首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested for the occurrence of Bergmann's rule, the pattern of increasing body size with latitude, and Rapoport's rule, the positive relationship between geographical range size and latitude, in 34 lineages of Liolaemus lizards that occupy arid regions of the Andean foothills. We tested the climatic-variability hypothesis (CVH) by examining the relationship between thermal tolerance breadth and distribution. Each of these analyses was performed varying the level of phylogenetic inclusiveness. Bergmann's rule and the CVH were supported, but Rapoport's rule was not. More variance in the data for Bergmann's rule and the CVH was explained using species belonging to the L. boulengeri series rather than all species, and inclusion of multiple outgroups tended to obscure these macroecological patterns. Evidence for Bergmann's rule and the predicted patterns from the CVH remained after application of phylogenetic comparative methods, indicating a greater role of ecological processes rather than phylogeny in shaping the current species distributions of these lizards.  相似文献   

2.
The effect of temperature on the distributions of ectothermic vertebrates is well documented. Despite the increase of 6°C expected in the next 60 years in South America, numerous vertebrates are still considered as ‘Least Concern’ species by the IUCN due to their large distribution, insufficient widespread threats and insignificant population decline. One example is the lizard Tropidurus torquatus (Squamata: Tropiduridae), commonly found thermoregulating in anthropic environments throughout the Brazilian Cerrado, but restricted to gallery forests in the equator‐ward localities. The urban areas in this warmer region have been colonised by other closely related congeners (e.g. Tropidurus oreadicus). This study aimed to understand this divergence of habitat selection by these tropirudids that may explain some of the species responses to past and future climate warming. We collected body temperatures (Tb), micro‐environmental temperatures (Ta) and operative (Te) temperatures in four sites along a latitudinal gradient: a pole‐ward and two central sites where T. torquatus inhabit urban areas and one equator‐ward site where T. torquatus and T. oreadicus occur in the gallery forest and in urban microhabitats, respectively. All three populations of T. torquatus present similar Tb (35.5–36°C) and shared microhabitats with a similar Ta (34–37.3°C). The Te in the equator‐ward urban site was considerably higher than in the gallery forest. Tropidurus oreadicus Tb was 38.2 °C (30.1–41.3°C) and was active at a Ta of 30.5–42.3°C. The overlap between the genus Tb, Ta and Te highlights a decrease in the hours of activity that lizards would experience under climate warming. The reduction of hours of activity together with the devastation of natural habitats represents threats and an alarming scenario especially for the equator‐ward populations.  相似文献   

3.
Abstract The present paper examines patterns of termite eating in Australian mammals and lizards (total numbers of species, volume percentage of diet) relative to climate (arid, semi-arid, temperate-mesic). Most termite eaters in arid and semi-arid Australia are lizards. Termite consumptio as a proportion of total lizard diet decreases from arid to mesic climates. More mammal species are relatively termite specialized (>50%) in arid than in semi-arid and mesic regions. Termite consumption in echidnas resembles that of the lizards: relatively high in the arid and relatively low in the mesic zone. For the Dasyuridae, termites comprise only a minor fraction (< 10%) in their diet, irrespective of climate. It is argued that the climatic peculiarities of inland Australia (scant and variable rainfall) cause marked seasonality in termite availability, supporting specialized termite eaters in only the most energy-frugal forms (lizards, echidnas). Areas of future research are identified.  相似文献   

