The A1 domain unfolded in a 3-state manner through a stable intermediate. Domains A2 and A3 unfolded in a 2-state manner from native to denatured. The A1-A2-A3 triple domain unfolded in a 6-state manner through four partially folded intermediates between the native and denatured states. Urea denaturation of A1-A2-A3 was characterized by two major unfolding transitions: the first corresponding to the simultaneous complete unfolding of A2 and partial unfolding of A1 to the intermediate state; and the second corresponding to the complete unfolding of A3 followed by gradual unfolding of the intermediate state of A1 at high urea concentration. The A2 domain containing the cleavage site for ADAMTS-13 was the least stable of the three domains and was the most susceptible to unfolding. The low stability of the A2 domain is likely to be important in regulating the exposure of the A2 domain cleavage site in response to shear stress, ULVWF platelet adherence, and the attachment of ADAMTS-13 to ULVWF.  相似文献   

9.
This study used recombinant A1A2A3 tri-domain proteins to demonstrate that A domain association in von Willebrand factor (VWF) regulates the binding to platelet glycoprotein Ibα (GPIbα). We performed comparative studies between wild type (WT) A1 domain and the R1450E variant that dissociates the tri-domain complex by destabilizing the A1 domain. Using urea denaturation and differential scanning calorimetry, we demonstrated the destabilization of the A1 domain structure concomitantly results in a reduced interaction among the three A domains. This dissociation results in spontaneous binding of R1450E to GPIbα without ristocetin with an apparent KD of 85 ± 34 nm, comparable with that of WT (36 ± 12 nm) with ristocetin. The mutant blocked 100% ristocetin-induced platelet agglutination, whereas WT failed to inhibit. The mutant enhanced shear-induced platelet aggregation at 500 and 5000 s−1 shear rates, reaching 42 and 66%, respectively. Shear-induced platelet aggregation did not exceed 18% in the presence of WT. A1A2A3 variants were added before perfusion over a fibrin(ogen)-coated surface. At 1500 s−1, platelets from blood containing WT adhered <10% of the surface area, whereas the mutant induced platelets to rapidly bind, covering 100% of the fibrin(ogen) surface area. Comparable results were obtained with multimeric VWF when ristocetin (0.5 mg/ml) was added to blood before perfusion. EDTA or antibodies against GPIbα and αIIbβ3 blocked the effect of the mutant and ristocetin on platelet activation/adhesion. Therefore, the termination of A domain association within VWF in solution results in binding to GPIba and platelet activation under high shear stress.  相似文献   

10.
Shiga toxin (Stx) produced by enterohemorrhagic Escherichia coli causes diarrhea-associated hemolytic-uremic syndrome (DHUS), a severe renal thrombotic microangiopathy. We investigated the interaction between Stx and von Willebrand Factor (VWF), a multimeric plasma glycoprotein that mediates platelet adhesion, activation, and aggregation. Stx bound to ultra-large VWF (ULVWF) secreted from and anchored to stimulated human umbilical vein endothelial cells, as well as to immobilized VWF-rich human umbilical vein endothelial cell supernatant. This Stx binding was localized to the A1 and A2 domain of VWF monomeric subunits and reduced the rate of ADAMTS-13-mediated cleavage of the Tyr1605-Met1606 peptide bond in the A2 domain. Stx-VWF interaction and the associated delay in ADAMTS-13-mediated cleavage of VWF may contribute to the pathophysiology of DHUS.  相似文献   

11.
The cytotoxic lymphocyte protease granzyme B (GrB) is elevated in the plasma of individuals with diseases that elicit a cytotoxic lymphocyte-mediated immune response. Given the recently recognized ability of GrB to cleave extracellular matrix proteins, we examined the effect of GrB on the pro-hemostatic molecule von Willebrand factor (VWF). GrB delays ristocetin-induced platelet aggregation and inhibits platelet adhesion and spreading on immobilized VWF under static conditions. It efficiently cleaves VWF at two sites within the A1-3 domains that are essential for the VWF-platelet interaction. Like the VWF regulatory proteinase ADAMTS-13, GrB-mediated cleavage is dependent upon VWF conformation. In vitro, GrB cannot cleave the VWF conformer found in solution, but cleavage is induced when VWF is artificially unfolded or presented as a matrix. GrB cleaves VWF with comparable efficiency to ADAMTS-13 and rapidly processes ultra-large VWF multimers released from activated endothelial cells under physiological shear. GrB also cleaves the matrix form of fibrinogen at several sites. These studies suggest extracellular GrB may help control localized coagulation during inflammation.  相似文献   