4.
5.
6.
7.
Climate may play important roles in speciation, such as causing the range fragmentation that underlies allopatric speciation (through niche conservatism) or driving divergence of parapatric populations along climatic gradients (through niche divergence). Here, we developed new methods to test the frequency of climate niche conservatism and divergence in speciation, and applied it to species pairs of squamate reptiles (lizards and snakes). We used a large‐scale phylogeny to identify 242 sister species pairs for analysis. From these, we selected all terrestrial allopatric pairs with sufficient occurrence records (= 49 pairs) and inferred whether each originated via climatic niche conservatism or climatic niche divergence. Among the 242 pairs, allopatric pairs were most common (41.3%), rather than parapatric (19.4%), partially sympatric (17.7%), or fully sympatric species pairs (21.5%). Among the 49 selected allopatric pairs, most appeared to have originated via climatic niche divergence (61–76%, depending on the details of the methods). Surprisingly, we found greater climatic niche divergence between allopatric sister species than between parapatric pairs, even after correcting for geographic distance. We also found that niche divergence did not increase with time, further implicating niche divergence in driving lineage splitting. Overall, our results suggest that climatic niche divergence may often play an important role in allopatric speciation, and the methodology developed here can be used to address the generality of these findings in other organisms.  相似文献   

8.
The first expected symptoms of a climate change‐generated biodiversity crisis are range contractions and extinctions at lower elevational and latitudinal limits to species distributions. However, whilst range expansions at high elevations and latitudes have been widely documented, there has been surprisingly little evidence for contractions at warm margins. We show that lower elevational limits for 16 butterfly species in central Spain have risen on average by 212 m (± SE 60) in 30 years, accompanying a 1.3 °C rise (equivalent to c. 225 m) in mean annual temperature. These elevational shifts signify an average reduction in habitable area by one‐third, with losses of 50–80% projected for the coming century, given maintenance of the species thermal associations. The results suggest that many species have already suffered climate‐mediated habitat losses that may threaten their long‐term chances of survival.  相似文献   

9.
Viviparity, the bearing of live young, has evolved well over 100 times among squamate reptiles. This reproductive strategy is hypothesized to allow maternal control of the foetus' thermal environment and thereby to increase the fitness of the parents and offspring. Two hypotheses have been posited to explain this phenomenon: (i) the cold‐climate hypothesis (CCH), which advocates low temperatures as the primary selective force; and (ii) the maternal manipulation hypothesis (MMH), which advocates temperature variability as the primary selective force. Here, we investigate whether climatic and geographic variables associated with the CCH vs. the MMH best explain the current geographical distributions of viviparity in lizards while incorporating recent advances in comparative methods, squamate phylogenetics and geospatial analysis. To do this, we compared nonphylogenetic and phylogenetic models predicting viviparity based on point‐of‐capture data from 20 994 museum specimens representing 215 lizard species in conjunction with spatially explicit bioclimatic and geographic (elevation and latitude) data layers. The database we analysed emphasized Nearctic lizards from three species‐rich genera (Phrynosoma, Plestiodon and Sceloporus); however, we additionally analysed a less substantial, but worldwide sample of species to verify the universality of our Nearctic results. We found that maximum temperature of the warmest month (and, less commonly, elevation and maximum temperature of the driest quarter) was frequently the best predictor of viviparity and showed an association consistent with the CCH. Our results strongly favour the CCH over the MMH in explaining lizard reproductive mode evolution.  相似文献   

10.
The potential impact of climate change on biodiversity is well documented. A well developed range of statistical methods currently exists that projects the possible future habitat of a species directly from the current climate and a species distribution. However, studies incorporating ecological and evolutionary processes remain limited. Here, we focus on the potential role that local adaptation to climate may play in driving the range dynamics of sessile organisms. Incorporating environmental adaptation into a stochastic simulation yields several new insights. Counter-intuitively, our simulation results suggest that species with broader ranges are not necessarily more robust to climate change. Instead, species with broader ranges can be more susceptible to extinction as locally adapted genotypes are often blocked from range shifting by the presence of cooler adapted genotypes that persist even when their optimum climate has left them behind. Interestingly, our results also suggest that it will not always be the cold-adapted phenotypes that drive polewards range expansion. Instead, range shifts may be driven by phenotypes conferring adaptation to conditions prevalent towards the centre of a species’ equilibrium distribution. This may have important consequences for the conservation method termed predictive provenancing. These initial results highlight the potential importance of local adaptation in determining how species will respond to climate change and we argue that this is an area requiring urgent theoretical and empirical attention.  相似文献   

11.
12.
Thermophysiological traits, particularly thermal tolerances and sensitivity, are key to understanding how organisms are affected by environmental conditions. In the face of ongoing climate change, determining how physiological traits structure species’ ranges is especially important in tropical montane systems. In this study, we ask whether thermal sensitivity in physiological performance restricts montane lizards to high elevations and excludes them from the warmer environments reported at low elevations. For three montane lizard species in the Brazilian Atlantic Forest, we collect thermophysiological data from lizards in the highest elevation site of each species’ distribution, and ask how well the individuals exhibiting those traits would perform across the Atlantic Forest. We use microclimatic and organism‐specific models to directly relate environmental conditions to an organism's body temperature and physiological traits, and estimate measures of thermophysiological performance. Our findings demonstrate that thermophysiological constraints do not restrict montane lizards to high elevations in this system, and thus likely do not determine the warm boundaries of these montane species’ distributions. Results also suggest that competition may be important in limiting the warm boundaries of the species’ ranges for two of the focal species. These experimental results suggest that caution should be used when claiming that physiology drives patterns of diversity and endemism within montane environments. They also highlight the importance of interdisciplinary experimental studies that bridge the fields of evolution and ecology to improve predictions of biological responses to future environmental shifts.  相似文献   

13.
14.
Aim Within clades, most taxa are rare, whilst few are common, a general pattern for which the causes remain poorly understood. Here we investigate the relationship between thermal performance (tolerance and acclimation ability) and the size of a species’ geographical range for an assemblage of four ecologically similar European diving beetles (the Agabus brunneus group) to examine whether thermal physiology relates to latitudinal range extent, and whether Brown’s hypothesis and the environmental variability hypothesis apply to these taxa. Location Europe. Methods In order to determine the species tolerances to either low or high temperatures we measured the lethal thermal limits of adults, previously acclimated at one of two temperatures, by means of thermal ramping experiments (± 1°C min?1). These measures of upper and lower thermal tolerances (UTT and LTT respectively) were then used to estimate each species’ thermal tolerance range, as total thermal tolerance polygons and marginal UTT and LTT thermal polygons. Results Overall, widespread species have higher UTTs and lower LTTs than restricted ones. Mean upper lethal limits of the Agabus brunneus group (43 to 46°C), are similar to those of insects living at similar latitudes, whilst mean lower lethal limits (?6 to ?9°C) are relatively high, suggesting that this group is not particularly cold‐hardy compared with other mid‐temperate‐latitude insects. Widespread species possess the largest thermal tolerance ranges and have a relatively symmetrical tolerance to both high and low temperatures, when compared with range‐restricted relatives. Over the temperature range employed, adults did not acclimate to either high or low temperatures, contrasting with many insect groups, and suggesting that physiological plasticity has a limited role in shaping distribution. Main conclusions Absolute thermal niche appears to be a good predictor of latitudinal range, supporting both Brown’s hypothesis and the environmental variability hypothesis. Restricted‐range species may be more susceptible to the direct effect of climate change than widespread species, notwithstanding the possibility that even ‘thermally‐hardy’, widespread species may be influenced by the indirect effects of climate change such as reduction in habitat availability in Mediterranean areas.  相似文献   