12.
Mody NA  King MR 《Biophysical journal》2008,95(5):2556-2574
A three-dimensional multiscale computational model, platelet adhesive dynamics (PAD), is developed and applied in Part I and Part II articles to characterize and quantify key biophysical aspects of GPIbα-von-Willebrand-factor (vWF)-mediated interplatelet binding at high shear rates, a necessary and enabling step that initiates shear-induced platelet aggregation. In this article, an adhesive dynamics model of the transient aggregation of two unactivated platelets via GPIbα-vWF-GPIbα bridging is developed and integrated with the three-dimensional hydrodynamic flow model discussed in Part I. Platelet binding efficiencies predicted by PAD are in good agreement with platelet aggregation behavior observed experimentally, as documented in the literature. Deviations from average vWF ligand size or healthy GPIbα-vWF-A1 binding kinetics are observed in simulations to have significant effects on the dynamics of transient platelet aggregation, i.e., the efficiency of platelet aggregation and characteristics of bond failure, in ways that typify diseased conditions. The GPIbα-vWF-A1 bond formation rate is predicted to have piecewise linear dependence on the prevailing fluid shear rate, with a sharp transition in fluid shear dependency at 7200 s−1. Interplatelet bond force-loading is found to be complex and highly nonlinear. These results demonstrate PAD as a powerful predictive modeling tool for elucidating platelet adhesive phenomena under flow.  相似文献   

13.
Bitiscetin, a C-type lectin-like heterodimeric snake venom protein purified from Bitis arietans, binds to human von Willebrand factor (VWF) and induces the platelet membrane glycoprotein (GP) Ib-dependent platelet agglutination in vitro similar to botrocetin. In contrast with botrocetin which binds to the A1 domain of VWF, the A3 domain, a major collagen-binding site of VWF, was proposed to be a bitiscetin-binding site. In the competitive binding assay, neither bitiscetin nor botrocetin had an inhibitory effect on the VWF binding to the immobilized type III collagen on a plastic plate. The anti-VWF monoclonal antibody NMC-4, which inhibits VWF-induced platelet aggregation by binding to alpha4 helix of the A1 domain, also inhibited bitiscetin binding to the VWF. Binding of VWF to the immobilized bitiscetin was competitively inhibited by a high concentration of botrocetin. A panel of recombinant VWF, in which alanine-scanning mutagenesis was introduced to the charged amino acid residues in the A1 domain, showed that the bitiscetin-binding activity was reduced in mutations at Arg632, Lys660, Glu666, and Lys673 of the A1 domain. Those substituted at Arg629, Arg636, and Lys667, which decreased the botrocetin binding, showed no effect on the bitiscetin binding. These results indicate that bitiscetin binds to a distinct site in the A1 domain of VWF spanning over alpha4a, alpha5 helices and the loop between alpha5 and beta6 but close to the botrocetin- and NMC-4-binding sites. Monoclonal antibodies recognizing the alpha-subunit of bitiscetin specifically inhibited bitiscetin-induced platelet agglutination without affecting the binding between VWF and bitiscetin, suggesting that the alpha-subunit of bitiscetin is located on VWF closer to the GPIb-binding site than the beta-subunit is. Bitiscetin and botrocetin might modulate VWF by binding to the homologous region of the A1 domain to induce a conformational change leading to an increased accessibility to platelet GPIb.  相似文献   