15.
Aim Do species range shapes follow general patterns? If so, what mechanisms underlie those patterns? We show for 11,582 species from a variety of taxa across the world that most species have similar latitudinal and longitudinal ranges. We then seek to disentangle the roles of climate, extrinsic dispersal limitation (e.g. barriers) and intrinsic dispersal limitation (reflecting a species’ ability to disperse) as constraints of species range shape. We also assess the relationship between range size and shape. Location Global. Methods Range shape patterns were measured as the slope of the regression of latitudinal species ranges against longitudinal ranges for each taxon and continent, and as the coefficient of determination measuring the degree of scattering of species ranges from the 1:1 line (i.e. latitudinal range = longitudinal range). Two major competing hypotheses explaining species distributions (i.e. dispersal or climatic determinism) were explored. To this end, we compared the observed slopes and coefficients of determination with those predicted by a climatic null model that estimates the potential range shapes in the absence of dispersal limitation. The predictions compared were that species distribution shapes are determined purely by (1) intrinsic dispersal limitation, (2) extrinsic dispersal limitations such as topographic barriers, and (3) climate. Results  Using this methodology, we show for a wide variety of taxa across the globe that species generally have very similar latitudinal and longitudinal ranges. However, neither neutral models assuming random but spatially constrained dispersal, nor models assuming climatic control of species distributions describe range shapes adequately. The empirical relationship between the latitudinal and longitudinal ranges of species falls between the predictions of these competing models. Main conclusions We propose that this pattern arises from the combined effect of macroclimate and intrinsic dispersal limitation, the latter being the major determinant among restricted‐range species. Hence, accurately projecting the impact of climate change onto species ranges will require a solid understanding of how climate and dispersal jointly control species ranges.  相似文献   

16.
Aim Elevation and climate ranges across latitude experienced by 21 wide‐ranging mammal species in western North America were summarized to examine two questions: (1) do populations in the northern and southern portions of a species’ range experience different climates or are environments selected to remain similar to climates at the core of ranges; and (2) how do species’ elevational ranges, experienced temperature seasonality and temperature ranges change across latitude? Given the larger effects of climate oscillations in the north vs. the south, a predicted outcome is for species to conserve climate niches across latitude and to show reduced climate and elevation ranges in the north. An alternative outcome is latitudinal niche diversification and increased climate variation in the north. Location Western North America. Methods The questions above were examined using a combination of species occurrence data bases, climate data bases, simple summaries of means and standard deviations and by testing summaries against random distributions across latitude for 21 mammal species from a variety of orders. Results The results showed that: (i) most species conserve their niche strongly or weakly given overall temperature gradients from north to south; (ii) seasonality experienced by species is relatively static until the highest latitudes despite directional trends across the region; and (iii) the elevation range and temperature variation that species experience decreases from south to north. Main conclusions Populations at range edges appear to partition environments to remain closer to temperature values similar to those at the core of the range. In addition, seasonality is not a likely explanatory factor of genetic diversity in latitudinal gradients. The data are instead more consistent with predictions that a combination of higher gene‐flow, increasing environmental instability and decreasing elevation gradients in the north compared to the south may lead to negative correlations between latitude and species’ climate variation. The results corroborate risks faced by northern mammal populations to global climate changes.  相似文献   

17.
In recent decades, interest in understanding species distributions and exploring processes that shape species diversity has increased, leading to the development of advanced methods for the exploitation of occurrence data for analytical and ecological purposes. Here, with the use of georeferenced centipede data, we explore the importance and contribution of bioclimatic variables and land cover, and predict distribution ranges and potential hotspots in Norway. We used a maximum entropy analysis (Maxent) to model species' distributions, aiming at exploring centres of distribution, latitudinal spans and northern range boundaries of centipedes in Norway. The performance of all Maxent models was better than random with average test area under the curve (AUC) values above 0.893 and True Skill Statistic (TSS) values above 0.593. Our results showed a highly significant latitudinal gradient of increased species richness in southern grid-cells. Mean temperatures of warmest and coldest quarters explained much of the potential distribution of species. Predictive modelling analyses revealed that south-eastern Norway and the Atlantic coast in the west (inclusive of the major fjord system of Sognefjord), are local biodiversity hotspots with regard to high predictive species co-occurrence. We conclude that our predicted northward shifts of centipedes' distributions in Norway are likely a result of post-glacial recolonization patterns, species' ecological requirements and dispersal abilities.  相似文献   