14.
Glycoprotein Ibα (GpIbα) binding ability of A1 domain of von Willebrand factor (vWF) facilitates platelet adhesion that plays a crucial role in maintaining hemostasis and thrombosis at the site of vascular damage. There are both “loss as well as gain of function” mutations observed in this domain. Naturally occurring “gain of function” mutations leave self-activating impacts on the A1 domain which turns the normal binding to characteristic constitutive binding with GPIbα. These “gain of function” mutations are associated with the von Willebrand disease type 2B. In recent years, studies focused on understanding the mechanism and conformational patterns attached to these phenomena have been conducted, but the conformational pathways leading to such binding patterns are poorly understood as of now. To obtain a microscopic picture of such events for the better understanding of pathways, we used molecular dynamics (MD) simulations along with principal component analysis and normal mode analysis to study the effects of Pro1266Leu (Pro503Leu in structural context) mutation on the structure and function of A1 domain of vWF. MD simulations have provided atomic-level details of intermolecular motions as a function of time to understand the dynamic behavior of A1 domain of vWF. Comparative analysis of the trajectories obtained from MD simulations of both the wild type and Pro503Leu mutant suggesting appreciable conformational changes in the structure of mutant which might provide a basis for assuming the “gain of function” effects of these mutations on the A1 domain of vWF, resulting in the constitutive binding with GpIbα.  相似文献   

15.
Soluble von Willebrand factor (VWF) has a low affinity for platelet glycoprotein (GP) Ibalpha and needs immobilization and/or high shear stress to enable binding of its A1 domain to the receptor. The previously described anti-VWF monoclonal antibody 1C1E7 enhances VWF/GPIbalpha binding and recognizes an epitope in the amino acids 764-1035 region in the N-terminal D'D3 domains. In this study we demonstrated that the D'D3 region negatively modulates the VWF/GPIb-IX-V interaction; (i) deletion of the D'D3 region in VWF augmented binding to GPIbalpha, suggesting an inhibitory role for this region, (ii) the isolated D'D3 region inhibited the GPIbalpha interaction of a VWF deletion mutant lacking this region, indicating that intramolecular interactions limit the accessibility of the A1 domain, (iii) using a panel of anti-VWF monoclonal antibodies, we next showed that the D'D3 region is in close proximity with the A1 domain in soluble VWF but not when VWF was immobilized; (iv) destroying the epitope of 1C1E7 resulted in a mutant VWF with an increased affinity for GPIbalpha. Our results support a model of domain translocation in VWF that allows interaction with GPIbalpha. The suggested shielding interaction of the A1 domain by the D'D3 region then becomes disrupted by VWF immobilization.  相似文献   

16.
The primary hemostatic von Willebrand factor (vWF) functions to sequester platelets from rheological blood flow and mediates their adhesion to damaged subendothelium at sites of vascular injury. We have surveyed the effect of 16 disease-causing mutations identified in patients diagnosed with the bleeding diathesis disorder, von Willebrand disease (vWD), on the structure and rheology of vWF A1 domain adhesiveness to the platelet GPIbα receptor. These mutations have a dynamic phenotypical range of bleeding from lack of platelet adhesion to severe thrombocytopenia. Using new rheological tools in combination with classical thermodynamic, biophysical, and spectroscopic metrics, we establish a high propensity of the A1 domain to misfold to pathological molten globule conformations that differentially alter the strength of platelet adhesion under shear flow. Rheodynamic analysis establishes a quantitative rank order between shear-rate-dependent platelet-translocation pause times that linearly correlate with clinically reported measures of patient platelet counts and the severity of thrombocytopenia. These results suggest that specific secondary structure elements remaining in these pathological conformations of the A1 domain regulate GPIbα binding and the strength of vWF-platelet interactions, which affects the vWD functional phenotype and the severity of thrombocytopenia.  相似文献   

17.
Activation by elongational flow of von Willebrand factor (VWF) is critical for primary hemostasis. Mutations causing type 2B von Willebrand disease (VWD), platelet-type VWD (PT-VWD), and tensile force each increase affinity of the VWF A1 domain and platelet glycoprotein Ibα (GPIbα) for one another; however, the structural basis for these observations remains elusive. Directed evolution was used to discover a further gain-of-function mutation in A1 that shifts the long range disulfide bond by one residue. We solved multiple crystal structures of this mutant A1 and A1 containing two VWD mutations complexed with GPIbα containing two PT-VWD mutations. We observed a gained interaction between A1 and the central leucine-rich repeats (LRRs) of GPIbα, previously shown to be important at high shear stress, and verified its importance mutationally. These findings suggest that structural changes, including central GPIbα LRR-A1 contact, contribute to VWF affinity regulation. Among the mutant complexes, variation in contacts and poor complementarity between the GPIbα β-finger and the region of A1 harboring VWD mutations lead us to hypothesize that the structures are on a pathway to, but have not yet reached, a force-induced super high affinity state.  相似文献   

18.
At the site of vascular injury, von Willebrand factor (VWF) mediates platelet adhesion to subendothelial connective tissue through binding to the N-terminal domain of the alpha chain of platelet glycoprotein Ib (GPIbalpha). To elucidate the molecular mechanisms of the binding, we have employed charged-to-alanine scanning mutagenesis of the soluble fragment containing the N-terminal 287 amino acids of GPIbalpha. Sixty-two charged amino acids were changed singly or in small clusters, and 38 mutant constructs were expressed in the supernatant of 293T cells. Each mutant was assayed for binding to several monoclonal antibodies for human GPIbalpha and for ristocetin-induced and botrocetin-induced binding of 125I-labeled human VWF. Mutations at Glu128, Glu172, and Asp175 specifically decreased both ristocetin- and botrocetin-induced VWF binding, suggesting that these sites are important for VWF binding of platelet GPIb. Monoclonal antibody 6D1 inhibited ristocetin- and botrocetin-induced VWF binding, and a mutation at Glu125 specifically reduced the binding to 6D1. In contrast, antibody HPL7 had no effect for VWF binding, and mutant E121A reduced the HPL7 binding. Mutations at His12 and Glu14 decreased the ristocetin-induced VWF binding with normal botrocetin-induced binding. Crystallographic modeling of the VWF-GPIbalpha complex indicated that Glu128 and Asp175 form VWF binding sites; the binding of 6D1 to Glu125 interrupts the VWF binding of Glu128, but HPL7 binding to Glu121 has no effect on VWF binding. Moreover, His12 and Glu14 contact with Glu613 and Arg571 of VWF A1 domain, whose mutations had shown similar phenotype. These findings indicated the novel binding sites required for VWF binding of human GPIbalpha.  相似文献   

19.
Zhang J  Ma Z  Dong N  Liu F  Su J  Zhao Y  Shen F  Wang A  Ruan C 《PloS one》2011,6(7):e22157
The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and heparin sulfate, which accelerate the cleavage of VWF. Conversely, thrombospondin-1 decreases the rate of VWF proteolysis by ADAMTS13 by competing with ADAMTS13 for the A3 domain of VWF. To investigate whether murine monoclonal antibodies (mAbs) against human VWF affect the susceptibility of VWF to proteolysis by ADAMTS13 in vitro, eight mAbs to different domains of human VWF were used to evaluate the effects on VWF cleavage by ADAMTS13 under fluid shear stress and static/denaturing conditions. Additionally, the epitope of anti-VWF mAb (SZ34) was mapped using recombinant proteins in combination with enzyme-linked immunosorbent assay and Western blot analysis. The results indicate that mAb SZ34 inhibited proteolytic cleavage of VWF by ADAMTS13 in a concentration-dependent manner under fluid shear stress, but not under static/denaturing conditions. The binding epitope of SZ34 mAb is located between A1555 and G1595 in the central A2 domain of VWF. These data show that an anti-VWF mAb against the VWF-A2 domain (A1555-G1595) reduces the proteolytic cleavage of VWF by ADAMTS13 under shear stress, suggesting the role of this region in interaction with ADAMTS13.  相似文献   

20.
Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3’-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号