18.
The electrophoretic variation at 26 presumptive gene loci was investigated in populations of the closely related species Podarcis sicula, P. wagleriana, P. raffonei, and P. filfolensis. Low values of proportion of polymorphic loci (P) and mean observed heterozygosity (Ho) were found in P. sicula (P= 0.10; Ho= 0.016), P. wagleriana (P= 0.13; Ho= 0.029), and P. raffonei (P= 0.08; Ho= 0.017), while higher levels of genetic variability were observed in P. filfolensis (P= 0.17; Ho= 0.054). In the latter species, a multiple regression analysis was carried out in order to analyse the geographic correlates of P and Ho. The results of this analysis were consistent with the predictions of the time-divergence theory of variation, supporting the conclusion that directional selection is the main force eroding genetic variation on small islands. Intraspecific values of Nei 's (1972) standard genetic distance were relatively low in P. sicula (average D= 0.024), P. wagleriana (average D= 0.004), and P. filfolensis (average D= 0.012), while higher in P. raffonei (D= 0.040). The lizards from Pantellena Island, which were considered by BISCHOFF (1986) to be very similar to P. filfolensis from Malta on the basis of a superficial analysis of the coloration pattern, were shown to actually belong to P. sicula. This confirms that the range of P. filfolensis only includes the Maltese Archipelago, Linosa Island, and the islet of Lampione. Surprisingly, the samples of P. filfolensis from the Pelagie Islands (Linosa and Lampione) were very similar to those from the Maltese Archipelago (average D= 0.016). This could be explained by rafting or anthropogenic introduction of P. filfolensis on Linosa and Lampione. Podarcis wagleriana and P. raffonei were genetically related (average D= 0.152), confirming the results of previous electrophoretic investigations. Podarcis filfolensis, though showing some morphological affinity with P. wagleriana, was genetically highly differentiated from this latter species (average D= 0.526), while being more similar to P. sicula (average D= 0.306). This indicates a close relationship between P. sicula and P. filfolensis, suggesting that P. sicula and P. filfolensis probably diverged from a common ancestor, and that the apparent similarity between P. filfolensis and P. wagleriana could be merely due to morphological convergence.  相似文献   

19.
Every species occupies a limited geographic area, but it remains unclear why traits that limit distribution do not evolve to allow range expansion. Hypotheses for the evolutionary stability of geographic ranges assume that species are maladapted at the range boundary and unfit beyond the current range, but this assumption has rarely been tested. To examine how fitness varies across species' ranges, we reciprocally transplanted two species of monkeyflowers, Mimulus cardinalis and M. lewisii, within and beyond their present elevation ranges. We used individuals of known parentage from populations collected across the elevation ranges of both species to examine whether populations are adapted to position within the range. For both species we found the greatest average fitness at elevations central within the range, reduced fitness at the range margin, and zero or near-zero fitness when transplanted beyond their present elevation range limits. However, the underlying causes of fitness variation differed between the species. At high elevations beyond its range, M. cardinalis displayed reduced growth and fecundity, whereas at low elevations M. lewisii experienced high mortality. Weak differences in performance were observed among populations within each species and these were not related to elevation of origin. Low fitness of both species at their range margin and weak differentiation among populations within each species suggest that adaptation to the environment at and beyond the range margin is hindered, illustrating that range margins provide an interesting system in which to study limits to adaptation.  相似文献   

20.
We analysed the home ranges of a community of Darevskia rock lizards composed of a bisexual species (D. valentini), two parthenogens (D. armeniaca and D. unisexualis), and two backcross forms between bisexual and unisexual forms. We estimated home range areas of ink-marked, GPS-located lizards using Minimum Convex Polygon (MCP) and 95% of the locations for those individuals with five or more sightings. The bisexual D. valentini was the species with the largest home ranges, distances travelled, and the most intersections. No differences between unisexual species and backcrosses were recorded for any comparison. In males, home range size and perimeter were related to morphological characteristics. Contrary to what has been described in allopatry, unisexual species showed smaller home ranges and fewer overlaps than sympatric bisexual species. We tentatively suggest that the presence of potential bisexual partners might increase sexual competition among parthenogenetic females while differences in habitat use should also be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号